
Ulf Leser

Datenbanksysteme II:
Synchronization of Concurrent Transactions

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 2

Content of this Lecture

• Synchronization
• Serial and Serializable Schedules
• Locking and Deadlocks
• Timestamp Synchronization and SQL Isolation Levels

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 3

Synchronization

• Very important feature of RDBMS: Support for multiple
users working concurrently on the same data

• “Work”: Running transactions
• Synchronization = Preventing bad things from happening

when transactions run concurrently
– Inconsistent states
– Lost or phantom changes
– Starvation or deadlocks

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 4

Trade-Off

• Trade-off between consistency and throughput
• High-performance OLTP systems often dominated by

synchronization efforts
– Much locking, TX wait and wait, frequent aborts through time-outs

and deadlocks, frequent restarting leads to even more contention –
breakdown

• Think carefully which degree of synchronization is
necessary, respectively which types of errors are tolerable
– Few applications really need full isolation
– SQL defines different levels of isolation (later)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 5

5,000

6,000

7,000

Read account value

Deposit $ 2,000 Deposit $ 1,000

Add $1,000

Write back account value

5,000

6,000

Read account value.

Add $ 2,000

Write back account value

5,000

7,000

Lost Update Problem

Wrong

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 6

G: 8,000
S: 3,000

Read account values

Print total sum Transfer $ 1,500

G: 6,500
S: 3,000

G: 6,500
S: 4,500

G: 6,500
S: 3,000

Sum =
9,500

Wrong

G: 8,000

G: 6,500

S: 3,000

S: 4,500

Read and change G

Read and change S

Sum up account values

Inconsistent Read Problem

Sub $1,500

Add $ 1,500

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 7

G: 8.000
S: 3,000

Reading account values

Reading transaction Transfer $ 1,500

G: 6,500
S: 3,000

G: 6,500
S: 4,500

G: 6,500
S: 4,500

G: 8,000

G: 6,500

S: 3,000

S: 4,500

Read and change G

Read and change S

Reading account values

G: 8,000
S: 3,000

Different
actions

Non-Repeatable Read

Wrong

Sub $1,500

Add $ 1,500

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 8

Other Problems

• Dirty Reads: T2 reads a value which was before changes

by T1, but T1 eventually aborts
• Phantom reads: T2 computes an aggregate over a set (e.g.

a count of a table), but the set is changed by T1 (new
records) before T2 uses its result

• Integrity constraint violations: T1 reads an intermediate
state of a T2 which results in an IC violation(e.g.: T1
inserts primary key and deletes it again, but T2 tries to
insert the same key in-between)

• Problems in clients: Dangling cursors (next tuple deleted)
etc.

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 9

Transaction Model

• Transactions work on objects (attributes, tuples, pages)
• Only two different operations

– Read operation: R(X), R(Y), . . .
– Write operation: W(X), W(Y), . . .
– All other operations (local variables, loops, functions, etc.) are

assumed to have no synchronization problems
• Local memory for each transaction

• A transaction T is a sequence of read and write operations
– T = <RT(X),WT(Y),RT(Z),… >

– We do not care which values are read or written
– We do not model what happens between reads/writes, but always

assume the worst
– Synch. should prevent all possible errors, not only real ones

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 10

Example

• Transaction T1: <RT1(A),WT1(A)>
• Transaction T2: <RT2(A),WT2(A)>

Read account value

Deposit $ 2,000 Deposit $ 1,000

Add $1,000

Write back account value

5,000

6,000

Read account value.

Add $ 2,000

Write back account value

5,000

7,000

A: 5,000

A: 6,000

A: 7,000

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 11

Schedules

• We assume that each TX in itself has no problem
– No intra-transaction parallelization, no speculative execution, …
– Single operations are atomic, TX are not

• For now, we assume that all TX in T eventually commit
– Hence, we don’t include “commit” in our schedules

• Definition
A schedule is a totally ordered sequence of all operations
from a set T of transactions {T1,..., Tn} such that all
operations of any transaction are in correct order

• Example
– S1 = <RT1(A), RT2(A), WT1(A), WT2(A)>
– S2 = <RT1(A), WT1(A), RT2(A), WT2(A)>
– S3 = <RT1(A), RT2(A), WT2(A), WT1(A)>

– …

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 12

Good Schedules

• Look at S = <RT1(A),RT2(A),WT1(A),WT2(A)>
– This is exactly the “lost update” sequence

• Some other schedules do not have this problem
– S2 = <RT1(A), WT1(A), RT2(A), WT2(A)>
– S4 = <RT2(A), WT2(A), RT1(A), WT1(A) >

• Apparently, some schedules are fine, others not
• Synchronization – prevent “bad” schedules

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 13

Content of this Lecture

• Synchronization
• Serial and Serializable Schedules
• Locking and Deadlocks
• Timestamp Synchronization and SQL Isolation Levels

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 14

Preface

• In the following, we lay the theoretical foundations for TX

synchronization
• We characterize when a given order of operations is

acceptable
• Real databases don’t do such reasoning: They enforce

acceptable orders of operations
– See “Locking and Deadlocks”

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 15

Serial Schedules

• Definition

A schedule for a set T of transactions is called serial if its
transactions are totally ordered

• Each TX starts when no other TX is active and finishes
before any other TX starts

• Clearly, serial schedules have no problem with
interference, isolation is ensured

• There is a cost: No concurrent actions -> bad performance
– TX cannot work on other data items in parallel
– Most TX do never interfere with others – should not be halted

• We need a weaker criterion

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 16

Acceptable Schedules

• For a set T of transactions there are |T|! serial schedules
• These are not equivalent, i.e., different serial schedules for

the same set of TX may produce very different results
– S1’ = <RT1(A), A=A+10, WT1(A), RT2(A), A=A*2, WT2(A)>
– S2’ = <RT2(A), A=A*2, WT2(A), RT1(A), A=A+10, WT1(A)>

• Consistency only requires TX to be atomic and without
interference, but does not dictate the order of transactions
– In particular, there is no guaranteed or canonical order of TX

• Such as time of start
• “Time” is always difficult in concurrent processes

• Hence, every serial schedule is acceptable by definition

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 17

Serializable Schedules

• Definition

A schedule for a set T of transactions is serializable, if its
result is equal to the result of at least one serial schedule
of T

• Result means
– The final state of the DB after executing all TX from T
– The outputs of all involved TXs (intermediate results)

• Informally: Some intertwining of operations is OK, as long
as the same result could have been achieved with a serial
schedule

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 18

Conflicts

• To define the “harmfulness” of intertwining, we need a

notion of conflict
• Observation: It does not matter it two TX read the same

object, in whatever order
• All other cases matter because they may generate different

results depending on execution order
– Assume the worst!

• Definition
Two operations op1∈T1 and op2∈T2 conflict iff both operate
on the same data item X and at least one is a write

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 19

Serializability of Schedules

• Definition
Two schedules S und S’ are called conflict-equivalent, if
– S und S’ are defined on the same set T of transactions
– For operations op1 in T1 and operations op2 in T2 it holds that

• If op1 and op2 are in conflict, then they are executed in the same order
in S and in S’

 A schedule is called conflict-serializable if it is conflict-
equivalent to at least one serial schedule

• Explanation
– All critical operations (R/W, W/W) must be executed in the same

order in the serial schedule and the schedule under study
– None-critical operations (R/R) do not matter – all conflict-

serializable schedules are acceptable
– Order of ops is constrained, but less as in serial schedules

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 20

Example

S=R1(X),W1(X),R2(X),W2(X),R2(Y),W2(Y),R1(Y),W1(Y)

Start T1;
Read(x, t);
Write(x, t+5);
Read(y, t);
Write(y, t+5);

Start T2;
Read(x, s);
Write(x, s*3);
Read(y, s);
Write(y, s*3);

• Imagine initially x=y=10
• Result of schedule S is x=45 and y=35
• Serial1: <T1;T2>, leading to x=45 and y=45
• Serial2: <T2;T1>, leading to x=35 and y=35
• S is not serializable
• But is it conflict-serializable?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 21

Conflicting Orders

• Conflicts
– R1(X)-W2(X), W1(X)-

R2(X), W1(X)-W2(X)
– R1(Y)-W2(Y), W1(Y)-

R2(Y), W1(Y)-W2(Y)

S=R1(X),W1(X),R2(X),W2(X),R2(Y),W2(Y),R1(Y),W1(Y)

Start T1;
Read(x, t);
Write(x, t+5);
Read(y, t);
Write(y, t+5);

Start T2;
Read(x, s);
Write(x, s*3);
Read(y, s);
Write(y, s*3);

R1(X)
W1(X)
R1(Y)
W1(Y)
R2(X)
W2(X)
R2(Y)
W2(Y)

R2(X)
W2(X)
R2(Y)
W2(Y)
R1(X)
W1(X)
R1(Y)
W1(Y)

Serial
schedules

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 22

Efficiently Testing Conflict-Serializability

• We should not try to check conflict-serializability by looking

at all possible orders of its transactions and check for
conflict-equivalence by considering all conflicting pairs of
operations

• Instead, we lift the problem from pairs of operations to
pairs of transactions – in a serial schedule, we order
transactions, not operations

• Precedence constraints between TX can be encoded in a
graph

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 23

Serializability Graphs

• Definition

The serializability graph SG(S) of a schedule S is the graph
formed by
– Each transaction forms a vertex
– There is an edge from vertices Ti to Tk , iff in S there are conflicting

operations opi∈Ti and opk∈Tk and opi is executed before opk

Start T1;
Read(x, t);
Write(x, t+5);
Read(y, t);
Write(y, t+5);

Start T2;
Read(x, s);
Write(x, s*3);
Read(y, s);
Write(y, s*3);

1

2

1

2 <T1;T2>

<T2;T1>

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 24

Testing Serializability

• Theorem

A schedule S is conflict-serializable iff SG (S) is cycle-free
• Formal proof: Omitted (see literature)
• Intuition (one direction)

– If two operations are in conflict, we need to preserve their order in
any potential conflict-equivalent serial schedule

– Thus, each conflict puts a constraint on the possible orders
– If SG(S) contains a cycle, not all of these constraints can be fulfilled

by any serial schedule

• That’s good: Testing for cycles is linear in |SG|

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 25

Examples

• <R1(X),W1(X),R2(X),W2(X),
R2(Y),W2(Y),R1(Y),W1(Y)>

– Not serializable

• <R1(X),R2(Y),W1(Z),W3(Z),
W2(X),W3(Y)>

– Serializable: <T1;T2;T3>

• <R1(X),R2(Y),W3(Z),W1(Z),
W2(X),W3(Y)>

– Not serializable

1

2

W1(X),R2(X)
W1(X),...,W2(X)
R1(X),...,W2(X)

R2(Y),…,W1(Y)
...

1

2
3

1

2
3

R1(X),W2(X)

R2(Y),W3(Y)

W1(Z),W3(Z)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 26

Transactions Do more Than Read and Write

• In particular, they commit or abort
• This has implications – which data is valid when?
• Imagine <W1(X), R2(X), W2(X), commit2, abort1>

– Schedule seems serializable
– But T2 has read what it should not have read; T2 cannot be

aborted any more
– Schedule is not recoverable

• Imagine <W1(X), R2(X), W2(X), abort1>
– Scheduler must abort T2 (because of dirty read), although schedule

<T2;T1> would have been fine
– Problem of cascading aborts

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 27

Definitions

• Definition
– A schedule S is called recoverable, if, whenever a committed T2

reads or writes an object X whose value was before written by a
unfinished T1, then S contains a commit for T1 before the commit
of T2

• Avoids un-abortable transactions

– A schedule S is called strict, if, whenever a T1 writes an object X
that is later read or written by a T2, then S contains a commit1 or
abort1 before the respective operation of T2

• Avoids cascading aborts (and problems in recovery – see literature)

• Lemmata
– Every strict schedule is recoverable
– A conflict-serializable schedule can be recoverable (or strict) or not
– Details: Literature

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 28

Relationships

• RC: Recoverable
schedules

• ACA: Schedules
avoiding any cascading
aborts

• ST: Strict schedules
– Usually, we want strict schedules in databases

• SR: Serializable schedules

All schedules

RC
ACA

ST

SR

Serial
schedules

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 29

Content of this Lecture

• Synchronization Problems
• Serial and Serializable Schedules
• Locking and Deadlocks
• Timestamp Synchronization and SQL Isolation Levels

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 30

Locking

• Practice: RDBMS does not check schedules before they run
• Instead, a scheduler ensures properties of schedules while

running

Transaction manager
Scheduler

Recovery manager
Buffer manager

Files

T2 T3 T1 Tn

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 31

System Component: Scheduler

• Responsible for

– Generating schedules as wanted (e.g. strict or serializable)
– Handling deadlocks

• Operations of the schedulers
– Pass on operations of transactions: R, W, Abort, Commit

• And do bookkeeping (i.e. set locks, maintain waits-for graph, …)

– Reject operations
• In extreme case, scheduler aborts running TX
• E.g. necessary to resolve deadlocks

– Delay operations
• Wait with the requested action
• TX held in a waiting queue

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 32

Two Flavors of Schedulers

• Pessimistic scheduling (locking – discussed here)
– Delay problematic actions and avoid aborts
– Advantage: Few aborts
– Disadvantage: Reduced parallelism
– Use when many conflicts are expected

• Optimistic scheduling (sketched later)
– Let TXs perform as if they were isolated
– Check for synchronization problems while running or afterwards
– If problem encountered, abort critical TX
– Advantage: No delays, fast parallel execution of conflict-free TXs
– Disadvantages: More aborts in case of conflicting TX
– Use when few conflicts are expected

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 33

Pessimistic Scheduling

• Main idea: Check each incoming operation
• If problems may occur (e.g. non-serializable order), either

delay operation or abort TX
• Usual implementation: Manage locks on objects

– No central controller, but one “controller” per data object
• Less of a bottleneck

– TX may only perform operations if proper locks have been acquired
– Other TX may block such acquisitions

• Many issues: Which types of locks, how manages the
locks, when may TX release/acquire locks, …

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 34

Locks and Lock Manager

• Lock: A (temporary) access privilege to an object
• Lock manager (LM) administers requests and locks

– Bottleneck! But: hardware support and parallelization

• Types of locks
– Read lock (sharable lock): S
– Write lock (exclusive lock): X
– Read and write locks are not compatible, i.e. there cannot exist a

W/S-lock and a W-lock from different TX on the same object

• If an incompatible lock is requested, LM refuses request
and scheduler delays requesting TX

• Locks must be released
– Either explicitly by the transaction
– Or automatically at commit or abort time

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 35

Lock Protocols

• Lock protocol: At what points in time TXs may acquire and

release locks
• Example – A simple read/write lock protocol

– A read or write lock must be acquired before a read
– A write lock must be acquired before a write
– Compatibility matrix for read and write locks

• “+”: compatible
• “–”: incompatible

• Not enough to guarantee smooth
operations - frequent deadlocks

S X

S + -

X - -

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 36

T1: <RL1(Y),R1(Y),WL1(Y),W1(Y),U1(Y)>
T2: <RL2(Y),R2(Y),WL2(Y),W2(Y),U2(Y)>

T1 : RL1(Y),R1 (Y) WL1(Y) ----------------

T2 : RL2(Y),R2 (Y) WL2(Y) ---------

 Read lock

 Write lock

• Both RL are granted
• Both WL-requests

are refused
• Both TX wait for

each other
• Locks are never

released, because
TX cannot proceed

• Deadlock

Deadlocks

T2 waits
for WL(Y)

T1 waits
for WL(Y)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 37

Option 1: Deadlock Prevention

• “Preclaiming”
– All locks must be requested before first data access
– Requires that TX knows all its lock needs at the start of the TX
– Requesting all locks is atomic

• We lock the operation “locking objects”

T1: <WL1(Y),R1(Y),W1(Y),U1(Y)>
T2: <WL2(Y),R2(Y),W2(Y),U2(Y)>

T1 : WL1(Y),R1 (Y) W1 (Y),U1(Y)

T2 : WL2(Y) ----------------------- WL2(Y),R2 (Y) , W2 (Y)

 Write lock

End delay, grant write lock Wait

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 38

Option 1: Deadlock Prevention

• “Preclaiming”
– All locks must be requested before first data access
– Requires that TX knows all its lock needs at the start of the TX
– Requesting all locks is atomic

• Consequences
– TX are delayed only at start-up time
– Delayed TX cannot acquire any locks
– Delayed TX cannot block other TX – no deadlocks

• Disadvantages
– If uncertain, typically more locks then needed are requested
– Locks are kept longer than necessary
– Low throughput: Only entirely conflict-free TXs run concurrently

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 39

Option 2: Deadlock Detection

• Build waits-for graph on transactions from requests

– Alternative: Stop TX after timeout

• Scheduler must regularly check for cycles
• If cycle is detected – chose a transaction and abort it
• Which one?

– TX that can be aborted with minimal overhead
– TX that has executed the least operations so far
– TX that needs the longest to finish
– TX that participates in another cycle
– TX that has requested the most locks
– …

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 40

Which Option is Better?

• Depends on the application
• If conflicts are expected to be frequent

– Option 2 will kill many TX and application will not really proceed
– Option 1 will hinder high-speed, but provide continuous progress

• If conflicts are expected to be rare
– Option 1 will unnecessarily hinder high-throughput
– Option 2 will almost never interfere

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 41

2-Phase Lock Protocol (2PL)

• Less conservative protocol: 2-Phase Locking
– Before TX can read object X, it must own a read or write lock on X

• I.e. the lock manager must grant the lock

– Before a TX can write object X, it must own a write lock on X
– Once a TX starts to release locks, it cannot be granted new locks

• Each TX must keep its locks until the end of the transaction

• Very prominent

Number
of

locks

locking phase

BOT

EOT

release phase

Lock Point

Time

Commit

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 42

2PL Schedules are Serializable

• 2PL does not prevent deadlocks, but …
• Theorem

All 2PL schedules are serializable
• Proof

– We prove that the (runtime) serializability graph SG of any 2PL
schedule S does not contain a cycle

– Step 1: If there exists an edge between Ti and Tj, then Ti’s lock
point happens before Tj

’s lock point
• Since there exists an edge from Ti to Tj, there exists an object X on

which both TXs want to execute operations that are in conflict
• Assume Ti owns a lock on X (following 2PL). Tj can get this lock only

after Ti has performed an unlock operation (because Ti and Tj are in
conflict). Therefore Ti has left its lock point behind before Tj

 can reach
its lock point

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 43

2PL Schedules are Serializable

• 2PL does not prevent deadlocks, but …
• Theorem

All 2PL schedules are serializable
• Proof (cont)

– Step 2: Now assume that SG(S) contains a cycle
• Then there exist edges
 T1 → T2 → T3 → → Tn → T1
• According to step 1, this cycle implies that the lock point of T2 occurs

before the lock point of T1 (by transitivity)
• Contradiction

– Q.e.d.

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 44

Example

<R1(X),W1(X),R2(X),W2(X),R2(Y),W2(Y),R1(Y),W1(Y)>

– With 2PL, the following may happen
• WL1(X),WL1(Y),R1(X),W1(X),<T2 must wait>,R1(Y),
W1(Y),U1(X,Y),<T1 finished>,WL2(X),<T1 commits>,…

– Fine
• RL1(X),R1(X),RL2(X),<T1 must wait>,<T2 must wait>

– 2PL does not prevent deadlocks because lock phase is not atomic
• WL2(X),R2(X),W2(X),<T1 must wait>,WL2(Y), …

– Fine

• …

– Ui(X,Y,…) means: TXi unlocks objects X, Y, …

1

2

1

2

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 45

• 2PL does not guarantee recoverable schedules
– Recall: A schedule S is called recoverable, if, whenever a

committed T2 reads or writes an object X whose value was
before written by a unfinished T1, then S contains a commit
for T1 before the commit of T2

– When T2 starts, it may lock and write objects locked and
written by T1 before

– If T1 aborts late (looong release phase), T2 might have
committed already

Observation

BOT1 EOT1 EOT2 BOT2

TA1
TA2

commit2

abort1

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 46

• SS2PL ensures recoverable schedules
• Locks are released only after passing “Commit Point”

– Only after commit/abort has been acknowledged by scheduler
– Less parallelization, less throughput, but recoverable
– Deadlocks may still happen (solve by atomic lock/unlock phase)

Number
of

locks

lock phase

BOT

EOT

Release phase

Lock Point

Time

Commit
Point

Strong and Strict 2PL Protocol (SS2PL)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 47

Content of this Lecture

• Synchronization Problems
• Serial and Serializable Schedules
• Locking and Deadlocks
• Timestamp Synchronization and SQL Isolation Levels

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 48

Optimistic Locking by Timestamps (sketched)

• Create a “timestamp” (sequential ID) for new TX
• Manage timestamps for each object: Last reading TX, last

writing TX, last committed TX
• When T accesses an object X, compare TS(X) and TS(T)

– In case of potential conflicts, abort transactions
• No delays, no locks, no deadlocks

– Example: “Read too late”: <R2(X),R1(Y),W1(Y),R2(Y)>
• R2 tries to read Y whose value has changed after T2 started
• Unsure situation, not serializable – abort T2

– Complicated rule set, not covered here

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 49

Multi-Version Synchronization

• Idea: When changing data (here T1), only change a copy
– TX always read the last committed value (no dirty reads)
– In example: T2 would read old value of Y (before T1)
– Requires keeping multiple versions of each object
– Writes must still be synchronized, but reads are “freed”

• Optimistic: Don’t sync, but validate changes at end of TX
– Upon abort, do nothing (discard local changes)
– Upon commit, check

• Whether read objects have changed in the meantime
• Whether written objects have been read or written in the meantime

– If yes: abort transaction
– Otherwise, copy local values to database

• Used in many systems: Oracle, PostGreSQL, …

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 50

Discussion

• Advantage

– No lock manager, no delays
– “Reads never wait”
– Very fast if conflicts are rare

• Disadvantage
– Even if conflicts would appear early, TX first has to finish first

• Waste of CPU cycles

– Management of timestamps (space, CPU)
• Need to stamp all accesses to any object across and within

transactions
• Use higher granularity: Timestamps of blocks, tuples, etc.

– Main memory management: Many versions, garbage collection, …

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 51

SQL Degrees of Isolation

• Goal
– Let the user/program decide what as specific TX needs
– Trade-off: Performance versus level-of-isolation

• SQL isolation levels
– Lost update is never accepted
– Oracle only supports “read committed” (default) and “serializable”

(and “read-only”)
– #

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 52

Details

• „Read uncommitted“
– Can only be used for read-only transactions
– Do not generate locks, will never wait

• “Read committed”
– Will only read committed data, but repeatable reads not

guaranteed
– In MV-S, reads won’t wait and writes are not delayed

• “Repeatable reads”
– Reads read from local copy (in MV-S), TX only checked at

commit/abort time

• “Serializable”
– Full locking protocol, e.g. 2PL

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 53

Issues not Discussed

• Optimistic, time-stamped and multi-version scheduling
• Inserts: Lock a non-existing object?
• Managing locks (and locking the lock table …)
• Lock propagation (from value to tuple to table …)
• Locking data with (hierarchical) indexes
• Advanced TX models: Nested, compensating operations,

distributed, …
• …

	Foliennummer 1
	Content of this Lecture
	Synchronization
	Trade-Off
	Lost Update Problem
	Inconsistent Read Problem
	Non-Repeatable Read
	Other Problems
	Transaction Model
	Example
	Schedules
	Good Schedules
	Content of this Lecture
	Preface
	Serial Schedules
	Acceptable Schedules
	Serializable Schedules
	Conflicts
	Serializability of Schedules
	Example
	Conflicting Orders
	Efficiently Testing Conflict-Serializability
	Serializability Graphs
	Testing Serializability
	Examples
	Transactions Do more Than Read and Write
	Definitions
	Relationships
	Content of this Lecture
	Locking
	System Component: Scheduler
	Two Flavors of Schedulers
	Pessimistic Scheduling
	Locks and Lock Manager
	Lock Protocols
	Deadlocks
	Option 1: Deadlock Prevention
	Option 1: Deadlock Prevention
	Option 2: Deadlock Detection
	Which Option is Better?
	2-Phase Lock Protocol (2PL)
	2PL Schedules are Serializable
	2PL Schedules are Serializable
	Example
	Observation
	Strong and Strict 2PL Protocol (SS2PL)
	Content of this Lecture
	Optimistic Locking by Timestamps (sketched)
	Multi-Version Synchronization
	Discussion
	SQL Degrees of Isolation
	Details
	Issues not Discussed

