
Ulf Leser 

Datenbanksysteme II: 
Big Data 

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 2 

Content of this Lecture 

 
 
 

• Big Data Introduction 
• Map Reduce Programming Paradigm 
• Parallel DBMS or MapReduce? 
• Extensions to MR 

 
 

• [based on slides by Astrid Rheinländer, 2012] 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 3 

What is Big Data? 

 
• A buzz word 
• “Collection of data sets so large and complex that it 

becomes difficult to process using on-hand database 
management tools or traditional data processing 
applications” [http://en.wikipedia.org/wiki/Big_data] 

– Terabytes / petabytes 
– Near future: exabytes 

• Challenges 
– Storage 
– Analysis 
– Search 

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 4 

Example: Twitter 

 
 

[All images: http://infographiclabs.com/news/twitter-2012/] 

• 2012: 63 Billion tweets, 8.5 TB data 
– 2016: ~200 Billion tweets per year 

• Business: Sell access to content 
• Analysis: Find emerging trends, sentiment analysis, … 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 5 

Example: Cern, LHC  

[http://lhcathome.web.cern.ch] 

[http://grid-monitoring.cern.ch/myegi/gridmap/] 

 
• 2012: LHC experiments generated  

22PB of data 
– ~99% are filtered right after creation 

• Analysis runs on supercomputer: 
1000+ processors 

• Data stored & processed  
in LHC Computing Grid   
– 150 data & compute centers  

around the world 
– Heterogeneous architecture 

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 6 

Will Computers Crash Genomics? 

Pennisi, E. (2011). Will Computers Crash Genomics? Science, 331(6018), 666–668. 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 7 

Fast Development 

1953  
Double helix structure of DNA, 

Watson/Crick 

2003  
First human genome sequenced 
Took ~14 years, ~3 billion USD  

2008  
Genome of J. Watson finished 

4 Months, 1.5 Million USD 

2010 
1000 Genomes Project 

1000GP releases more data in 
first 6 months than EMBL 

collected in the 25 years before 

http://www.google.de/search?q=dna+discovery


Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 8 

Next Generation Sequencing 

• New generation of sequencers since ~2005 
– Illumina, Solexa, 454, Solid, … 

• Much higher throughput 
– ~15 TB raw data in 3-5 days 
– ~600 GB processed data/week 
– Cost for sequencing a genome 

down to ~2.000 USD 

• 3rd generation sequencers 
– Single molecule sequencing 
– A (human) genome in a day 
– Sequence every human 
– Sequence different cells in every human 

Illumina HiSeq 2000. DNAVision 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 9 

Sequencing becomes a commodity 

 
 
 
 

• Sequencing dozens or hundreds of genomes is feasible 
(now!) for any mid-size research projects 
 

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 10 

Old Task: Genome Assembly  



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 11 

New Task: Read Mapping & SNV Detection 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 12 

Example: SNV Detection 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 13 

SNV Detection 
X00 million reads 

Quality estimation 

Quality filtering 

Read mapper 1 

Quality metrics 

Read mapper 2 

Union 

Local realign 

Quality adaptation 

Unmapped reads 

Cross-species 
search 

Pileup 

SNV assessment 

DB 2 DB 1 

Union 

SNV filtering 

Functional 
assessment, 

GWAS, … 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 14 

All Analytics is the Same? 

Chang, Core services: Reward bioinformaticians, Nature 2015 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 15 

Two Main Issues 

• Runtime 
– Large and growing data 

volumes 
– HighSeq-X: 18 terabyte a week 

 
 

• Variety 
– Many different types of 

pipelines  
– Dozens of tools in every 

pipeline 
– New tools / pipelines every day 
– No gold standards 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 16 

Big Data: 

• Fourth V: Veracity 
– Big data is often very noisy (unfiltered) 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 17 

Is Big Data a Database Topic? 

 
 

• We need faster algorithms: Machine learning, algorithms 
• We need more scalable systems: Distributed systems 
• We need more CPUs: High-Performance Computing 
• We need professional services: Companies 
• We need: Databases 

– Declarativity: Specialized, simple, powerful languages 
– Optimization: Compilation in efficient, parallel execution plans 
– Comprehensive data management: Robustness, data models, index 

structures, access control, … 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 18 

Big Data Landscape 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 19 

Big Data Landscape 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 20 

Content of this Lecture 

 
 

• Big Data Introduction 
• Map Reduce 

– Programming model 
– Framework 
– Distributed File System – HDFS  
– Error handling 

• Parallel DBMS or MapReduce? 
• Extensions to MR 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 21 

Underlying Idea 

• Observations 
– Supercomputers are expensive 
– Large commodity-clusters are error-prone 
– No simple approach to express Big Data problems and let them 

robustly run on a commodity cluster 
– Most parallel analysis is embarrassingly parallel 
– Functional programming has some good ideas 

• Side-effect free functions 
• 2nd order functions 

• Result: MapReduce 
– Programming model: The idea 
– Software stack: A framework 
– GDFS: Google distributed file system 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 22 

Some History 

• Proposed by Dean & Ghemawat (Google) in 2004 
– Dean, J. and Ghemawat, S. (2004). "MapReduce: Simplified Data 

Processing on Large Clusters ". 6th Symposium on Operating 
System Design and Implementation, San Francisco, USA 

– One of the most-cited recent papers in computer science 

• Yahoo adopts idea and puts code open source in 2008 
– Hadoop: Java framework for Map Reduce programming 
– HDFS: Hadoop Distributed File Systems 

• Hadoop2 / Yarn in 2013 
– More flexible programming model 
– Resource management and scheduler 

• Numerous companies, mostly for DWH’ish scenarios 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 23 

Embarrassingly Parallel 

• Data parallel problems: Partition the data, do partition-wise 
computation, then summarize results 
– Sum, min, max, mean, … of a set of values 
– Find all stars in this set of satellite sky images 
– Find all company names in this set of web pages 
– Compute this join (partitioned hash join) 

• Not emb. parallel: Everything influences everything (a bit) 
– Median of a set of values  
– Graphs: Traversal, routing, shortest paths, … 

• But: Graph cluster coefficient 

– Simulations: Weather, molecular dynamics 
– Iterative problems: Clustering, PageRank, heuristic optimization 
– Solving equations, linear optimization 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 24 

Parallel Execution of SQL Queries 

• Forget joins, include grouping + aggregations 
– MR scenarios: Web log file analysis, search engines  
– No joins, just one input set (often in many files) 
– Many aggregations and groupings (by country, by day, …) 

 
 
 
 

 
 

SELECT lookupCountry(parse_IP(W.IP, 1)), sum(*) 
FROM   weblog W 
WHERE  W.cmd=“GET” & W.browser=“FireFox” 
GROUP BY parse_IP(W.IP, 1); 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 25 

Parallel Plan 

• Partition log-file in X sets (X: Number of machines/cores?) 
• Perform parallel, partition-wise filtering, grouping, and aggregation 
• Aggregate partition-wise results (can also be done in parallel) 

 

Filter by 
browser/cmd 

Agg by 
country 

Filter by 
browser/cmd 

Agg by 
country 

Filter by 
browser/cmd 

Agg by 
country 

Filter by 
browser/cmd 

Agg by 
country 

Union 

Agg by 
country 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 26 

Why not a Parallel Database System? 

 
• Parallel RDBMS do not scale to large clusters 

– Synchronization: Locks and aborts lead to contention 
– Scalability: Stragglers, data transport and access, central control 
– Fault-tolerance: Redundancy, partial restarts, central control 
– CAP Theorem: Could cannot have all of these three properties 

• Gilbert & Lynch. Brewer's conjecture and the feasibility of consistent, available, partition-
tolerant web services.” ACM SIGACT 2002 

• There is no open source parallel DBMS (at that time) 
– Today: Many NoSQL Systems 
– Simple data model (documents, key-value) and/or limited 

synchronization (eventually consistent) 

• Commercial RDBMS extremely expensive 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 27 

Content of this Lecture 

 
 

• Big Data Introduction 
• Map Reduce 

– Programming model 
– Framework 
– Distributed File System – HDFS  
– Error handling 

• Parallel DBMS or MapReduce? 
• Extensions to MR 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 28 

Map Reduce Programming Model 

• Operates on sets of key-value pairs 
• Inspired by FP 2nd order functions Map and Reduce 

– Map: Apply user function f on a key-value pair 
– Reduce: Group the following set on key  and apply user function f 

on values of n all pairs with equal key 

 
 

n, xn 

… 

1, x1 
map 
1:n 

n, yn 

… 

1, y1 

reduce 
n:m 1, a2 

5, b1 

1, a1 1, r1 

3, c1 

3, r3 

5, r5 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 29 

Map Reduce and SQL 

Filter by 
browser/cmd 

Agg by 
country 

Filter by 
browser/cmd 

Agg by 
country 

Filter by 
browser/cmd 

Agg by 
country 

Filter by 
browser/cmd 

Agg by 
country 

Union 

Agg by 
country 

map 
1:0/1 

reduce 
n:m partition 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 30 

Famous None-SQL Example: Word Count 

• Given a set of documents, count the frequency of all 
unique words 
– Important for building a search engine index 

• Things we need to do 
– Break documents into their words 
– Group set of all words on word 
– Compute per-word counts 

1, to be, or not to be, that is the question: 
2, whether 'tis nobler in the mind to suffer 
3, the slings and arrows of outrageous fortune, 
4, or to take arms against a sea of troubles 

… 

to: 4 
be: 2 
or: 2 
… 
mind: 1 
sea: 1 
… 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 31 

Word Count in MapReduce 

 
• Step 1: List of all words 

– Map on set of documents 
– Foreach doc, tokenize and 

output one key-value pair 
per token 

 
• Step 2: Group by word and 

count 
– Sort key-value pairs by key 
– Compute sum of values per 

key 

1, to be, or not … 

2, whether 'tis … 

3, the slings … 

4, or to take … 

map 

to, 1 
be, 1 
or 1 
not, 1 
whether ,1 
‘tis, 1 
the, 1 
slings, 1 
or, 1 
to, 1 
take, 1 
… 

reduce 

the, 1 

‘tis, 1 

whether ,1 

not, 1 

or, 1 

or, 1 

be, 1 

to, 1 

to, 1 

not,1 
whether ,1 
‘tis, 1 
the, 1 
slings, 1 
or, 2 
be, 1 
to, 2 
take, 1 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 32 

Content of this Lecture 

 
 

• Big Data Introduction 
• Map Reduce 

– Programming model 
– Framework 
– Distributed File System – HDFS  
– Error handling 

• Parallel DBMS or MapReduce? 
• Extensions to MR 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 33 

Operational View 

• User provides 
– Map function (Java class with certain interface) 
– Reduce function  (Java class with certain interface) 
– Option: Partitioner (Default: Partition by lines) 

• Default not applicable to binary files 

– System configuration: Machines, IP, access 

• System provides 
– Java framework where code is integrated 
– Jobs are automatically created and distributed in cluster 
– Jobs that fail get restarted 
– Sort/combine functions for reduce 
– Distributed file system with in-build redundancy 
– Simple scheduling (greedy) and locality (unclear) 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 34 

…                            worker 

client 

master Job Tracker 

TaskTracker 
 

Distributed 

processing 

TaskTracker 
 

TaskTracker 
 

Hadoop Architecture  

• Master/Worker architecture 
– Workers are commodity hardware 
– Masters are usually well equipped 
– Shared nothing 
– File exchange by HDFS 

 
 
 
 
 
 

• Reports on installations with several thousand machines 
 
 
 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 35 

Execution 

• Master: Manages entire execution 
– Assigns tasks and input splits to idle workers 
– Tracks status of current jobs (waiting, running, finished) 
– Tracks status of worker nodes 

 

… 

chunk1 

chunkn 

do
cs 

docs 

m
aster 

worker 
worker 

fork Execution 
engine 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 36 

Execution 

• Map-Worker 
– Reads assigned splits 
– Parses key-value pairs 
– Executes map function for each pair 
– Buffered intermediate data are  periodically written to local disks 
– Notify master about locations of result when finished 
– Master pushes data incrementally to reduce-workers 

… 

chunk1 

chunkn 

do
cs 

doc
s 

m
aster 

worker 
worker 

for
k 

Execution 
engine 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 37 

Execution 

• Reduce-Worker 
– Read assigned splits from map workers (through HDFS) 
– Usually processes more than one key group 
– Performs intermediate sort of MAP-results 
– Executes reduce() function once for each key - aggregation 
– Result is written to HDFS 

• Master notifies host program, data accessible in HDFS 

… 

chunk1 

chunkn 

do
cs 

doc
s 

m
aster 

worker 
worker 

for
k 

Execution 
engine 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 38 

Content of this Lecture 

 
 

• Big Data Introduction 
• Map Reduce 

– Programming model 
– Framework 
– Distributed File System – HDFS  
– Error handling 

• Parallel DBMS or MapReduce? 
• Extensions to MR 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 39 

HDFS architecture 

• HDFS: Hadoop distributed file system 
• Why a special file system? 

– Goal: store very large data redundantly on commodity hardware 
– Network latency should not hinder computations too much 
– Mostly read/append file operations, few rewrites 
– Relatively small number of large files 
– Manage much larger data compared to ‚standard‘ fs 

• Data distributed over commodity hardware 
– Nodes fails all the time 
– Data must be kept redundant and distributed 
– Single point of access 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 40 

Some Details 

• Master/Worker architecture 
– Master: Access to DFS, manages replication and metadata 
– Workers: Local storage in cluster, I/O and maintenance 

• Client talks to  
– Master: To get file handles 
– Workers: To (directly) read/write data 

• Replication 
– Files chopped in chunks (64MB), chunks are replicated (3 times) 
– Advantage: Fixed file size, easier calculations, files larger than disk 

• Interference with local FS 
– HDFS workers have a reserved space in “usual” FS 
– Access only through HDFS, no posix  



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 41 

Locality: Co-locate Data and Computation 

• Goals 
– Increase speed 

of access 
– Avoid network 

congestion 

• What is local? 
– Physically on 

same machine 
– Close in the 

network 
– Within the same 

rack 

 

Worker 1 

Map  
task A 

Chunk 
A 

Worker 2 

Map  
task B 

Chunk 
B 

Worker 3 

Map  
task X 

Chunk 
C 

Worker 4 

Map  Chunk 
K 

Worker 5 

Map  Chunk 
D 

Worker 6 

Map  Chunk 
F 

Network 
switch 

Network 
switch 

Master 

task A 

task B 

task C 

task D 

task I 

… 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 42 

Error Handling 

• Large commodity-hardware clusters:  
Errors (node failure) are the norm, not the exception 

• Hadoop 
– Master nodes fail: System gone 

• Use robust machines, failover, RAID, … 

– Worker nodes fail 
• Tasks crash: Identify and restart 
• Node crashed: Identify (heart-beat) and mark as “dead” 
• Data is replicated: Identify gone chunks and replicate to new nodes 

– Stragglers: Tasks taking much longer than others 
• Create many more (small) tasks than machines 
• When few tasks left, start them multiple times and use first finished 

– Often system hangs, network bottleneck, … 

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 43 

Summary 

• Focus on cheap hardware yet large systems 
• Made by distributed systems people: No real data model, 

ad-hoc analysis, no indexes, no query languages, … 
• Made for programmers: Java (not SQL) 
• Made for non-relational workloads: Files (not records) 
• Does not solve many (exotic) DS problems, but focuses on 

average workloads 
– E.g., we didn’t mention time synchronization 

• Many shortcomings: Scheduling, data placements, strict 
MapReduce framework, joins, … 

• Extremely influential, many subsequent developments 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 44 

Content of this Lecture 

 
 

• Big Data Introduction 
• Map Reduce 

– Programming model 
– Framework 
– Distributed File System – HDFS  
– Error handling 

• Parallel DBMS or MapReduce? 
• Extensions to MR 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 45 

“Major Step Backward” 

• Many database people criticizing MapReduce 
– Pavlo, Paulson, Rasin, Abadi, DeWitt, Madden, Stonebraker. A comparison 

of approaches to large-scale data analysis. SIGMOD 2009 

– Nothing really new 
• Functional programming, distributed systems, Teradata 

– Functionality can be reached by UDFs in parallel DBMS 
– Parallel DBMS provide good scalability (and much more) 
– Interface too low-level and not declarative 
– Disk-based batched data exchange instead of pipelining/streaming 
– Lack of schemata obstructs performance optimizations  
– No indexing for recurring analyses 
– No statistics for cost-based optimizations 
– Frequent re-parsing of ASCII data 
– … 

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 46 

Points of Views 

Parallel RDBMS MapReduce-Style Processing 

Data sets Large, structured, discrete 
attributes, normalized, correct 

Unstructured, binary, redundant, noisy 

Analysis Relational queries Everything, domain-specific 

Data / queries Same data, many different 
queries 

Same data, few queries 

Pre-Analysis Pays off 
• Ingestion: Loading into DB  
• Parsing, statistics, indexing 

Does not pay-off 
• Ad hoc analysis 
• Data too large for pre-analysis 

Units of work Transactions Read-only 

Updates Multi-user and synchronization Read-only 

Reliability High reliability Pragmatism instead of  
perfect reliability 

Availability Industry-proven system Many open source systems 

Cost Very expensive Much cheaper 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 47 

What Most People Like 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 48 

Content of this Lecture 

 
 

• Big Data Introduction 
• Map Reduce 
• Parallel DBMS or MapReduce? 
• Extensions to MR 

– Stratosphere 
– Scientific Workflow Systems und SaasFee 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 49 

Programming Model has Many Limitations 

• Always scan all input data 
• No support for schemata 
• Rigid schema: map & reduce 
• No joins, no heterogeneous inputs 
• Low-level, imperative access 
• Only Java 
• No iterative workflows (recursion etc.) 
• Naïve scheduler 
• Too much IO, too much network traffic 
• … 
• [Google abandoned MR in ~2012] 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 50 

Stratosphere 

• Research project 
– TU, HU, and HPI 

• “Web-scale” distributed 
data analytics system 

• Database-inspired 
– Semi-structured data model 
– Analytics as queries 
– Declarative languages 
– Optimization  
– Extensible by domain-

specific operations 

• More flexible program-
ming model 
 

 
 
 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 51 

Declarative language with 
domain-specific predicates 

Logical optimizer to 
generate optimal 
execution plans 

Cloud-enabled 
processing engine for 
fully parallel execution  



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 52 

METEOR: A Dataflow Specification Language 

• JAQL style 
• Semi-structured data model 
• Designed for extensibility 
• UDFs in domain-specific packages 
• Root package = relational operators 
• Uniform optimization framework across all packages 

1 $texts = read from ‚articles.json‘; 
2 $recent = filter $text in $texts 
3           where $text.year >= 2000; 
4 write $recent to ‚recentTexts.json‘; 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 53 

More Complex Example 

 1 using ie;  

 2 $texts = read from ‚pubmed.json‘; 
 3 $protDB = read from ‚uniprotKB.json‘; 

 4 $texts= annotate sentences in $texts  
 5   using medPost; 
 6 $texts = annotate entities in $texts 
 7   using type.protein and regex ‚UPDict'; 

 8 $pText = pivot $texts around  
10   $ent = $text.annotations[*].entity 
11   into { protein:$ent, art:$arts}; 

12 $refs = join $p in $pText,$prot in $protDB  
13   where $p.protein.id=$prot.id 
14   into { protein:$prot, reference:$p.art}; 

15 write $refs to ‚uniprotWithRefs.json‘; 

$texts 

$protDB 

$UPDict 

POS-
Tagging 

RegEx 
NER 

Restructure 

Integrate 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 54 

Logical Operators 

Relational Information Integration 

All: Filter, project, join, 
intersect, union, … 

Data scrubbing 

Information Extraction Duplicate detection 

Sentence splitting Entity mapping 

Tokenization Record linkage 

N-Gram extraction 

Part-of-speech tagging Web Extraction 

Dependency parsing HTML-scrubbing 

Entity annotation Metadata extraction 

Relationship extraction Boilerplate detection 

… … 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 55 

Optimization: Plan Reordering 

Gene 
NER 

Drug 
NER RE POS 

Gene 
NER Filter Drug 

NER Filter RE POS 

Gene 
NER Filter Drug 

NER Filter RE POS 

Drug 
RegEx Filter 

Gene 
CRF Filter Drug 

RegEx Filter 

Gene 
CRF Filter 

REPattern 

Med 
Pos 

Med 
Pos 

REPattern 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 56 

Optimization: Plan Reordering 

Gene 
NER 

Drug 
NER RE POS 

Gene 
NER Filter Drug 

NER Filter RE POS 

Gene 
NER Filter Drug 

NER Filter RE POS 

Drug 
RegEx Filter 

Gene 
CRF Filter Drug 

RegEx Filter 

Gene 
CRF Filter 

REPattern 

Med 
Pos 

Med 
Pos 

REPattern 

 

 

 
• Data-specific preconditions 

allow early filtering 
• Cost estimates allow 

operator reordering 
 

• Instantiation: Logical to 
physical operators 

• Dependency resolution 
allows operator reordering 
 
 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 57 

Parallelization 

Join 

Gene 
NER 

Drug 
NER 

RE POS 

Filter 

Filter 

Gene 
NER Filter Drug 

NER Filter RE POS 

Join 

Gene 
NER 

Drug 
NER 

RE POS 

Filter 

Filter 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 58 

Stratosphere programming model 

• PArallelization ConTracts (PACTs) 
  Generalization of MapReduce 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 59 

Many Other Variations / Improvements 

• Hbase: ist eine skalierbare, einfache Datenbank zur Verwaltung sehr großer 
Datenmengen innerhalb eines Hadoop-Clusters…. 

• Hive: erweitert Hadoop um Data-Warehouse-Funktionalitäten, namentlich die 
Anfragesprache HiveQL und Indizes. … Seit Hive 2.0 wird Hybrid Procedural 
SQL On Hadoop (HPL/SQL) unterstützt 

– Im Sommer 2008 stellte Facebook, der ursprüngliche Entwickler von Hive, das Projekt der Open-
Source-Gemeinde zur Verfügung.[14] Die von Facebook verwendete Hadoop-Datenbank gehört 
mit etwas mehr als 100 Petabyte (Stand: August 2012) zu den größten der Welt.[15] Dieses 
Warehouse wuchs bis 2014 auf 300 PB an[16]. 

• Pig: kann Hadoop MapReduce-Programme in der High-Level-Sprache Pig Latin 
erstellen. Einfach, erweiterbar, optimiert 

• Spark: ist eine in-memory Batch Processing Engine, welche vornehmlich für 
Machine-Learning-Anwendungen entwickelt wurde 

• Flink: ist wie Spark eine in-memory Batch Processing Engine und bietet 
grundsätzlich ähnliche Funktionen, wobei der Fokus stärker auf Machine 
Learning und Complex Event Processing liegt. Sie basiert auf dem 
europäischen Forschungsprojekt Stratosphere. 

• … Source: Wikipedia 

https://de.wikipedia.org/wiki/Data-Warehouse
https://de.wikipedia.org/wiki/Facebook
https://de.wikipedia.org/wiki/Apache_Hadoop#cite_note-14
https://de.wikipedia.org/wiki/Petabyte
https://de.wikipedia.org/wiki/Apache_Hadoop#cite_note-15
https://de.wikipedia.org/wiki/Apache_Hadoop#cite_note-16


Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 60 

Content of this Lecture 

 
 

• Big Data Introduction 
• Map Reduce 
• Parallel DBMS or MapReduce? 
• Extensions to MR 

– Stratosphere 
– Scientific Workflow Systems und SaasFee 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 61 

Recall 
X00 million reads 

Quality estimation 

Quality filtering 

Read mapper 1 

Quality metrics 

Read mapper 2 

Union 

Local realign 

Quality adaptation 

Unmapped reads 

Cross-species 
search 

Pileup 

SNV assessment 

DB 2 DB 1 

Union 

SNV filtering 

Functional 
assessment, 

GWAS, … 

Very few relational operations 

Most operations are pre-built 

Optimization by reordering mostly 

impossible 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 62 

Other Approaches to Big Data Analytics:  
Scientific Workflows 

Tasks 
• Input and output 

ports 
• Executables or web 

services 
• Typically black box 

implementation 

Links 
• Connect input and 

output ports 
• Implemented as 

files, memory, 
network 

• Determine data 
dependencies / 
orders of execution 

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 63 

Features 

 
• Controlled assembly of black box scripts 
• Execution monitoring and failure recovery 
• Parallelization and scheduling 
• Workflows: Understandable & sharable 
• Limited expressivity: Easier to read and develop 
• Often with graphical user interfaces for wf composition 

– SWMF for end users / for developers 

• Reproducibility 
 

• Requires Scientific Workflow Management System 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 64 

SaasFee Software Stack 

www.saasfee.io (video tutorials available) 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 65 

Cuneiform 

 
• Light-weight statically typed functional dataflow language 
• Compiles into dynamic pipelines of black-box tools 
• Make foreign code integration as easy as possible 
• Allow complex, iterative workflows 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 66 

Foreign Code Interface 

• Directly integrates BASH, LISP, R, MatLab, Python … 
• No wrapping, no data (un)marshalling, no API 
• Communication via variables or files 
• Mixing of several languages 
• Snippets are shipped and executed by Hi-Way 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 67 

Hi-Way 

• Hi-Way Workflow Application Master for YARN 
• Executes workflows on Hadoop YARN 

– Scalability, maintenance, fault tolerance, … 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 68 

Task Parallelism Data Parallelism 

• Custom partitioning 
– Default for record-oriented 

files 

• Algorithmic skeletons 
– Map, cross-product, dot-

product, aggregation, … 

 
• Subsumes Map&Reduce 

Achieving Parallelism 

• Data dependencies   



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 69 

Scalability 

 
• Cluster with >500 

cores 
• Variant calling, 

unsplit reference, 
split data 

• Almost perfect 
scalability 


	Foliennummer 1
	Content of this Lecture
	What is Big Data?
	Example: Twitter
	Example: Cern, LHC 
	Will Computers Crash Genomics?
	Fast Development
	Next Generation Sequencing
	Sequencing becomes a commodity
	Old Task: Genome Assembly 
	New Task: Read Mapping & SNV Detection
	Example: SNV Detection
	SNV Detection
	All Analytics is the Same?
	Two Main Issues
	Big Data:
	Is Big Data a Database Topic?
	Big Data Landscape
	Big Data Landscape
	Content of this Lecture
	Underlying Idea
	Some History
	Embarrassingly Parallel
	Parallel Execution of SQL Queries
	Parallel Plan
	Why not a Parallel Database System?
	Content of this Lecture
	Map Reduce Programming Model
	Map Reduce and SQL
	Famous None-SQL Example: Word Count
	Word Count in MapReduce
	Content of this Lecture
	Operational View
	Foliennummer 34
	Execution
	Execution
	Execution
	Content of this Lecture
	HDFS architecture
	Some Details
	Locality: Co-locate Data and Computation
	Error Handling
	Summary
	Content of this Lecture
	“Major Step Backward”
	Points of Views
	What Most People Like
	Content of this Lecture
	Programming Model has Many Limitations
	Stratosphere
	Foliennummer 51
	METEOR: A Dataflow Specification Language
	More Complex Example
	Logical Operators
	Optimization: Plan Reordering
	Optimization: Plan Reordering
	Parallelization
	Stratosphere programming model
	Many Other Variations / Improvements
	Content of this Lecture
	Recall
	Other Approaches to Big Data Analytics: �Scientific Workflows
	Features
	SaasFee Software Stack
	Cuneiform
	Foreign Code Interface
	Hi-Way
	Foliennummer 68
	Scalability

