

Information Retrieval Models for Information Retrieval 1

- IR Models
- Boolean Model
- Vector Space Model
- Relevance Feedback in the VSM
- Probabilistic Model
- Latent Semantic Indexing
- Other IR Models

- The core question in IR: Which from a given set of (normalized) documents are relevant for a given query?
- Ranking: How relevant for a given query is each document?

Judging Relevance

Notation

- All models we discuss use the "Bag of Words" view
- Definition
 - Let D be the set of all normalized documents, $d \in D$ is a document
 - Let K be the set of all unique tokens in D, $k \in K$ is a token
 - Can as well be terms
 - Let w be the function that maps a given d to its bag of tokens from K (its bag-of-words)
 - Let v_d by a vector of size |K| for d (or a query q) with
 - $V_d[i]=0$ iff $k_i \notin W(d)$
 - $V_d[i]=1$ iff $k_i \in W(d)$
 - Often, we use weights instead of a Boolean membership function
 - Let $w_{ij} \ge 0$ be the weight of term k_i in document d_j ($w_{ij} = v_i[i]$)
 - $W_{ij}=0$ if $k_i \notin d_j$

- IR Models
- Boolean Model
- Vector Space Model
- Relevance Feedback in the VSM
- Probabilistic Model
- Latent Semantic Indexing
- Other IR Models

- Simple model based on set theory
- Queries are specified as **Boolean expressions**
 - Token are atoms
 - Atoms are connected by AND, OR, NOT, (XOR, ...)
 - Parenthesis are possible (but ignored here)
- Relevance of a document is either 0 or 1
 - Let q contain the atoms $< k_1, k_2, ... >$
 - An atom k_i evaluates to true for a document d iff $v_d[k_i]=1$
 - Compute values of all atoms for each d
 - Compute value of q for d as logical expression over atom values
- No weights, no ranking

Properties

- Simple, clear semantics, widely used in (early) systems
- Disadvantages
 - No partial matching
 - Suppose query $\mathbf{k}_1 \wedge \mathbf{k}_2 \wedge \dots \wedge \mathbf{k}_9$
 - A doc d with $\mathbf{k}_1 \wedge \mathbf{k}_2 \dots \mathbf{k}_8$ is as irrelevant as one with none of the terms
 - No ranking
 - Token cannot be weighted
 - But some are more important for a doc than others
 - Average users don't like (understand) Boolean expressions
- Results: Often unsatisfactory
 - Too many documents (too few restrictions, many OR)
 - Too few documents (too many restrictions, many AND)
- Several extensions exist, but generally not satisfactory

- One should not iterate over D, but use a term index
 - Assume we have an index with fast operation find: $K \rightarrow P^{D}$
 - Search each atom k_i of the query, resulting in a set $D_i \subseteq D$
 - Evaluate query in the given order using set operations on D_i's
 - $\mathbf{k}_{i} \wedge \mathbf{k}_{j}$: $\mathbf{D}_{i} \cap \mathbf{D}_{j}$
 - $\mathbf{k}_{i} \vee \mathbf{k}_{j}$: $\mathbf{D}_{i} \cup \mathbf{D}_{j}$
 - NOT $k_{\texttt{i}}: \texttt{D} \ \texttt{D}_{\texttt{i}}$
- Improvements: Cost-based evaluation
 - Evaluate sub-expressions first that result in smaller intermediate results
 - Less memory requirements, faster intersections, ...

- Evaluating "**NOT** \mathbf{k}_{i} " can be very expensive
 - If k_i is not a stop word, result is very large: $|D\setminus D_i| \approx |D|$
 - Most other terms appear in almost no documents
 - Recall Zipf's Law the tail of the distribution
- Solution 1: Disallow negation
 - This is what many web search engines do
- Solution 2: Allow only in the form "k_i ^ NOT k_i"
 - Should not use implementation scheme as given before
 - D_{not-kj} would be very large
 - Better: $D := D_i \setminus D_j$

- IR Models
- Boolean Model
- Vector Space Model
- Relevance Feedback in the VSM
- Probabilistic Model
- Latent Semantic Indexing
- Other IR Models

- Salton, G., Wong, A. and Yang, C. S. (1975). "A Vector Space Model for Automatic Indexing." *Communications of the ACM*
 - A breakthrough in IR
 - Still most popular model today
- General idea
 - Fix a vocabulary K
 - View each doc and query as a point in a |K|-dimensional space
 - Rank docs according to distance from the query in that space
- Main advantages
 - Natural ranking of docs (according to distance)
 - Naturally supports partial matching (increases distance)

Vector Space

- Each term is one dimension
 - Different suggestions for determining co-ordinates, i.e., term weights
- The closest docs are the most relevant ones
 - Rationale: Vectors correspond to themes which are loosely related to sets of terms
 - Distance between vectors ~ distance between themes
 - Different suggestions for defining distance

 Recall: The scalar product between two vectors v and w of equal dimension is defined as follows

$$v \circ w = |v| * |w| * \cos(v, w)$$

• This gives us the angle

$$\cos(v, w) = \frac{v \circ w}{|v| * |w|}$$

– With

$$|v| = \sqrt{\sum v_i^2} \qquad v \circ w = \sum_{i=1..n} v_i * w_i$$

Distance = cosine of the angle between doc d and query q

$$sim(d,q) = \cos(v_d, v_q) = \frac{v_d \circ v_q}{|v_d| * |v_q|} = \frac{\sum \left(v_q[i] * v_d[i] \right)}{\sqrt{\sum v_d[i]^2 * \sqrt{\sum v_q[i]^2}}}$$
Length
normalization
Can be dropped for ranking

Assume stop word removal, stemming, and binary weights

	Text	verkauf	haus	italien	gart	miet	blüh	woll
1	Wir verkaufen Häuser in Italien	1	1	1				
2	Häuser mit Gärten zu vermieten		1		1	1		
3	Häuser: In Italien, um Italien, um Italien herum		1	1				
4	Die italienschen Gärtner sind im Garten			1	1			
5	Der Garten in unserem italienschen Haus blüht		1	1	1		1	
Q	Wir wollen ein Haus mit Garten in Italien mieten		1	1	1	1		1

Ranking

$$sim(d,q) = \frac{\sum \left(v_q[i] * v_d[i] \right)}{\sqrt{\sum v_d[i]^2}}$$

1	1	1	1				
2		1		1	1		
3		1	1				
4			1	1			
5		1	1	1		1	
Q		1	1	1	1		1

~ 1.73

- sim(d₁,q) = $(1*0+1*1+1*1+0*1+0*1+0*0+0*1) / \sqrt{3}$ ~ 1.15 •
- $sim(d_2,q) = (1+1+1) / \sqrt{3}$ •
- $sim(d_3,q) = (1+1) / \sqrt{2}$ ~ 1.41 •
- $sim(d_4,q) = (1+1) / \sqrt{2}$ ~ 1.41 • ~ 1.5
- $sim(d_5,q) = (1+1+1) / \sqrt{4}$ •

Rg	Q: Wir wollen ein Haus mit Garten in Italien mieten			
1	d ₂ : Häuser mit Gärten zu vermieten			
2	d ₅ : Der Garten in unserem italienschen Haus blüht			
2	d ₄ : Die italienschen Gärtner sind im Garten			
3	d ₃ : Häuser: In Italien, um Italien, um Italien herum			
5	d ₁ : Wir verkaufen Häuser in Italien			

Definition

Let D be a document collection, K be the set of all terms in D, $d \in D$ and $k \in K$

- The term frequency tf_{dk} is the frequency of k in d
- The document frequency df_k is the frequency of docs in D containing k
 - This should rather be called "corpus frequency"
 - Sometimes defined as the frequency of occurrences of k in D
 - Both definitions are valid and both are used
- The inverse document frequency idf_k is $idf_k = |D| / df_k$
 - In practice, one usually uses $idf_k = log(|D| / df_k)$

Ranking with TF scoring

$$sim(d,q) = \frac{\sum \left(v_q[i] * v_d[i] \right)}{\sqrt{\sum v_d[i]^2}}$$

1	1	1	1				
2		1		1	1		
3		1	3				
4			1	2			
5		1	1	1		1	
Q		1	1	1	1		1

~ 1.5

•	$sim(d_1,q) = (1*0+1*1+1*1+0*1+0*1+0*0+0*1) / \sqrt{3}$	~ 1.15
•	$sim(d_2,q) = (1+1+1) / \sqrt{3}$	~ 1.73
•	$sim(d_3,q) = (1+3) / \sqrt{10}$	~ 1.26
•	$sim(d_1,q) = (1+2) / \sqrt{5}$	~ 1.34

- $sim(d_4,q) = (1+2) / \sqrt{5}$
- $sim(d_5,q) = (1+1+1) / \sqrt{4}$ •

Rg	Q: Wir wollen ein Haus mit Garten in Italien mieten
1	d ₂ : Häuser mit Gärten zu vermieten
2	d ₅ : Der Garten in unserem italienschen Haus blüht
3	d ₄ : Die italienschen Gärtner sind im Garten
4	d ₃ : Häuser: In Italien, um Italien, um Italien herum
5	d ₁ : Wir verkaufen Häuser in Italien

- 1st problem: The longer a doc, the higher the probability of finding query terms by pure chance
 - Solution: Normalize TF values on document length (yields $0 \le w_{dk} \le 1$)

$$tf'_{dk} = \frac{tf_{dk}}{|d|} = \frac{tf_{dk}}{\sum_{j=1..k} tf_{dj}}$$

- Note: Longer docs also get down-ranked by normalization on doclength in similarity function. Use only one measure!
- 2nd problem: Terms frequent in D don't help to discriminate and should be scored less
 - Solution: Also use IDF scores

$$w_{dk} = \frac{\eta_{dk}}{|d|} * idf_k$$

11

Examp	le	TF*	DF

$$w_{dk} = \frac{tf_{dk}}{|d_d|} * idf_k = \frac{tf_{dk}}{|d_d|} * \frac{|D|}{df_k}$$
$$sim(d,q) = \frac{\sum \left(v_q[i] * v_d[i]\right)}{\sqrt{\sum v_d[i]^2}}$$

	IDF	5	5/4	5/4	5/3	5	5	DIV-0
	1 (tf)	1/3	1/3	1/3				
	2 (tf)		1/3		1/3	1/3		
	3 (tf)		1/4	3/4				
	4 (tf)			1/3	2/3			
	5 (tf)		1/4	1/4	1/4		1/4	
	Q		1	1	1	1		1

~ 2,08

- $sim(d_1,q) = (5/4*1/3 + 5/4*1/3) / \sqrt{0.3}$ ~ 1.51
- $sim(d_2,q) = (5/4*1/3 + 5/3*1/3 + 5*1/3) / \sqrt{0.3} \sim 4,80$
- $sim(d_3,q) = (5/4*1/4+5/4*3/4) / \sqrt{0.63} \sim 1,57$
- $sim(d_4,q) = (5/4*1/3 + 5/3*2/3) / \sqrt{0.56}$
- $sim(d_5,q) = (5/4*1/4 + 5/4*1/4 + 5/3*1/4) / \sqrt{0.25} \sim 2,08$

wollen ein Haus mit Garten in Italien mieten	wollen ein Haus mit Garten in Italien mieten		
d ₂ : Häuser mit Gärten zu vermieten	Häuser mit Gärten zu vermieten		
d ₅ : Der Garten in unserem italienschen Haus blüht	Der Garten in unserem italienschen Haus blüht		
d ₄ : Die italienschen Gärtner sind im Garten	Die italienschen Gärtner sind im Garten		
d ₃ : Häuser : In Italien, um Italien, um Italien herum	Häuser: In Italien, um Italien, um Italien herum		
d ₁ : Wir verkaufen Häuser in Italien	Wir verkaufen Häuser in Italien		

- Give query terms in a doc d high weights which are (1) frequent in d and (2) infrequent in D
- IDF deals with the consequences of Zipf's law
 - The few very frequent (and unspecific) terms get lower scores
 - The many infrequent (and specific) terms get higher scores
- Interferes with stop word removal
 - If stop words are removed, IDF might not be necessary any more
 - If IDF is used, stop word removal might not be necessary any more
- Many variations: log? Smoothing?

A Concrete (and Popular) VSM-Model

- Okapi BM25
 - Okapi: First system which used it (80ties)
 - BM25: Best-Match, version 25 (roughly)
- Good results in several TREC evaluations

$$sim(d,q) = \sum_{k \in q} IDF(k) * \frac{tf_{dk} * (k_1 + 1)}{tf_{dk} + k_1 * \left(1 - b + b * \frac{|d|}{a}\right)}; \quad IDF(k) = \frac{|D| - tf_k + 0.5}{tf_k + 0.5}$$

- k_1 , b constants (often b=0.75, k_1 =0.2)
- a is the average document length in D

- Why not use Euclidean distance?
- Length of vectors would be much more important
- Since queries usually are very short, very short documents would always win
- Cosine measures normalizes by the length of both vectors

- We assume that all terms are independent
 - Clearly wrong: some terms are semantically closer than others
 - Their co-appearance doesn't mean more than only one appearance
 - The appearance of "red" in a doc with "wine" doesn't mean much
 - Extension: Topic-based Vector Space Model (LSI later)
- No treatment of synonyms (query expansion, ...)
- No treatment of homonyms
 - Different senses = different dimensions
 - We would need to disambiguate terms into their senses (later)
- Term-order independent
 - But order carries semantic meaning (object? subject?)

- Assume we want to retrieve the top-r docs
 - Look up all terms k_i of the query in an index
 - Build the union of all documents which contain at least one keyword from query
 - Hold in a list sorted by score (initialize with 0)
 - Walk through terms k_i in order of decreasing IDF-weights
 - Go through docs in order of current score
 - For each document d_j: Add w_{ji}*IDF_i to current score s_j
 - Report top-r documents
- Several tricks to speed up search at the cost of accuracy
 - But we are anyway only computing approximation of relevance

A Different View

- Query evaluation actually searches for the top-r nearest neighbors (for some similarity measure)
- Can be achieved using multidimensional indexing
 - kDD-Trees, Grid files, etc.
 - No sequential scan of (all, many) docs
- But: keyword search is faster

- IR Models
- Boolean Model
- Vector Space Model
- Relevance Feedback in the VSM
- Probabilistic Model
- Latent Semantic Indexing

Interactive IR

- Recall: IR is a process, not a query
- Relevance feedback
 - User poses query
 - System computes ranked answer
 - User judges the relevance of the (top-k) results
 - System generates new (improved) ranked answers
 - User never needs to pose another query
 - New query is generated by the system
 - Loop until satisfaction

Relevance Feedback

- Basic assumptions
 - Relevant docs are similar to each other the common theme should be emphasized
 - Irrelevant docs are different from relevant docs the differences should be de-emphasized
- "Emphasize, de-emphasize" Modify terms and weights
 - Query expansion: Add new terms to the query
 - From the relevant documents
 - More aggressive: add "NOT" with terms from irrelevant docs
 - Term re-weighting: Assign new weights to terms
 - Up-weight terms from the relevant docs
 - Down-weight terms from the irrelevant docs

- Let R (N) be the set of docs marked as relevant (irrelevant) by the user
- Do not forget the original query
- Rocchio: Adapt query vector after each feedback

$$v_{q_{new}} = \alpha * v_q + \beta * \frac{1}{|R|} \sum_{d \in R} v_d - \gamma * \frac{1}{|N|} \sum_{d \in N} v_d$$

- Implicitly performs query expansion and term re-weighting
- Rocchio, J., Relevance Feedback in Information Retrieval,. In J. Rocchio and G. Salton (ed): "The SMART Retrieval System", Prentice Hall, 1971

Example

Let $\alpha = 0.5$, $\beta = 0.5$, $\gamma = 0$, K={information, science, retrieval, system}

Quelle: A. Nürnberger: IR

Ulf Leser: Information Retrieval, Winter Semester 2016/2017

Choices for N

- How can we determine N?
 - Naïve: N = D R
 - Infeasible: R not known, N too large and unknown
 - Ask the user for explicit negative feedback
 - More work for the user
 - Implicit: Docs presented for assessment and marked relevant
 - Assumes that user looked at all
- Generally: Large N make things slow
 - Query after first round has $\sim |K|$ dimensions with non-null values
- R has a theme, N probably very heterogeneous
 - High likelihood that terms get weights reflecting only the corpus, not the "not in R" property

Variations

- How to choose α , β , γ ?
 - Tuning with gold standard sets difficult
 - Educated guess, user study
- Alternative treatment for N
 - Intuition: Non-relevant docs are heterogeneous and tear in every direction – better to only take the worst instead of all of them

$$v_{q_{new}} = \alpha * v_q + \beta * \frac{1}{|R|} \sum_{d \in R} v_d - \gamma * \{v_d | d = \arg\min(sim(v_q, v_d))\}$$

- But: Probably many documents with similarity 0 which to take?
- Engines are tuned to find most relevant docs inefficient
- Probably most popular: Ignore N

Effects of Relevance Feedback

- Advantages
 - Improves results (many studies) compared to single queries
 - Comfortable: Users need not generate new queries themselves
 - Iterative process converging to the best possible answer
 - Especially helpful for increasing recall
 - Due to query expansion kind-of synonym expansion
- Disadvantages
 - Still requires some work by the user
 - Excite: Only 4% used relevance feedback ("more of this" button)
 - Writing a new query based on returned results might be faster (and easier and more successful) than rating results
 - Assumes that relevant docs are similar
 - What if user searches for all meanings of "jaguar"?
 - Query very long already after one iteration slow retrieval

- More inputs for improving IR performance
- Collaborative filtering: Return to the user what other yet similar users liked
 - "Customers who bought this book also bought ..."
 - In IR: Find users posing similar queries and look at what they did with the answers
 - In e-Commerce: Which produces did they buy? (very reliable)
 - In IR, we need to approximate
 - Documents a user clicked on (if known)
 - Did the user look at the second page? (Low credit for first results)
 - Did the user pose a "refinement query" next?
 - ...
 - All these measures are not very reliable; we need many users

- Expand query with synonyms and hyponyms of each term
 - feline \rightarrow feline cat
 - One may weight added terms less than original query terms
- Often used in scientific IR systems (Medline)
- Requires high quality thesaurus
- General observation
 - Increases recall
 - May significantly decrease precision
 - "interest rate" \rightarrow "interest rate fascinate evaluate"
 - Do synonyms really exist?

- Explain the vector space model
- How is the size of K (vocabulary) influenced by preprocessing?
- Describe some variations of deducing term weights
- How could we extend the VSM to also consider the order of terms (to a certain degree)?
- How does the Rocchio algorithm determine the next query after feedback?
- How can we determine a useful set of negative documents in relevance feedback?
- How does relevance feedback work in current search engines?