
Ulf Leser

Datenbanksysteme II:
Recovery

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 2

Content of this Lecture

• Transactions
• Failures and Recovery
• Undo Logging
• Redo Logging
• Undo/Redo Logging
• Checkpointing

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 3

Transactions

• Transactions are the building blocks of operations on data
– Sequences of SQL commands, possible embed. in a host language

• Motivation: Consistency
– Data in a database always must be consistent

• Inconsistency only be tolerated temporarily
• Inconsistency only be tolerated in a controlled manner

• Informal definition: Given a consistent database, any
transaction that runs in isolation will perform changes such
that the database after executing the transaction is
consistent again
– But not necessarily in-between

• Consistent DB + TX + Synchronization → Consistent DB

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 4

Consistent States

• A database instance should be an image of a fraction of
the real world

• Simple consistency rules
– “Peter” is not an Integer
– “Lehmann-Krause-Ufflhard-Beiersdorf” is longer than 40 characters
– Every course at a university can have only one responsible teacher
– A marriage is a connection between two people
– There can be no tax rate above 100%
– -300 ° Celsius is not a valid temperature

• Techniques
– Data types (real, varchar, date, …)
– Data model (cardinality of relationships)
– Constraints: Primary key, unique, foreign key, check, …

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 5

Consistent States

• Complex consistency rules
– If there are no purple cats, the attribute “color” of a relation “cats”

must never be “purple”
– 29.2.2005 is not a valid date
– If money doesn’t multiply by itself, then moving money from one

account to another must not change the total amount of money
over all accounts

• To move X Euro from A to B, we must subtract X from account A and
add X to account B

• If things cannot happen at the very same time, in between the
database is necessarily inconsistent

• Techniques
– Trigger
– Transactions & synchronization

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 6

Formally

• TX define consistent states
• Definition:

A transaction T is a sequence of operations that, when
executed in isolation, moves a database from one
consistent state into another consistent state.

• All operations on a database must be part of a transaction
– You might not notice, e.g., autocommit
– Also applies to seemingly atomic operations

• Give raise: UPDATE salaries SET salaray=salary*1.1
• The set of all single row updates form a transaction

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 7

ACID Properties

• TX are associated with more than consistency
• Atomicity: All-or-nothing: Every TX happens entirely or not

at all
• Consistency: Every TX moves a DB from a consistent state

to a consistent state
• Isolation: Every TX can act on data as if there were no

further TX running concurrently
• Durability: Changes performed by a TX are stable

– Stable = preserved against failure of many (but not all) kinds
– This is duty of the recovery manager

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 8

Transactional Operations

• Start T

– Usually performed implicitly
– Every command after an abort or a commit starts a new TX

• Commit T
– Ends a TX; a consistent state is reached and must be preserved

• Rollback T (abort)
– Ends a transaction; all changes must be undone

• Savepoint T (makes things easier)
– Sets a mark in the middle of a transaction (no consistent state)
– Allows a transaction to be roll-backed to this mark
– One-level nested transactions

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 9

Content of this Lecture

• Transactions
• Failures and Recovery
• Undo Logging
• Redo Logging
• Undo/Redo Logging
• Checkpointing

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 10

Recovery

• TX are sequences of operations that take time to execute
• In between, the database is potentially inconsistent
• In between, TX have not been atomic
• If we switch off power, changes may not be durable

• Recovery: Actions that allow a database to implement

transactional behavior despite failures
– By taking proper actions before the failure happens
– Does only work for some types of failures

• Note: We ignore synchronization for now (next lecture)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 11

Hardware Model

• Memory is volatile, disk is durable
• Assumption: Data in memory is lost, data on disk remains
• Types of events

– Desired events
– Undesired but expected
– Undesired and unexpected

CPU

M D

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 12

Types of Failures

• Undesired but expected
– Expected and compensated by recovery manager
– CPU stops
– Memory is corrupted and CPU stops (CRC check, etc.)
– RDBMS or OS crashes due to program bug

• Hopefully not a bug in the recovery manager!

• Undesired and unexpected
– Not expected by the recovery manager
– Wrong transaction code
– Memory is corrupted and CPU does not notice / stop
– Media failure (but RAID etc.)
– Machine and all discs burn down (but Backup etc.)
– Machine gets infected by malicious and clever virus

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 13

Recovery

• During database startup, the recovery manager must

– Recognize that there was an error
– Restore a consistent state of the database

• All previously committed changes are present (durability)
• All previously uncommitted changes are not present (atomicity)
• Hence: Must know about all TX and their states at time of failure

– Be prepared for crash during ongoing recovery
– Move to normal operations afterwards
– Should do this as fast as possible

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 14

Limits

• Still, errors do happen
• Still, recovery does take time
• Still, media failures do occur

• To ensure 24x7x52 operations, use other methods on top

– Backup, RAID, cluster with failover, hot-stand-by machine, …

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 15

First Approach

• First try (no concurrent TX)
– Phase 1: All changes within a TX are only applied in main memory

• Never write anything to disk before COMMIT

– Phase 2: Upon COMMIT, write all changed blocks to disk

• Crash during phase 1
– Everything is fine, atomicity and durability is preserved

• Crash during phase 2
– Some blocks/changes have been written, some not
– We do not know which, cannot rollback – atomicity / durability hurt

• Imagine you are the recovery manager at start-up time
– Have there been active transactions?
– Is the DB consistent or not?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 16

Architecture of a Recovery Manager

• In the following, we talk of “objects”
– Usually means tuple (+ attribute)
– Could also be block (more later)

Transactions

Concurrency Control
Manager

Recovery-Mgr.

Buffer-Mgr.

Secondary
Storage

Main Memory
Log

DB

Log

Cache

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 17

Transactions

• Transactions do
– Read(X): Read object

from block X
– Write(X): Write object

into block X
– Commit
– Abort

• Recovery manager intercepts all commands and
performs something “secretly”

Transactions

Concurrency Control
Manager

Recovery-Mgr.

Buffer-Mgr.

Log

Cache

Log

DB

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 18

Buffer Manager

• Buffer manager

– Upon read(X): If X not
in mem, load(X); give
access to block to TX

• Involves replacing
blocks in cache

– Upon write(X): Usually
nothing

• Time between change in block and writing of changed
block is unpredictable for TX
– In particular, a commit does not write anything to disk per-se
– Aim: Maximize performance, minimize random IO

Transactions

Concurrency Control
Manager

Recovery-Mgr.

Buffer-Mgr.

Log

Cache

Log

DB

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 19

Recovery Manager

• Intercepts all TX
commands

• Performs logging to
ensure durability

• Decides when logs
are written to disk
– If possible in batches

• Decides when buffers are written to disk
– If possible in batches

Transactions

Concurrency Control
Manager

Recovery-Mgr.

Buffer-Mgr.

Log

Cache

Log

DB

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 20

Example Failures

• Assume constraint “A=B” and a transaction T
– T performs <start; A := A*2; B := B*2; commit;>

• Sequence of operations (assume a write-through)
read (A); A := A*2
write (A);
read (B); B := B*2
write (B);
commit;

A: 8
B: 8

A: 8
B: 8

memory disk

16
16 16

16

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 21

Failures

• Assume constraint A=B and transaction T
– T performs A := A*2; B := B*2; commit;

• Sequence of operations (assume a write-through)
read (A); A := A*2
write (A);
read (B); B := B*2
write (B);
commit;

A: 8
B: 8

A: 8
B: 8

memory disk

16
16

16

failure!

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 22

Content of this Lecture

• Transactions
• Failures and Recovery
• Undo Logging
• Redo Logging
• Undo/Redo Logging
• Checkpointing

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 23

Undo Logging - Idea

• Short: Log before block, block before commit
– Old values (before update) are saved to log and written to disk

before any changed blocks are written
– Changed blocks may be written too early (before commit)
– Changed blocks must not be written too late (after commit)

• If a commit happens, new values are on disk
• If a crash happens, old values are in log
• Undo-logging: Premature changes are undone

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 24

Detailed Rules

• During transaction processing

– Buffer manager may write uncommitted changes to disk
• Gives lots of freedom to write in batches

– Old value must be in a disk-log before block is written
– TX starts are implicitly written to log (new TX number)
– Commits/aborts are also written to log
– Changed blocks must be on disk before commit is flushed to disk

• During recovery
– Identify all uncommitted transactions
– Find all log entries (=old values) of these transactions
– Undo changes: Replay entries in reverse order

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 25

Structure of the Log

• Records: <tID, object (tupleId+attribute), old value>
• Commits and aborts are logged

Transaction Object Old value
T1 Y0 → Y1 Y0

T1 X0 → X1 X0

T1 Z0 → Z1 Z0

T1 Abort

T2 Y0 → Y2 Y0

T2 Commit

T3 Y2 → Y3 Y2

WT1(Y); WT1(X); WT1(Z); abortT1; WT2(Y); commitT2; WT3(Y)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 26

Undo Logging Rules

• Undo logging is based on three rules
– For every changed object generate undo log record with old value

• For on INSERT, log a DELETE; for a DELETE, log an INSERT

– Before a block is written to disk, undo record must be on disk
– Before a commit in the log is flushed to disk, all blocks changed by

this transaction must have been written to disk

• What does “flushing a commit” mean?
– Log records (as data blocks) are preferably written in batches
– Hence, there is a short period between a log operation and the

point in time where this record appears on disk
– Flushing the log = writing all not-yet-written log records to disc

• Reason for third rule
– All committed transactions are ignored during recovery
– Hence, if failure between log(“commit”) and writing of last changed

block, database is inconsistent and this is not noticed

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 27

Example

• Sequence of operations
– read (A); A := A*2
– write (A);
– read (B); B := B*2
– write (B);

A: 8
B: 8

A: 8
B: 8

16
16

<T, start>
<T, A, 8>
<T, B, 8>

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 28

Example – Normal Commit

• Sequence of operations
– read (A); A := A*2
– write (A);
– read (B); B := B*2
– write (B);
– commit;

A: 8
B: 8

A: 8
B: 8

16
16

<T, start>
<T, A, 8>
<T, B, 8>

<T,commit>

Flush blocks

Flush log

16
16

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 29

Example – Failure 1

• Sequence of operations
– read (A); A := A*2
– write (A);
– read (B); B := B*2
– write (B);
– read (C); C:=C-A;
– write (C);
– commit;

A: 8
B: 8

failure!

<T, start>
<T, A, 8>
<T, B, 8>

– Changes have not been written yet
– We nevertheless undo as commit not

in log
– Unnecessary undo can be omitted if

block-writes are also logged

8
8

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 30

Example – Failure 2

• Sequence of operations
– read (A); A := A*2
– write (A);
– read (B); B := B*2
– write (B);
– read (C); C:=C-A;
– write (C);
– commit;

A: 8
B: 8

failure!

<T, start>
<T, A, 8>
<T, B, 8>
<T,C,4>

– Some disk blocks have been written,

some not; commit has not been
written

– We must undo

Flush blocks

16
16

8
8

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 31

Example – Failure 3

• Sequence of operations
– read (A); A := A*2
– write (A);
– read (B); B := B*2
– write (B);
– read (C); C:=C-A;
– write (C);
– commit;

A: 8
B: 8
C: 12

<T, start>
<T, A, 8>
<T, B, 8>
<T,C,4>

<T,commit>

Flush blocks

16
16

failure!

– Commit has not been flushed to disk
yet

– We must undo all changes

4

8
8
12

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 32

Example – Failure 3

• Sequence of operations
– read (A); A := A*2
– write (A);
– read (B); B := B*2
– write (B);
– read (C); C:=C-A;
– write (C);
– commit;

A: 8
B: 8
C: 12

<T, start>
<T, A, 8>
<T, B, 8>
<T,C,4>

<T,commit>

Flush blocks

16
16

Flush log

failure!

– No problem, TX has finished
normally

– Nothing to do, all committed
changes are on disk

4

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 33

Aborts

• Any transaction may abort instead of commit
– Deliberately (rare)
– Triggered by sync manager due to synchronization issues

• Abort is treated similar to commit
– Perform rollback in memory, replacing old values and treating this

as usual writes in the log
• Need not be done – later

– Before an “abort” is flushed, all changed blocks must be on disk
• I.e., changes of the TX must have been undone

• Usage of log data to undo changes during abort
– Problem: What if logs are already on disk – and only there?

• Quite possible for long-running TX on heavy-write databases

– Need to reload logs for performing the abort

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 34

Recovery using Undo Logging

• When recovery manager is evoked during start-up
– Read log from back to front (latest first)
– When <T,commit> or <T,abort> is encountered, mark this TX and

ignore all further records regarding T
• Updated values are certainly on disk

– If record <T, X, Y> is encountered without T having been marked
before, change X to Y in block on disk

• That is, undo changes in reverse order
• Update value may be on disk

– If record <T, start> is encountered without T having been marked
before, write <T,abort> to log

• Marks this transaction as undone for future recoveries

• Doing all this efficiently is a considerable problem in itself
– We don’t want to read/write blocks for every change

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 35

Two Issues

• We must read the entire log

– That may take a very long time
– Checkpointing – later

• What happens if system crashes during recovery?
– Nothing
– “Finished recovered” transactions are not undone again (abort has

been written)
– All others are undone
– Recovery is idempotent

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 36

Drawbacks

• Buffer manager is forced to write blocks before flushing

commits to log
– Cannot chose freely when to write to maximize sequential writes

• However, commits should be performed quickly to release
locks (see synchronization)
– Ideally, logs are flushed with every commit
– Thus, block manager must write blocks all the time

• Trade-Off
– Batch writes are hindered – bad performance
– Commits are delayed – bad performance

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 37

Content of this Lecture

• Transactions
• Failures and Recovery
• Undo Logging
• Redo Logging
• Undo/Redo Logging
• Checkpointing
• Recovery in Oracle

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 38

Redo Logging

• We twist the idea the other way round
– Write new values, not old values, to log
– Do not write blocks before commit, but ensure that blocks are

written after commit
– Do not undo uncommitted transactions, but ignore them

• Blocks have not been written

– We redo committed transactions (ignored by undo logging)
• Blocks might have not been written

• Deferring block writes
– Bad: Long running TX consume all available memory – DB might

need to generate temporary areas on disk
– Good: For short running TX, buffer manager has high degree of

freedom when to flush blocks

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 39

Redo Logging Rules

• Two redo logging rules
– For every write generate redo log record containing new value
– Before any changed block is written to disk, transaction must have

finished and all logs (including commit) must be flushed to disk
– Short: Log before block, commit before block

• Consequence
– No changes that might have to be reset later are written to disk
– Good idea: Flush log with every commit to allow buffer manager

to evict blocks from memory
• Removes freedom from log manager

– Aborts are simple, since no changes have been written to disk;
aborted TX may be ignored during recovery

• How does recovery work?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 40

Recovery with Redo Logging

• When recovery manager is evoked during start-up
– Generate list L of all committed transactions (one scan)
– Read log from front to back (earliest first)
– If record <T, X, Y> is encountered with T∈L, set X to Y

• That is, redo change in original order

– Ignore all other records - uncommitted transactions

• Problem
– Procedure is idempotent, but we always need to redo all ever

committed transactions
• Undo logging also needs to read the entire log, but not undo

transactions again and again at every crash

– That is very, very slow
– We really need checkpointing (later)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 41

Wrap-Up

• Undo logging forces too frequent block writes
• Redo logging forces contention in buffer manager and

extremely slow recovery
• Solution: Undo/redo logging

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 42

Content of this Lecture

• Transactions
• Failures and Recovery
• Undo Logging
• Redo Logging
• Undo/Redo Logging
• Checkpointing
• Recovery in Oracle

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 43

Best of Both Worlds

• We need only two rules
– Upon change, write old and new value into log
– Before writing block, always flush respective logs

• WAL: Write ahead logging

– Short: Log before block

• Having old and new values suffices to undo uncommitted
transactions (undo logging) and redo committed
transactions (redo logging)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 44

Situations

• If block is on disk and commit was flushed, then crash

– Recovery finds committed TX and redoes changes
• Rec manager cannot be sure that blocks have been written

– Introduces unnecessary redoing

• If block is on disk but commit not, then crash
– Recovery finds missing commit and undoes changes

• If block is not on disk and commit was flushed and crash
– Recovery finds commit and redoes changes

• If neither block nor commit is on disk and crash
– Recovery finds missing commit and undoes changes
– Introduces unnecessary undoing

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 45

Benefits

• Reduced dependencies between log writes and block

writes
• Flushing commits is independent of flushing blocks

– Log manager can “finish” transactions and release locks by flushing
commits to the log without waiting for the block manager

– Block manager may write blocks without waiting for transactions to
commit (which may take a long time – user interactions, waits, …)

• But make sure block-specific logs are written first

– Log manager and buffer manager have more degrees of freedom
to organize larger sequential writes

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 46

Recovery with Undo/Redo Logging

• When recovery manager is evoked during start-up
– Collect list L of finished transactions and list U of unfinished

transactions
– Backward pass – read from latest to earliest and undo all changes

of transactions in U
– Forward pass – read from earliest to latest and redo all changes of

transactions in L

• This performs all changes of all transactions since DB start
again and again, but …

• … combined with checkpointing, it is very efficient
– Still generates large log files
– Strategy for truncation/archiving of log files required

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 47

Example

• Potentially on disk at crash: A=2, B=5, C=3
• We should have A=16, B=4, C=7
• Recovery

– L = {T1, T3}, U = {T2}
– Backward read

• Find records with t∈U: entries 5 and 6
• Undo: write(A,16), write(B,4); log(t2,abort)

– Forward read
• Find entries with t∈L: {2, 8, 9}
• Redo: write(A,16), write(C,3), write(C,7)

• Will this always work?

1. <T1,start>
2. <T1,A,8,16>
3. <T1,commit>
4. <T2,start>
5. <T2,B,4,5>
6. <T2,A,16,2>
7. <T3,start>
8. <T3,C,2,3>
9. <T3,C,3,7>
10. <T3,commit>
11. CRASH

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 48

Slightly Different Example

• What happens?

– T1 changes A and commits
• Change will be redone

– T2 changes B and A and does not commit
• Changes will be undone

– T3 reads uncommitted change of A from T2,
changes, and commits

• Change will be redone

• Problem
– T3 acts under false premises
– Something is wrong
– But: Synchronization not our business here

1. <T1,start>
2. <T1,A,8,16>
3. <T1,commit>
4. <T2,start>
5. <T2,B,4,5>
6. <T2,A,16,2>
7. <T3,start>
8. <T3,A,2,3>
9. <T3,C,3,7>
10. <T3,commit>
11. CRASH

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 49

Content of this Lecture

• Transactions
• Failures and Recovery
• Undo Logging
• Redo Logging
• Undo/Redo Logging
• Checkpointing
• Recovery in Oracle

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 50

Checkpointing

• Recovery may take very long
– Undo logging: Find all uncommitted transactions and undo
– Redo logging: Find all committed transactions and redo
– Undo/redo logging: Do both

• But: When a transaction is committed, and all changes are
written to disc and log is flushed – no need to touch this
transaction any more in any future recovery

• Checkpointing: Define points in time (and in log) such that
recovery only needs to go back until “roughly” there

• Notation
A transaction is called active if it has not committed or
aborted yet

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 51

Blocking (Quiescent) Checkpointing

• Simple way to achieve checkpointing

– Recovery manager announces checkpoint and flushes “start ckpt”
to log

– No new transactions are allowed
– System runs until all active transactions finish (with commit or

abort)
– When all TX have finished, recovery manager flushes “end ckpt” to

log
– DBMS resumes normal operations

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 52

Quiescent Checkpointing and Undo Logging

• At recovery time …
• Read from back to front and undo uncommitted

transactions
• When the first “end ckpt” is found, recovery is finished

– All prior transaction have committed or were aborted
– By the undo logging rules, changes must have been written to disk

before commit/abort was flushed to log

• Any “start ckpt” found after the first “end ckpt” is ignored
– Some transactions that were active at the “start ckpt” time might

have finished before the crash – but not all of them
– Needs recovery

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 53

Quiescent Checkpointing and Redo Logging

• At recovery time …
• Scheme doesn’t work as such – why not?

– (… non-quiescent checkpointing is better anyway)

• We would need to ensure that all blocks are written to disk
before the “end ckpt” is flushed to log

• More dependencies – “end ckpt” is almost like a database
shutdown

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 54

Non-Quiescent Checkpointing

• Bad: Quiescent checkpointing essentially shuts-down DB
• None-Quiescent checkpointing

– With start of checkpoint, also write list of active TXs
• Database generates unique transaction Ids in order of TX.start

– When “start ckpt(17,22,23,25)” is found in log during recovery
• All transactions with ID smaller 17 and TX 18,19,20,21,24 had finished

before
• Four transactions were active at this point in time
• Further TX might have become active during the checkpoint
• We don’t know anything about TX with ID>25

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 55

Non-Quiescent Ckpt for Undo/Redo Logging

• Recovery manager flushes “start ckpt(L)” to log
• DB operations continue normally
• All currently dirty blocks are flushed to disk during

checkpoint
– In particular, this flushes all dirty blocks of finished transactions
– Need not be performed immediately – recovery manager can use

time between start and end of checkpoint
• Advantage: Buffer manager has more freedom when to write blocks
• Disadvantage: Crash before “end chkp” makes checkpoint unusable

• Recovery manager flushes “end ckpt” to log
• All blocks of TX ”older than L” are certainly on disk
• These can be ignored during recovery
• Database operations are (almost) unaffected

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 56

Recovery

• Read back in log
• If a “end ckpt” is found first

– Locate the corresponding “start ckpt(L)”
– TX “older L” had finished and changes have been saved on disk
– Perform undo/redo only for TX in L and later
– Note: This requires reading prior to “start ckpt(L)”

• Log entries for TX in L have started before checkpoint
• These need to be inspected
• Idea: Chain log record per TX with backward pointers

• If a “start ckpt(L)” is found first
– Doesn’t help
– We don’t know if all blocks have been written already
– Read further back to next “end ckpt”

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 57

Example

• Recovery
– Transactions older than (2,3) can be ignored (T1)
– Transactions 2 is undone (no commit)
– Transaction 3 is ignored (commit and blocks on disk)
– Transaction 4 is redone (too old)

• This could be saved by some more bookkeeping
– With checkpoint, save ID of most recently started TX
– All transactions smaller than this number and not in L can be ignored

T1.s T2.s T3.s

T1.c

T4.s

T4.c

Start ckpt(2,3)

output(...) T3.c

end ckpt()

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 58

Again: Transactions that Abort

• Assume

– Transaction T starts at time X
– Later, “start ckpt(T,…)” starts
– All blocks are flushed
– “end ckpt” is flushed, T is still active
– T aborts regularly
– System crashes

• On recovery
– T was active at start of last checkpoint, so treatment necessary
– Some changes have been written already (before the end of

checkpoint), some not (those after the checkpoint)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 59

Again: Transactions that Abort

• Two options
– Transaction is considered as not committed

• All changes are undone

– Transaction is considered as committed
• So changes are redone
• This requires that before a log record “abort” is written to disk, all

changes of the transaction must have been undone und this must have
been logged

• Hence, the rollback undoing is redone during recovery

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 60

TX, Values, and Blocks

• Blocks in buffer usually contain tuples changed by different
transactions

• Undo log: Before commit, all changes must be on disk
– Will include uncommitted changes – more undoing later

• Redo log: Before commit, no changes may be on disk
– New problems for buffer manager – always waiting for some active

transaction in a block

• Undo/redo logging: No dependency between commit and
writing of blocks

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 61

Content of this Lecture

• Transactions
• Failures and Recovery
• Undo Logging
• Redo Logging
• Undo/Redo Logging
• Checkpointing
• Recovery in Oracle

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 62

Recovery in Oracle

• Undo/redo logging with non-quiescent checkpointing
– LGWR server process writes log in batches
– Logs are maintained in “online redo log groups”

• Each log is written in each group
• Protect log from media failure - spread groups over different disks

• Each log group consists of a list of files of fixed max size
– When last file is full, logging starts filling the first file again
– In “archive-log” mode, log files are archived before being

overwritten
– When is it save to overwrite logs?

• With “start ckpt(L)”, keep l = “log# of oldest log of any t∈L”
• When “end ckpt” is reached, all log records older than l can be

dumped

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 63

Recall

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 64

Traveling in Time (Flashback)

• In “archive-log” mode, any point in time is reachable
– Even committed changes can be undone

• Oracle flashback queries
– SELECT X

FROM Y AS OF TIMESTAMP '2007-07-13 02:19:00’
WHERE …;

• Semantics: Undo all changes on Y.X of TX that had not
committed prior to log record directly before t
– Can rollback DDL
– Also useful in legal issues (proof what was changed when)

• Other option: “Total recall” – permanent additional log in
dedicated tablespace

• Careful with changes in constraints, table structure, …

	Foliennummer 1
	Content of this Lecture
	Transactions
	Consistent States
	Consistent States
	Formally
	ACID Properties
	Transactional Operations
	Content of this Lecture
	Recovery
	Hardware Model
	Types of Failures
	Recovery
	Limits
	First Approach
	Architecture of a Recovery Manager
	Transactions
	Buffer Manager
	Recovery Manager
	Example Failures
	Failures
	Content of this Lecture
	Undo Logging - Idea
	Detailed Rules
	Structure of the Log
	Undo Logging Rules
	Example
	Example – Normal Commit
	Example – Failure 1
	Example – Failure 2
	Example – Failure 3
	Example – Failure 3
	Aborts
	Recovery using Undo Logging
	Two Issues
	Drawbacks
	Content of this Lecture
	Redo Logging
	Redo Logging Rules
	Recovery with Redo Logging
	Wrap-Up
	Content of this Lecture
	Best of Both Worlds
	Situations
	Benefits
	Recovery with Undo/Redo Logging
	Example
	Slightly Different Example
	Content of this Lecture
	Checkpointing
	Blocking (Quiescent) Checkpointing
	Quiescent Checkpointing and Undo Logging
	Quiescent Checkpointing and Redo Logging
	Non-Quiescent Checkpointing
	Non-Quiescent Ckpt for Undo/Redo Logging
	Recovery
	Example
	Again: Transactions that Abort
	Again: Transactions that Abort
	TX, Values, and Blocks
	Content of this Lecture
	Recovery in Oracle
	Recall
	Traveling in Time (Flashback)

