

Datenbanksysteme II: Cost Estimation for Cost-Based Optimization

Ulf Leser

Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
- Sampling

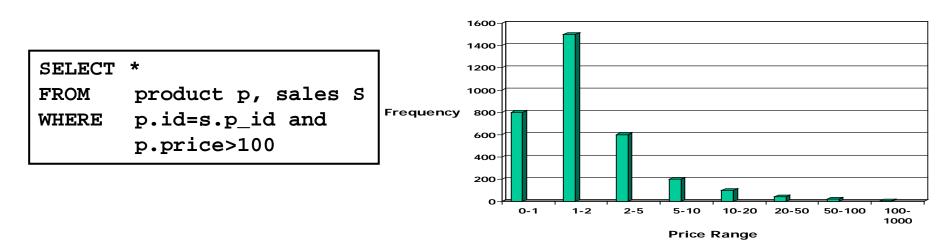
Cost Estimation

- Rule-based optimizer
 - Transformations depend only on query and schema information, but not on the actual data
 - No notion of "cost"
 - Cannot differentiate join order
 - Cannot decide on access path selection / index usage ...
- Cost-based optimizer
 - Estimate the cost of each operation in a QEP
 - Approached by estimating size of intermediate results
- Cost estimation required for
 - Choosing best implementation for each operations
 - Finding best plan for entire query
 - Operations have non-local side-effects, especially order

SELECT	*				
FROM	product p, sales S				
WHERE	p.id=s.p_id and				
	p.price>100				

- Assume 3300 products, prices between 0-1000 Euro, 1M sales, index on sales.p_id and product.id
- Assuming uniform distribution
 - Price range is 0-1000 => selectivity of condition is 9/10
 - Expect 9/10*3300 ~ 3000 products
 - Choose BNL, hash, or sort-merge join (depending on buffer available)

Example

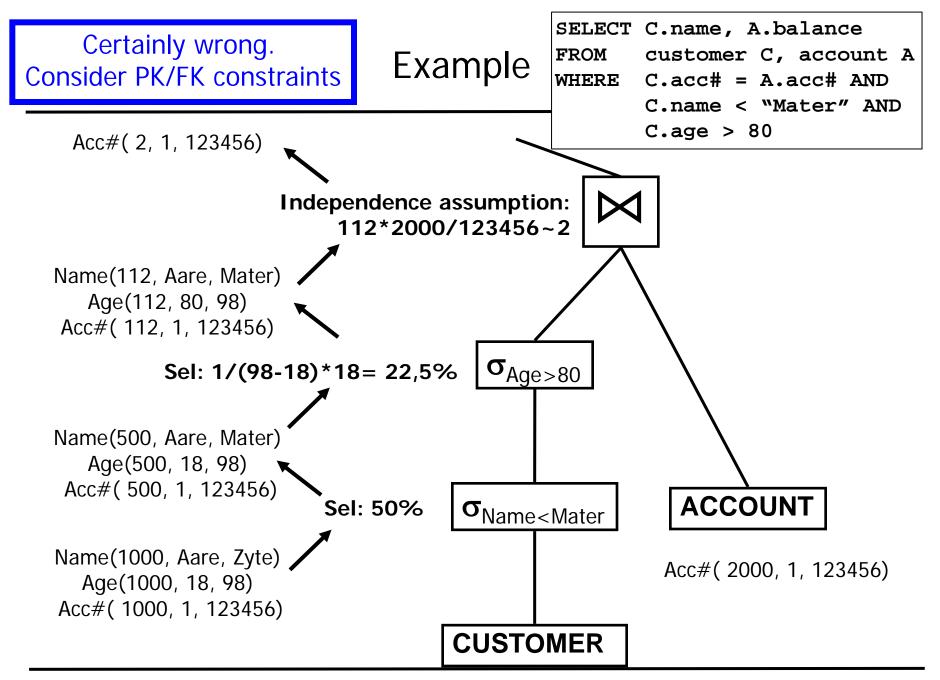


- Using histograms
 - Assume 10 buckets
 - We infer: Selectivity of condition is 5/3300 ~ 0,0015
 - Choose index-join: scan p, collect id of selected products, use index on sales.p_id to access sales
- Note: We are making another assumption which?
 - Maybe people mostly buy expensive goods?

Cost Estimation

- We approach cost estimation bottom-up
- Start by building a model of relations
 - Model should be much smaller than relation
 - Should allow for accurate predictions for all possible operations
 - Selection, projection, group-by, ...
 - We will have to make some compromises
 - Should be consistent same estimates for different ways of implementing the same subquery
 - Model should be easy to maintain when data changes
 - Model should be generated quickly
 - Models need to be stored and accessed efficiently
 - Models must be easily creatable (better: derivable) for intermediate relations during query processing

- Simple approach: count for each relation, (min, max) for each attribute in each relation
 - Generation requires only one pass
 - Beware: Count usually cannot be derived from used space
 - Data inserts possible in constant time
 - Update/delete: Exact models may require finding new min / max
 - Alternative: Ignore update/delete, accept errors
 - Storing requires only a few bytes per attribute
 - More for string attributes
 - Need not always be exact: "zz" instead of "zweifel", E3 instead of 975
 - Estimating effect of join not easy, other operations are easy



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

- Option 1: Uniform distribution of values and statistical independence of different attributes
 - Very small model (e.g. count, max, min), simple to build
 - Simple improvement: Also store number of distinct values
 - Arbitrarily bad predictions if assumption violated
 - Cannot capture correlated attributes
 - SELECT C.name, C.address FROM customer C, account A WHERE C.acc# = A.acc# AND C.age<19 AND A.balance>100.000

Types of Models II

- Option 2: Known standard distribution
 - Normal, Poisson, Zipf, ...
 - Can be characterized by few parameters (mean, stddev, ...)
 - Very small model, can be very accurate
 - Weight of persons, number of sales per product, ...
 - But: How should the DB know which distribution is the right one?
 - Must be specified by developer
 - Often difficult to propagate through query plans
 - Normal distribution after SELECT is not normal anymore
 - Only used for special cases

Types of Models III

- Option 3: Approximation of concrete distribution by histograms
 - Parameterized size, quite simple to build
 - Independent of underlying distribution
 - Accuracy depends on type and size (and timeliness)



- Exhaustive analysis
 - Even O(|R|) might be too expensive for very large relations
- Sampling
 - Use a representative subset of tuples of a relation
 - Choose subset at random
 - Not so easy to chose a truly random samples
 - Accuracy depends on sampling method and size (and timeliness)
 - Examples later

Important Note

- Derived estimations need not be exact
 - Should only help to discern good transformations from bad ones
 - Order of alternatives matter, not concrete cost
- Estimates are often very bad (orders of magnitude)
 - Especially when data deviates from assumptions of the model
 - Still, resulting plans might be very good
- Trade-off: Accuracy of model-derived estimates versus effort to maintain models

Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
- Sampling

Rules of Thumb

- Definition
 - The selectivity of a relational operation is the fraction of tuples of the input that will be in the output
- We discuss impact of each relational operation on parameters of a simple model assuming uniform distributions
 - S will denote the result of a (unary, binary) operation
- For relation R and attribute A, our model consists of
 - V(R, A) be number of distinct values of A
 - max(R, A), min(R, A) be the maximal/minimal value of A
 - Values that do exist "now", not maximal / minimal possible values
 - |R| be the number of tuples in R
 - Note: R may be an intermediate result

- We assume min≤const≤max
- Selection of the form "A=const"
 - |S| = |R| / v(R,A)
 - v(S,A) = 1; max(S,A) = min(S,A) = const
- Selection of the form "A < const" (or "A $\leq \geq$ > const")
 - |S| = |R| / (max-min) * (const-min)
 - v(S,A) = v(R,A) / (max-min) * (const-min)
 - $\min(S,A) = \min; \max(S,A) = const$
 - Alternative: |S| = |R| / k (e.g. k=10,15,...)
 - Idea: With such queries, one usually searches for outliers
 - Very rough estimate, but requires no knowledge of values in A at all

Size of a Selection II

- Selection of the form "A≠const"
 - |S| = |R| * (v(R,A)-1)/v(R,A)
 - We assume that const exists as value in A
 - v(S,A) = v(R,A)
 - But we don't know! Be careful
 - min(S,A)=min, max(S,A)=max
 - Alternative: |S| = |R|

- Selection of the form " $A\theta c_1 \wedge B\theta c_2 \wedge ...$ "
 - Assumption: Statistical independence of values
 - Total selectivity is sel(c₁) * sel(c₂) * ...
 - v, min, max are adapted iteratively for each single condition
- Selection of the form " $A\theta c_1 \vee B\theta c_2 \vee ...$ "
 - Rephrase into $\neg (\neg (A\theta c_1) \land \neg (B\theta c_2) \land ...)$
 - Selectivity is 1- $(1-sel(c_1))^*(1-sel(c_2))^*...)$
- Selectivity of A=10 \land A>10 ?

- Selectivity of distinct
 - |S| = v(R,A)
 - v(S,A) = v(R,A), min(S,A) = min, max(S,A) = max
- Selectivity of projection
 - Is 1 under BAG semantics
 - Is same as selectivity of distinct under SET semantics
 - Caution
 - In real life, we need to estimate the size of the intermediate relation in bytes
 - This requires number of tuples and size of tuples
 - We ignore(d) this issue

DISTINCT and **GROUP-BY**

- Selectivity of grouping
 - Same as selectivity of distinct on group attributes
- Selectivity of select distinct a,b,c from ...

- Selectivity of grouping
 - Same as selectivity of distinct on group attributes
- Selectivity of select distinct a, b, c from ...
 - Not easy: We need to know correlations of values
 - Clearly, 0 < |S| < v(R,A) * v(R,B) * v(R,C)
 - Suggestion: $|S| = min(\frac{1}{2} |R|, v(R,A) |v(R,B)| v(R,C))$
- Alternative
 - Multi-dimensional histograms (later)
 - Note: A, B here may have completely different domains, in a join the domains of the joined attributes must be the same

- Consider join $\mathbb{R} \bowtie_A T$ (or $\sigma_{\mathbb{R},A=T,A}$ ($\mathbb{R} \times T$))
- Size of product is $|R|^*|T|$, but selectivity of the join?
 - Need to know about correlations of values in different relations
 - Similar problem as for ... distinct A, B, C ...,
- Suggestions
 - Option 1: We join a PK with a FK
 - Thus, if v(R,A) < v(T,A), T.A is PK in T and R.A is FK
 Or vice versa
 - Each FK "finds" its PK
 - Thus: |S|=|R|, max(S,A)=max(R,A), min(S,A)=min(R,A), v(S,A)=v(R,A)

Selectivity of Joins

- Option 2: Assume that value sets are similar
 - Assumption: Users don't join independent attributes
 - Thus, most (all) tuples will find a join partner
 - Thus, each tuple from T will join with app. |R|/v(R,A) tuples from R
 - Symmetrically, each tuple from R will join with app. |T|/v(T,A) tuples from T
 - Thus, we expect $|T|^*|R|/v(R,A)$ or $|R|^*|T|/v(T,A)$
 - Typical solution: $|S| = |R|^* |T| / (max(v(T,A), v(R,A)))$
 - |R| < |T|: v(S,A) = v(R,A), min(S,A) = min(R,A), max(S,A) = max(R,A)
 - Can (and should) be refined by also considering value ranges
- What about $R \bowtie_{R.A < T.B} T$?
 - For each value T.B, estimate which fraction of R has smaller values in R.A

- We did not discuss effects on other attributes: Home work
 - For instance: Assuming statistical independence, a condition "age<19" does not change min(R,name) or max(R,name)
 - But: "SELECT name, sum(price) as x FROM products GROUP BY product.name" yields v(S,name)=v(P,name), but introduces a new column x whose model must be estimated

Content of this Lecture

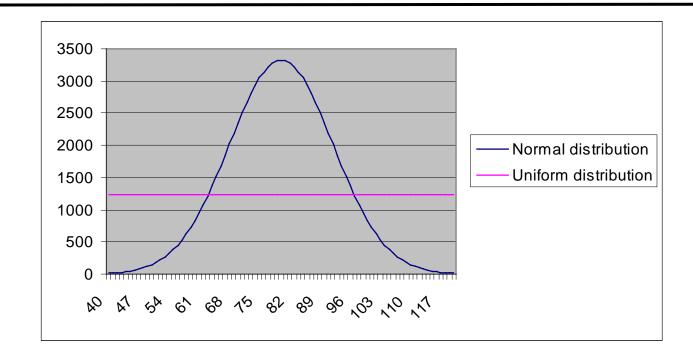
- Cost estimation
- Uniform distribution
- Histograms
- Sampling

- Real data is rarely uniformly distributed
 - Nor Poisson, normal, Zipf, ...
- Solution: Histograms [for single attributes]
 - Partition the (current) value range into buckets
 - Count frequency of tuples in each bucket (i.e. range)
 - During cost estimation, approximate frequency of a single value or a range by averaging over all values in a bucket
 - I.e., make uniform distribution assumption inside each bucket
- Advantage
 - Lower errors due to smaller ranges for uniformity assumption
 - Hope: Frequencies vary less inside smaller ranges
 - Histograms do not help in case of extremely distorted distributions

Issues

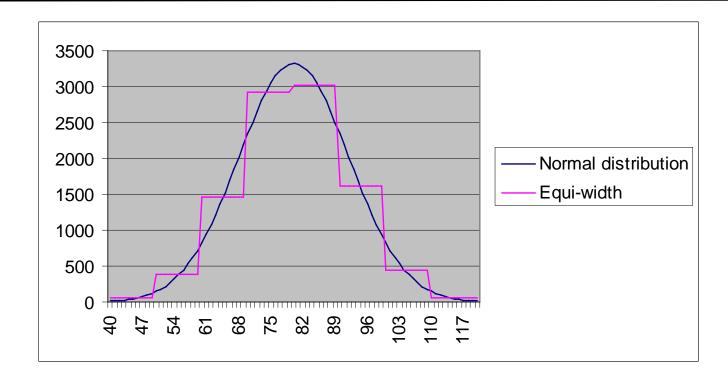
- We must think about
 - How should we chose the borders of buckets?
 - What do we store for each bucket (could be more than count)?
 - How do we keep buckets up-to-date?

Distribution



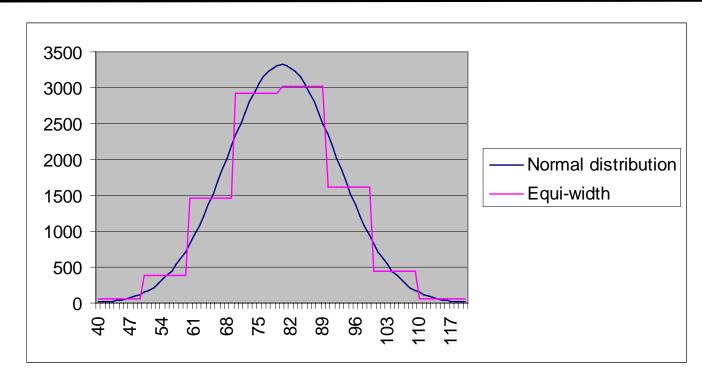
- Assume normal distribution of weights
 - Spread: 120-40=80, mean: 80, stddev: 12; 100000 people
- Uniform distribution: 100000/80=1250 for each possible weight
- Leads to large errors in almost all possible query ranges

Equi-Width Histograms



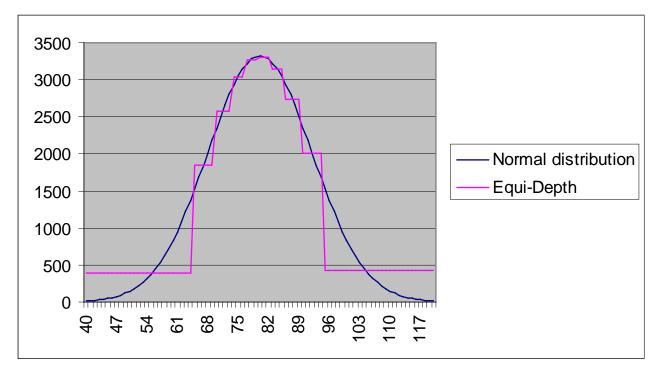
- Fix number of buckets
- Borders are equi-distant (border values need not be stored)
- In each bucket, assume average frequency inside bucket

Equi-Width Histograms 2



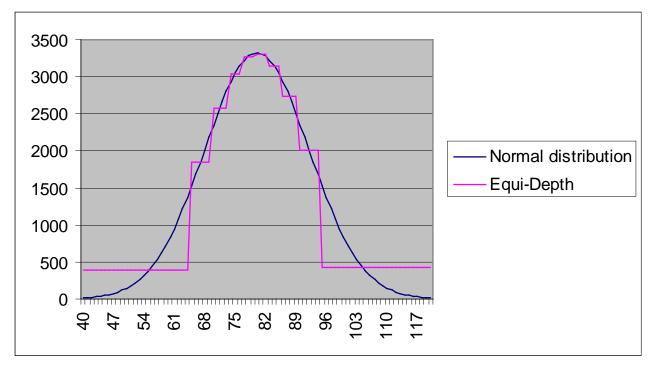
- Bucket counts can be computed by scanning relation once
- Remaining error depends on
 - Number of buckets (more buckets -> less errors, but more space)
 - Distribution of values in each bucket

Equi-Depth



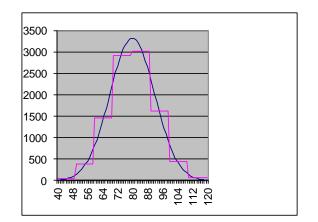
- Fix number b of buckets
- Chose borders such that frequency of values in each bucket is approximately equal
 - If one value more frequent than |R|/b use other histograms

Equi-Depth

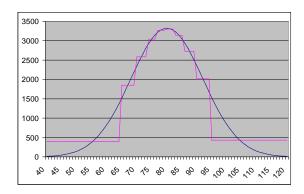


- Buckets have varying sizes (borders need to be stored)
- Better fit to data
- Computation?
 - Sort all values, then jump in equally wide steps

- Query: Number of people with weight in [65-70]
 - Real value: 11603
 - Uniform distribution: (70-65+1)*1250 = 7500
 - Error: 4103 ~ 35%
 - Equi-width histogram
 - Range 60-69 has average 1469
 - Range 70-79 has average 2926
 - Estimation: 5*1469 + 1*2926 = 10271
 - Error: 1332 ~ 11%



- Query: Number of people with weight between 65-70 (incl)
 - Real value: 11603
 - Uniform distribution: (70-65+1)*1250 = 7500
 - Error: 4103 ~ 35%
 - Equi-depth histogram
 - Range 65-69 has average 1850
 - Range 70-73 has average 2581
 - Estimation: 5*1850 + 1*2581 = 11831
 - Error: 228 ~ 2%

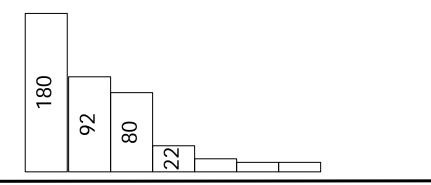


- Error depends on concrete value or range
- In general, equi-depth histograms are considered more accurate than equi-width histograms
 - But more costly to build and maintain

Other: Serial Histograms

- Sort values by frequency and build buckets as ranges of frequencies (rare values, less rare values, ...)
- Frequency ranges of different buckets do not overlap
- Better fit, but values in buckets must be stored explicitly
 - There are no consecutive ranges any more
- Range queries must find their values in all buckets

Value	1	2	3	4	5	6	7
Cnt	12	92	10	180	22	20	80



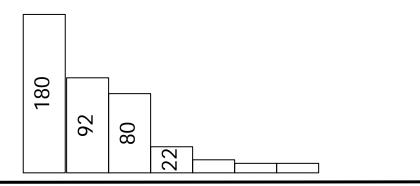
Bucket	1	2	3
Values	4	2,5,7	1,3,6
Total cnt	180	194	42
σ^2	0	~1400	~28

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Other: V-Optimal Histograms

- Sort values by frequency and build buckets such that weighted variance is minimized in each bucket
 - Explicitly considers the expected error
- Provably best class of histograms for "average" queries
 - But costly to generate and maintain
 - Best known algorithm is O(b*n²) (n: n# values, b: n# buckets)

Value	1	2	3	4	5	6	7
Cnt	12	92	10	180	22	20	80



Bucket	1	2	3
Values	4	2,5	1,3,6,7
Total cnt	180	172	64
σ^2	0	~72	~35

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

- End-biased histograms
 - Sort values by frequency and build singleton buckets for largest / smallest frequencies plus one bucket for all other values
 - Simple form of serial histograms, quite effective for many realworld data distributions (e.g. Zipf-like distributions)
- "Commercial systems seem mostly to use equi-depth and compressed histograms (mixture of equi-depth and endbiased histograms)"

Ioannidis, Y. (2003). "The history of histograms (abridged)". VLDB Ioannidis / Christodoulakis (1993). "Optimal Histograms for Limiting Worst-Case Error Propagation in the Size of Join Results.", TODS Ioannidis / Poosala (1995). "Balancing Histogram Optimality and Practicality for Query Result Size Estimation." SIGMOD Record

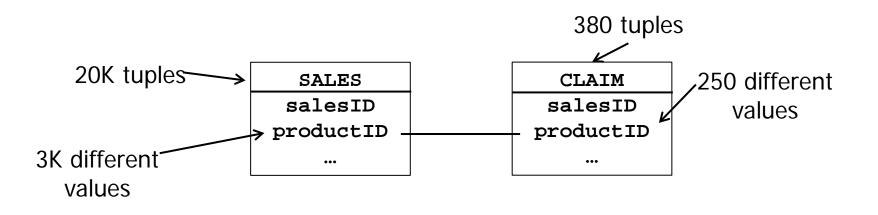
Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
 - Types of histograms
 - Joins, construction, maintenance
- Sampling

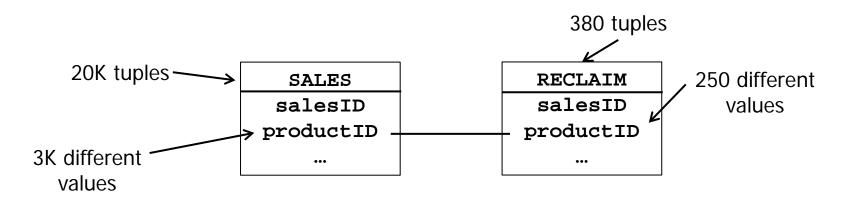
Histograms for Join Estimation

- Assume sales and reclamations
 - And a slightly strange query, not passing along PK/FK constraints
 - Probably a mistake? But the DB must execute (and optimize) it anyway!

SELECT	count(*)
FROM	sales S, reclamation R
WHERE	S.productID=R.productID;

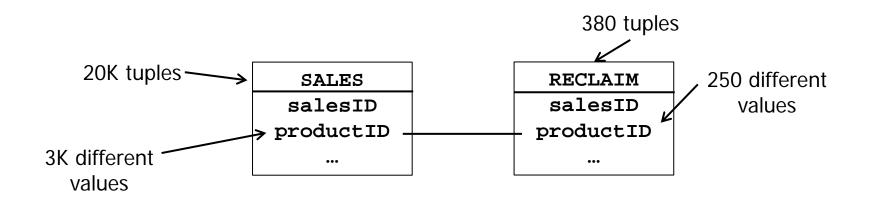


Example without Histograms



- Without histograms, assuming uniform distribution
 - Recall join-formula
 - Gives |S|*|R|/(max (v(R,productID), v(S,productID))) ~ 2500

Example with Histograms



- Uniform distribution within buckets
 - And uniform distribution of distinct values
 - Better: Store cnt of distinct value per bucket
 - -(7000*300/500)+(450*60/500)+...~4200
- More complicated if bucket borders do not coincide
 - Which usually is the case for equi-depth histograms

Range	B.pID	R.pID
0-499	7000	300
-999	450	60
-1499	2650	0
-1999	4900	0
-2499	100	20
-2999	4900	0

Histograms and Complex Conditions

- We only considered histograms for single attributes
- How to apply for complex conditions?
 - People with weight<30 and age<25 ?</p>
 - People with income>1M and tax depth<500K ?</p>
 - Until now, we assumed statistical independence of attributes
 - Better estimates require conditional distributions
 - But: Combinatorial explosion of the number of combinations
 - Plus: Could be connected by AND, OR, AND NOT, ...
- Multidimensional histograms
 - Active research area
 - Need sophisticated storage structures multidimensional indexes

- Usually, computing histograms requires scanning a table
 Potentially for each attribute
- Cannot be done before each query offline statistics
- Indexes can help
 - Statistics such as min, max are directly obtainable from a B+ index
 - Inner nodes of B+ trees ~ equi-depth histograms
 - But we rarely have indexes on all attributes of a relation

- Idea: Compute once and maintain
- Equi-width histograms
 - Assumption: Number of buckets and min/max does not change
 - Then everything is simple; increase/ decrease frequencies in bucket upon insert/delete/update
 - (Gross) Changes in min/max: Rebuild histogram
- Equi-depth histograms
 - Changes in data may influence borders of buckets
 - Option 1: Proceed as for equi-width, accept intermediate inequalities in bucket frequencies
 - ... and regularly re-compute entire histogram
 - Option 2: Implement complex bucket merging/ splitting procedures

Maintaining Histograms on Request

- Compute only on user request
 - Administrator needs to trigger re-computation of (all, table-wise, attribute-wise, ...) statistics from time to time
 - Otherwise, query performance may degrade
 - Both cases (new or outdated statistics) may lead to unpredictable changes in query behavior
 - To prevent, Oracle provides "query outlines"
- Automatically maintaining statistics is a active research topic
 - General trend: Reduce total cost of ownership
 - Self-optimizing, self-maintaining, zero-administration, ...

Content of this Lecture

- Cost estimation
- Uniform distribution
- Histograms
- Sampling

Sampling

- Scanning a table for computing a histogram is expensive
- But we actually only need to estimate the distribution
 - Histograms are estimates anyway
- Solution: Use a sample of the data
 - If chosen randomly, sample should have same distribution as full data set
 - For large data sets, usually, a 1-10% sample suffices
- Also useful for approximate COUNT, AVG, SUM, etc.
 - Approximate query processing: Much faster answers in much less time with minimal error
 - Requires estimation of maximal error (confidence values)
 - Again: Very active research area ("Taming the terabyte")

- How do we get a random 10% sample?
 - Reading first 10% of rows is a very bad idea
 - Reading a row from 10% of the blocks is about as slow as reading the entire table (sequential reads!)
- Option: Reservoir sampling: Explicitly store and maintain a sample
- Sampling must be a build-in database operator; impossible to emulate efficiently