

Datenbanksysteme II: Big Data

Ulf Leser

Content of this Lecture

- Big Data Introduction
- Map Reduce Programming Paradigm
- Parallel DBMS or MapReduce?
- Extensions to MR

• [based on slides by Astrid Rheinländer, 2012]

- A buzz word
- "Collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications" [http://en.wikipedia.org/wiki/Big_data]
 - Terabytes / petabytes
 - Near future: exabytes
- Challenges
 - Storage
 - Analysis
 - Search

Example: Twitter

[All images: http://infographiclabs.com/news/twitter-2012/]

- 2012: 63 Billion tweets, 8.5 TB data
 - 2016: ~200 Billion tweets per year
- Business: Sell access to content
- Analysis: Find emerging trends, sentiment analysis, ...

Example: Cern, LHC

- 2012: LHC experiments generated 22PB of data
 - ~99% are filtered right after creation
- Analysis runs on supercomputer: 1000+ processors
- Data stored & processed in LHC Computing Grid
 - 150 data & compute centers around the world
 - Heterogeneous architecture

[http://lhcathome.web.cern.ch]

[http://grid-monitoring.cern.ch/myegi/gridmap/]

Will Computers Crash Genomics?

Pennisi, E. (2011). Will Computers Crash Genomics? Science, 331(6018), 666–668.

Fast Development

Next Generation Sequencing

- New generation of sequencers since ~2005
 - Illumina, Solexa, 454, Solid, ...
- Much higher throughput
 - ~15 TB raw data in 3-5 days
 - ~600 GB processed data/week
 - Cost for sequencing a genome down to ~2.000 USD
- 3rd generation sequencers
 - Single molecule sequencing
 - A (human) genome in a day
 - Sequence every human

Illumina HiSeq 2000. DNAVision

- Sequence different cells in every human

Sequencing becomes a commodity

 Sequencing dozens or hundreds of genomes is feasible (now!) for any mid-size research projects Old Task: Genome Assembly

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

All Analytics is the Same?

ROUTINELY UNIQUE

Over 18 months, 46 data-analysis projects undertaken at the bioinformatics core of the University of Texas Health Science Center at Houston required 34 different types of analysis — most were used infrequently. Each project demanded unique combinations of analyses, demonstrating how bioinformaticians must be versatile, creative and collaborative.

Chang, Core services: Reward bioinformaticians, Nature 2015

Two Main Issues

- Runtime
 - Large and growing data volumes
 - HighSeq-X: 18 terabyte a week

- Variety
 - Many different types of pipelines
 - Dozens of tools in every pipeline
 - New tools / pipelines every day
 - No gold standards

Big Data:

- Fourth V: Veracity
 - Big data is often very noisy (unfiltered)

- We need faster algorithms: Machine learning, algorithms
- We need more scalable systems: Distributed systems
- We need more CPUs: High-Performance Computing
- We need professional services: Companies
- We need: Databases
 - Declarativity: Specialized, simple, powerful languages
 - Optimization: Compilation in efficient, parallel execution plans
 - Comprehensive data management: Robustness, data models, index structures, access control, ...

Big Data Landscape

Big Data Landscape

Big Data Landscape (Version 2.0)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Content of this Lecture

- Big Data Introduction
- Map Reduce
 - Programming model
 - Framework
 - Distributed File System HDFS
 - Error handling
- Parallel DBMS or MapReduce?
- Extensions to MR

Underlying Idea

- Observations
 - Supercomputers are expensive
 - Large commodity-clusters are error-prone
 - No simple approach to express Big Data problems and let them robustly run on a commodity cluster
 - Most parallel analysis is embarrassingly parallel
 - Functional programming has some good ideas
 - Side-effect free functions
 - 2nd order functions
- Result: MapReduce
 - Programming model: The idea
 - Software stack: A framework
 - GDFS: Google distributed file system

- Proposed by Dean & Ghemawat (Google) in 2004
 - Dean, J. and Ghemawat, S. (2004). "MapReduce: Simplified Data Processing on Large Clusters ". 6th Symposium on Operating System Design and Implementation, San Francisco, USA
 - One of the most-cited recent papers in computer science
- Yahoo adopts idea and puts code open source in 2008
 - Hadoop: Java framework for Map Reduce programming
 - HDFS: Hadoop Distributed File Systems
- Hadoop2 / Yarn in 2013
 - More flexible programming model
 - Resource management and scheduler
- Numerous companies, mostly for DWH'ish scenarios

Embarrassingly Parallel

- Data parallel problems: Partition the data, do partition-wise computation, then summarize results
 - Sum, min, max, mean, ... of a set of values
 - Find all stars in this set of satellite sky images
 - Find all company names in this set of web pages
 - Compute this join (partitioned hash join)
- Not emb. parallel: Everything influences everything (a bit)
 - Median of a set of values
 - Graphs: Traversal, routing, shortest paths, ...
 - But: Graph cluster coefficient
 - Simulations: Weather, molecular dynamics
 - Iterative problems: Clustering, PageRank, heuristic optimization
 - Solving equations, linear optimization

Parallel Execution of SQL Queries

- Forget joins, include grouping + aggregations
 - MR scenarios: Web log file analysis, search engines
 - No joins, just one input set (often in many files)
 - Many aggregations and groupings (by country, by day, ...)

```
SELECT lookupCountry(parse_IP(W.IP, 1)), sum(*)
FROM weblog W
WHERE W.cmd="GET" & W.browser="FireFox"
GROUP BY parse_IP(W.IP, 1);
```

```
#Date: 2010-03-24 07:00:01
#Fields: date time s-sitename s-computername s-ip cs-method cs-uri-stem cs-uri-query s-port cs
2010-03-24 07:00:01 ZZZZC941948879 RUFFLES 222.222.222 GET / - 80 - 220.181.7.113 HTTP/1.2
2010-03-24 07:00:23 ZZZZC941948879 RUFFLES 222.222.222 GET /2009/12/im_not_mean_im_just_ar
2010-03-24 07:00:32 ZZZZC941948879 RUFFLES 222.222.222 GET /terminal-blank.gif - 80 - 217
2010-03-24 07:00:32 ZZZZC941948879 RUFFLES 222.222.222 GET /grep-options.gif - 80 - 217.2:
2010-03-24 07:00:32 ZZZZC941948879 RUFFLES 222.222.222 GET /terminal-cat.gif - 80 - 217.2:
2010-03-24 07:00:32 ZZZZC941948879 RUFFLES 222.222.222 GET /terminal-pwd-cd.gif - 80 - 21:
2010-03-24 07:00:39 ZZZZC941948879 RUFFLES 222.222.222 GET /robots.txt - 80 - 95.55.207.9!
2010-03-24 07:00:39 ZZZZC941948879 RUFFLES 222.222.222 GET /rss-short.xml - 80 - 173.45.2
2010-03-24 07:00:43 ZZZZC941948879 RUFFLES 222.222.222 GET /2009/08/22-things-you-dont-kno
2010-03-24 07:00:44 ZZZZC941948879 RUFFLES 222.222.222 GET /screen.css - 80 - 98.88.35.13
2010-03-24 07:00:44 ZZZZC941948879 RUFFLES 222.222.222 GET /img/rss-header-red.gif - 80 -
2010-03-24 07:00:44 ZZZZC941948879 RUFFLES 222.222.222 GET /img/logo.jpg - 80 - 98.88.35.:
2010-03-24 07:00:44 ZZZZC941948879 RUFFLES 222.222.222 GET /img/input-emailsend.jpg - 80
2010-03-24 07:00:45 ZZZZC941948879 RUFFLES 222.222.222 GET /images/cm-ebook-banner.gif - {
2010-03-24 07:00:45 ZZZZC941948879 RUFFLES 222.222.222 GET /img/bg.jpg - 80 - 98.88.35.13:
2010-03-24 07:00:45 ZZZZC941948879 RUFFLES 222.222.222 GET /img/bg-top.jpg - 80 - 98.88.3!
2010-03-24 07:00:45 ZZZZC941948879 RUFFLES 222.222.222.222 GET /21things/checkout-login.gif -
2010-03-24 07:00:45 ZZZZC941948879 RUFFLES 222.222.222 GET /img/topnav-contact.jpg - 80 -
2010-03-24 07:00:45 ZZZZC941948879 RUFFLES 222.222.222 GET /21things/portent-email-sub.git
2010-03-24 07:00:45 ZZZZC941948879 RUFFLES 222.222.222 GET /rss-header.jpg - 80 - 98.88.3!
```

Parallel Plan

- Partition log-file in X sets (X: Number of machines/cores?)
- Perform parallel, partition-wise filtering, grouping, and aggregation
- Aggregate partition-wise results (can also be done in parallel)

Why not a Parallel Database System?

- Parallel RDBMS do not scale to large clusters
 - Synchronization: Locks and aborts lead to contention
 - Scalability: Stragglers, data transport and access, central control
 - Fault-tolerance: Redundancy, partial restarts, central control
 - CAP Theorem: Could cannot have all of these three properties
 - Gilbert & Lynch. Brewer's conjecture and the feasibility of consistent, available, partitiontolerant web services." ACM SIGACT 2002
- There is no open source parallel DBMS (at that time)
 - Today: Many NoSQL Systems
 - Simple data model (documents, key-value) and/or limited synchronization (eventually consistent)
- Commercial RDBMS extremely expensive

Content of this Lecture

- Big Data Introduction
- Map Reduce
 - Programming model
 - Framework
 - Distributed File System HDFS
 - Error handling
- Parallel DBMS or MapReduce?
- Extensions to MR

- Operates on sets of key-value pairs
- Inspired by FP 2nd order functions Map and Reduce
 - Map: Apply user function f on a key-value pair
 - Reduce: Group the following set on key and apply user function f on values of n all pairs with equal key

Map Reduce and SQL

Famous None-SQL Example: Word Count

- Given a set of documents, count the frequency of all unique words
 - Important for building a search engine index
- Things we need to do
 - Break documents into their words
 - Group set of all words on word
 - Compute per-word counts

to be, or not to be, that is the question:
 whether 'tis nobler in the mind to suffer
 the slings and arrows of outrageous fortune,
 or to take arms against a sea of troubles

Word Count in MapReduce

- Step 1: List of all words
 - Map on set of documents
 - Foreach doc, tokenize and output one key-value pair per token
- Step 2: Group by word and count
 - Sort key-value pairs by key
 - Compute sum of values per key

Content of this Lecture

- Big Data Introduction
- Map Reduce
 - Programming model
 - Framework
 - Distributed File System HDFS
 - Error handling
- Parallel DBMS or MapReduce?
- Extensions to MR

Operational View

- User provides
 - Map function (Java class with certain interface)
 - Reduce function (Java class with certain interface)
 - Option: Partitioner (Default: Partition by lines)
 - Default not applicable to binary files
 - System configuration: Machines, IP, access
- System provides
 - Java framework where code is integrated
 - Jobs are automatically created and distributed in cluster
 - Jobs that fail get restarted
 - Sort/combine functions for reduce
 - Distributed file system with in-build redundancy
 - Simple scheduling (greedy) and locality (unclear)

Hadoop Architecture

- Master/Worker architecture
 - Workers are commodity hardware
 - Masters are usually well equipped
 - Shared nothing
 - File exchange by HDFS

• Reports on installations with several thousand machines

Execution

- Master: Manages entire execution
 - Assigns tasks and input splits to idle workers
 - Tracks status of current jobs (waiting, running, finished)
 - Tracks status of worker nodes

Execution

- Map-Worker
 - Reads assigned splits
 - Parses key-value pairs
 - Executes map function for each pair
 - Buffered intermediate data are periodically written to local disks
 - Notify master about locations of result when finished
 - Master pushes data incrementally to reduce-workers

Execution

- Reduce-Worker
 - Read assigned splits from map workers (through HDFS)
 - Usually processes more than one key group
 - Performs intermediate sort of MAP-results
 - Executes reduce() function once for each key aggregation
 - Result is written to HDFS
- Master notifies host program, data accessible in HDFS

Content of this Lecture

- Big Data Introduction
- Map Reduce
 - Programming model
 - Framework
 - Distributed File System HDFS
 - Error handling
- Parallel DBMS or MapReduce?
- Extensions to MR

- HDFS: Hadoop distributed file system
- Why a special file system?
 - Goal: store very large data redundantly on commodity hardware
 - Network latency should not hinder computations too much
 - Mostly read/append file operations, few rewrites
 - Relatively small number of large files
 - Manage much larger data compared to ,standard' fs
- Data distributed over commodity hardware
 - Nodes fails all the time
 - Data must be kept redundant and distributed
 - Single point of access

Some Details

- Master/Worker architecture
 - Master: Access to DFS, manages replication and metadata
 - Workers: Local storage in cluster, I/O and maintenance
- Client talks to
 - Master: To get file handles
 - Workers: To (directly) read/write data
- Replication
 - Files chopped in chunks (64MB), chunks are replicated (3 times)
 - Advantage: Fixed file size, easier calculations, files larger than disk
- Interference with local FS
 - HDFS workers have a reserved space in "usual" FS
 - Access only through HDFS, no posix ⊗

Locality: Co-locate Data and Computation

- Goals
 - Increase speed of access
 - Avoid network congestion
- What is local?
 - Physically on same machine
 - Close in the network
 - Within the same rack

- Large commodity-hardware clusters: Errors (node failure) are the norm, not the exception
- Hadoop
 - Master nodes fail: System gone
 - Use robust machines, failover, RAID, ...
 - Worker nodes fail
 - Tasks crash: Identify and restart
 - Node crashed: Identify (heart-beat) and mark as "dead"
 - Data is replicated: Identify gone chunks and replicate to new nodes
 - Stragglers: Tasks taking much longer than others
 - Create many more (small) tasks than machines
 - When few tasks left, start them multiple times and use first finished
 - Often system hangs, network bottleneck, ...

- Focus on cheap hardware yet large systems
- Made by distributed systems people: No real data model, ad-hoc analysis, no indexes, no query languages, ...
- Made for programmers: Java (not SQL)
- Made for non-relational workloads: Files (not records)
- Does not solve many (exotic) DS problems, but focuses on average workloads
 - E.g., we didn't mention time synchronization
- Many shortcomings: Scheduling, data placements, strict MapReduce framework, joins, ...
- Extremely influential, many subsequent developments

Content of this Lecture

- Big Data Introduction
- Map Reduce
 - Programming model
 - Framework
 - Distributed File System HDFS
 - Error handling
- Parallel DBMS or MapReduce?
- Extensions to MR

- Many database people criticizing MapReduce
 - Pavlo, Paulson, Rasin, Abadi, DeWitt, Madden, Stonebraker. A comparison of approaches to large-scale data analysis. SIGMOD 2009
 - Nothing really new
 - Functional programming, distributed systems, Teradata
 - Functionality can be reached by UDFs in parallel DBMS
 - Parallel DBMS provide good scalability (and much more)
 - Interface too low-level and not declarative
 - Disk-based batched data exchange instead of pipelining/streaming
 - Lack of schemata obstructs performance optimizations
 - No indexing for recurring analyses
 - No statistics for cost-based optimizations
 - Frequent re-parsing of ASCII data

Points of Views

	Parallel RDBMS	MapReduce-Style Processing
Data sets	Large, structured, discrete attributes, normalized, correct	Unstructured, binary, redundant, noisy
Analysis	Relational queries	Everything, domain-specific
Data / queries	Same data, many different queries	Same data, few queries
Pre-Analysis	Pays offIngestion: Loading into DBParsing, statistics, indexing	Does not pay-offAd hoc analysisData too large for pre-analysis
Units of work	Transactions	Read-only
Updates	Multi-user and synchronization	Read-only
Reliability	High reliability	Pragmatism instead of perfect reliability
Availability	Industry-proven system	Many open source systems
Cost	Very expensive	Much cheaper

What Most People Like

Content of this Lecture

- Big Data Introduction
- Map Reduce
- Parallel DBMS or MapReduce?
- Extensions to MR
 - Stratosphere
 - Scientific Workflow Systems und SaasFee

Programming Model has Many Limitations

- Always scan all input data
- No support for schemata
- Rigid schema: map & reduce
- No joins, no heterogeneous inputs
- Low-level, imperative access
- Only Java
- No iterative workflows (recursion etc.)
- Naïve scheduler
- Too much IO, too much network traffic
- . . .
- [Google abandoned MR in ~2012]

Stratosphere

- Research project
 TU, HU, and HPI
- "Web-scale" distributed data analytics system
- Database-inspired
 - Semi-structured data model
 - Analytics as queries
 - Declarative languages
 - Optimization
 - Extensible by domainspecific operations
- More flexible programming model

Declarative language with domain-specific predicates

Logical optimizer to generate optimal execution plans

Cloud-enabled processing engine for fully parallel execution

METEOR: A Dataflow Specification Language

- JAQL style
- Semi-structured data model
- Designed for extensibility
- UDFs in domain-specific packages
- Root package = relational operators
- Uniform optimization framework across all packages

More Complex Example

Logical Operators

Relational	Information Integration
All: Filter, project, join, intersect, union,	Data scrubbing
Information Extraction	Duplicate detection
Sentence splitting	Entity mapping
Tokenization	Record linkage
N-Gram extraction	
Part-of-speech tagging	Web Extraction
Dependency parsing	HTML-scrubbing
Entity annotation	Metadata extraction
Relationship extraction	Boilerplate detection

Optimization: Plan Reordering

Optimization: Plan Reordering

- Data-specific preconditions allow early filtering
- Cost estimates allow operator reordering
- Instantiation: Logical to physical operators
- Dependency resolution allows operator reordering

Parallelization

Stratosphere programming model

PArallelization ConTracts (PACTs)

→ Generalization of MapReduce

Many Other Variations / Improvements

- **Hbase:** ist eine skalierbare, einfache Datenbank zur Verwaltung sehr großer Datenmengen innerhalb eines Hadoop-Clusters....
- Hive: erweitert Hadoop um <u>Data-Warehouse</u>-Funktionalitäten, namentlich die Anfragesprache *HiveQL* und Indizes. ... Seit Hive 2.0 wird Hybrid Procedural SQL On Hadoop (HPL/SQL) unterstützt
 - Im Sommer 2008 stellte <u>Facebook</u>, der ursprüngliche Entwickler von Hive, das Projekt der Open-Source-Gemeinde zur Verfügung.^[14] Die von Facebook verwendete Hadoop-Datenbank gehört mit etwas mehr als 100 <u>Petabyte</u> (Stand: August 2012) zu den größten der Welt.^[15] Dieses Warehouse wuchs bis 2014 auf 300 PB an^[16].
- **Pig:** kann Hadoop MapReduce-Programme in der High-Level-Sprache Pig Latin erstellen. Einfach, erweiterbar, optimiert
- **Spark:** ist eine in-memory Batch Processing Engine, welche vornehmlich für Machine-Learning-Anwendungen entwickelt wurde
- **Flink:** ist wie Spark eine in-memory Batch Processing Engine und bietet grundsätzlich ähnliche Funktionen, wobei der Fokus stärker auf Machine Learning und Complex Event Processing liegt. Sie basiert auf dem europäischen Forschungsprojekt Stratosphere.

Source: Wikipedia

Content of this Lecture

- Big Data Introduction
- Map Reduce
- Parallel DBMS or MapReduce?
- Extensions to MR
 - Stratosphere
 - Scientific Workflow Systems und SaasFee

Other Approaches to Big Data Analytics: Scientific Workflows

Links

- Connect input and output ports
- Implemented as files, memory, network
- Determine data dependencies / orders of execution

Tasks

- Input and output ports
- Executables or web services
- Typically black box implementation

- Controlled assembly of black box scripts
- Execution monitoring and failure recovery
- Parallelization and scheduling
- Workflows: Understandable & sharable
- Limited expressivity: Easier to read and develop
- Often with graphical user interfaces for wf composition
 SWMF for end users / for developers
- Reproducibility
- Requires Scientific Workflow Management System

SaasFee Software Stack

www.saasfee.io (video tutorials available)

- Light-weight statically typed functional dataflow language
- Compiles into dynamic pipelines of black-box tools
- Make foreign code integration as easy as possible
- Allow complex, iterative workflows

Foreign Code Interface

- Directly integrates BASH, LISP, R, MatLab, Python ...
- No wrapping, no data (un)marshalling, no API
- Communication via variables or files
- Mixing of several languages
- Snippets are shipped and executed by Hi-Way

```
deftask greet( out : person )in bash *{
    out="Hello $person"
}*
deftask greet( out : person )in r *{
    out = paste( "Hello", person )
}*
```

Hi-Way

- Hi-Way Workflow Application Master for YARN
- Executes workflows on Hadoop YARN
 - Scalability, maintenance, fault tolerance, ...

Achieving Parallelism

Scalability

- Cluster with >500 cores
- Variant calling, unsplit reference, split data
- Almost perfect scalability

