Datenbanksysteme |I1I:
Query Optimization

UIf Leser

5 Layer Architecture

Data Model

A

We are here !
Logical Access

A

A

Data Structures

A

\ 4

Buffer Management

\ 4

Operating System

|

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Content of this Lecture

e [ntroduction

e Rewriting Subqueries

e Algebraic Term Rewriting
e Optimizing Join Order

e Plan Enumeration

e A counter-example

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Is Optimization Worth It?

e Goal: Find cheapest way to compute a query result
— Generate and judge different physical plans to answer the query
— All QEPs must be semantically equal

e Optimization costs time
— Some steps are exponential
e E.g. join order: 10 joins — potentially 3° steps
— Finding the best plan might take more time than executing an
arbitrary plan

e And usually we don'’t even find the best plan

e Why bother?

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Example

SELECT C.name, C.address

FROM customer C, order O

WHERE C.name = O.c_name AND
O.product = ,,coffee*

e Assumptions
— 1:n relationship between C and O

— |C|=100, 5 tuples per block, b(C)=20
—]0]=10.000, 10 tuples per block, b(O) = 1.000

— Result size: 50 tuples

— Intermediate results
e (C.name, C.address): 50 per block

e Join result (C,0) with full tuples: 3 per block

— Small main memory

order

o_id
C_name
product

customer

name
address

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

First Attempt

e Translate in relational algebra expression

_ nname,adr(o-O.C_name:C.name A O.product=,coffee* (C X O))

e Interpret query ,from inner to outer*

— No optimization at all
— Full materialization of intermediate

Tcname ,adr

results (no buffering, no pipelining)

C70 .C name=C.name A

O.product=,coffee”

C xO

PN

Ccustomer

Order

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Cost

e Compute cross-product

— Reads: b(C)*b(0)=20.000

— Writes: 100*10.000/3 ~ 333.000
e Compute selections

— Reads: 333.000

— Writes: 50/3 ~ 17 Mname ,adr
= Compute projection O0.c_name=C.name A 0.product=,coffee"
— Reads: 17
— Writes: 50/50 ~ 1 CxO0
e Altogether: ~ 686.000 10 P
(and 333.000 blocks required Customer | |Order
on disk)

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 7

Use Term Rewriting

* Rewrite INtO: T ane,2ar(C ™o.c_name=c.name(C0.product=, coffee (0I))
e Compute selection on O
— Reads: 1.000, writes: 50/10 =5
e Compute join using BNL Tname , adr
— Reads: 5 + b(C)*5 = 105
— Writes: 50/3 ~ 17

C [x]O -.C_name=C.name 0

e« Compute projection
— Reads: 17, writes: 50/50 ~ 1 A
Altogether: 1.145

Ccustomer

(requiring 17 blocks on disk) 0. product=, coffee:
* Maybe there Is an ever better way? Order

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 8

Better Plan

e Push projection
— Tname, adr(nname , adr(C) Mo. C_name=C.name (GO- product=,coffee* (O)))

e Compute selection on O
— Reads: 1.000, writes: 50/10 =5

e Compute projection on C
— Reads b(C)=20, writes 100 / 50 = 2

e Compute join using nested loop
— Reads: 2 + 2*5 = 12, writes: 50/3 ~ 17
e« Compute projection
— Reads: 17, writes: 50/50 ~ 1
e Altogether: 1.080 (requiring 17 blocks on disk)

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Even Better — Use Indexes

e Indexes on (O.product, O.C_name) and (C.name,
C_address)

e Compute selection on O using index

— Reads: Roughly between 5 and 10
e Height of index plus consecutive blocks for 50 TIDs with

product=‘coffee’
e Number of blocks depends on fill degree of B-tree

e Assume 10 pointer in an index node: height = 4
— Writes: 50/10 = 5

e Sort intermediate result

— Read and writes: ~ 5*log(5) ~ 15
e Very conservative estimation

— Result has 5 blocks

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

10

Even Better — Use Indexes

e Compute join
— Reads: 20 + 5 =25
e Using sort-merge — read C.name in sorted order using index
— Writes: 50/3 ~ 17
e« Compute projection
— Reads: 17, writes: 50/50 ~ 1

e Altogether: between 85 and 90
(requiring 17 blocks on disk)

e Even better?

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

11

Comparison

Read/Write Temp

space
Naive 687.000 333.000
Optimized, no index 1.080 17
With index 85-90 17

e Reduction by a factor of ~8.000

e Conclusion: DB should invest some time in optimization

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

12

Steps In Optimization

e Parsing, view expansion, subquery rewriting
e Query minimization (maybe)
e EXxpression/tree generation

e Plan optimization
— Algebraic term rewriting (logic optimization)
— Cost estimation (cost-based optimization)
— Plan instantiation (physical optimization)
— Plan enumeration and pruning
— Note: Steps are interleaved

e Selection of best plan
e Code generation (compilation or interpretation)

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

13

Content of this Lecture

e [ntroduction

e Rewriting Subqueries

e Algebraic Term Rewriting
e Optimizing Join Order

e Plan Enumeration

e A counter-example

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

14

Subguery Rewriting

 No equivalent in relational algebra: IN, EXISTS, ALL
— Generate subtrees during parsing

— For optimization, a single tree with only relational operations is
easier to handle

— But: Transformation not always easy, not always advantageous

 \We look at four cases of IN
— Uncorrelated without aggregation
— Uncorrelated with aggregation
— Correlated without aggregation
— Correlated with aggregation

e See literature for EXISTS, ALL, MINUS, INTERSECT, ...

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

15

Example

\ 4

Customer

Name
Address

v

Delivery
Id
|1 O0_ID
"| Date
Price
Quantity
Order Product
O _1d Id
C_name » P_Name
P_ld < Price
Date .
Total _price
revenue

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

16

Uncorrelated Subquery without Aggregation

SELECT o_1d
FROM order
WHERE p_i1d IN (SELECT 1id

FROM product
WHERE price<l)

e Option 1: Compute subquery and materialize result
— Advantageous if subquery appears more than once

e Option 2: Rewrite into join
— Allows global optimization
(i.e. index join)
— Be careful with duplicates

SELECT o.o_id

FROM order o, product p

WHERE o.p_1d = p.i1d AND
p-price < 1

e Assuming id is PK of P, example is fine
e Otherwise, we need to introduce a DISTINCT

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 17

Uncorrelated Subquery with Aggregation

SELECT o_1d

FROM order

WHERE p_i1d IN (SELECT max(id)
FROM product)

e (Only) option: Compute subquery and materialize result
e Rewriting not possible

e Other way of expression this: User-defined table functions
— This would allow formulation as join
— But overall even harder to optimize

e Third way: Use view (two gueries)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 18

Correlated Subquery without Aggregation

SELECT o.0_1d
FROM order o
WHERE o.o 1d IN (SELECT d.o 1d
FROM delivery d
WHERE d.o 1d = o.o_i1d AND
d.date-o.date<5)

Subqguery materialization not possible

Naive computation requires one
execution of subquery for each

tuple of outer query SELECT DISTINCT 0.0 _id
Solution: Rewrite into join FROM order o, delivery d

_] _ _ WHERE 0.0 1d = d.o _i1d AND
— Again: Caution with duplicates d_date-o_date<5

(if o:d is 1:n, DISTINCT required)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 19

Correlated Subquery with Aggregation

SELECT o.0_1d

FROM order o

WHERE o.total price '= (SELECT sum(price*quantity)
FROM delivery d
WHERE d.o 1d = 0.0 _1d)

e Materialization not easily possible
— Note that there is only one join condition

e Rewrite Into join not possible

e Nalve computation requires one execution of subquery for
each tuple of outer query

e Solution: Rewrite into two queries

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 20

Correlated Subquery with Aggregation

SELECT o.0_1d

FROM order o

WHERE o.total price != (SELECT sum(price*quantity)
FROM delivery d
WHERE d.o 1d = 0.0 _1d)

CREATE VIEW all _sums AS

 New Inner query SELECT o_id, sum(price*quant) as tp

FROM delivery
GROUP BY o_id

e New outer query SELECT o0.0_id
FROM order o
WHERE o.total price !I=
(SELECT tp
FROM all_sums
WHERE all _sums.o 1d = 0.0 _1d)

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

21

Can be Combined

SELECT o_i1d, sum(price*quant) as tp
FROM delivery
GROUP BY o_id

SELECT o.o0_1id

FROM order o

WHERE o.total price
(SELECT tp
FROM all _sums
WHERE all sums.o

1]
o
[

0.0 _i1d)

SELECT o.0_1d
FROM order o, all _sums
WHERE o.total price '= all _sums.tp

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 22

Improvements

e |nner query can be computed and materialized once

e Inner query will use (efficient) full table scan instead of
multiple queries with condition on join attribute

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

23

Query Minimization 1

e Especially important when views are involved or queries
are created automatically

CREATE VIEW good business

SELECT C.name, 0.0 _1d, O.revenue

FROM customer C, order O

WHERE C.name = O.name AND O.revenue>1.000

— Find very good customers using view as first filter

SELECT name SELECT C.name
FROM good business FROM customer C, order O
WHERE revenue>5_000 WHERE C.name = O.name AND

O.revenue>1.000 AND
O.revenue>5_000

e Goal: Remove redundant conditions

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 24

Query Minimization 2

e Especially important when views are involved or queries
are created automatically

CREATE VIEW good business

SELECT C.name, 0.0 _1d, O.revenue

FROM customer C, order O

WHERE C.name = O.name AND O.revenue>1.000

— Find goods from good businesses

SELECT G.name, 0O.good SELECT C.name, 02.good
FROM good busi G,order O FROM custom C,ord Ol,ord 02
WHERE G.o 1d = 0O.o_1d WHERE C.name=01.name AND

O1.revenue>1000 AND
0l.o0 1d=02.0 1d

e Remove redundant joins

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 25

Content of this Lecture

e [ntroduction

e Rewriting Subqueries

e Algebraic Term Rewriting
e Optimizing Join Order

e Plan Enumeration

e A counter-example

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

26

Equivalence of Relational Algebra Expressions

e Definition
Let E, und E, be two relational algebra expressions over
a schema S. E, and E, are called equivalent iff

— E, and E, contain the same relations R, . . . R,
— For any Instances of S, E, and E, compute the same result

e We generate equivalent expressions by applying certain
rewrite rules

e We will see some rules (there exist more: literature)

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

27

Rules for Joins and Products

e Assume
— E,; , E,, E; relational expressions
— Cond, Cond1, CondZ2 are join conditions

e Rule 1: Joins and Cartesian-products are commutative
El [x]Cand E2 = E2 MCond El
= X E, = E, X =

e Rule 2: Joins and Cartesian-products are associative

(El MCandJ E2) [x]COndZ E3 = El MCandJ (EZ [x]COndZ ES)
Requirement: E; joins with E, (and not with E,)

(E1XE2)XE3 EElx (E2XE3)

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

28

For Projection and Selection

e Assume
- A,...,Ajand B, , ..., B, be attributes of E
— Condl1 und Cond? conditions on E

e Rule 3: Cascading projections
IfA,.. ,A,2B;,..., B,,, then

e Rule 4: Cascading selections

0-C‘andl (O-Candz (E)) = GCandZ (GCandJ (E))

= Ocond1 and cond2 (E)

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

29

For Projection and Selection

e Assume
- A,...,Ajand B, , ..., B, be attributes of E
— Condl1 und Cond? conditions on E

e Rule 5a. Exchange of projection and selection

An} (E))

Requirement: Cond contains only attributes A, . . ., A,

e Rule 5b. Injection of projection

Tc{Al---An} (G(,‘ond (E) = Tc{Al...An}(GCond (TC{ Al... An, Bl... Bm} (E))

Requirement: Cond contains only attributes A,...A, and B;...B,

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

30

Joins and Projection/Selection

 Rule 6. Exchange of selection and join

O-C‘ond (B1 ™eonar B2) = O-Cana' (E1) ™eonar Ex
Requirement: Cond contains only attributes of E1

 Rule 7. Exchange of selection and union/difference
O cong (E1VE;) = Opppg (E1) Y Ocppg (E2)
Ocong (E1—E;) = Opppg (E1) —Ocppg (E2)

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

31

Joins and Projection/Selection

 Rule 9. Exchange of projection and join:

H {AL,. .., An,B1,..., smy (E1 MeopgEx) =

{AL,..., any (E1) Meong H {B1,..., smy (E2)

Requirement: Cond contains only attributes A,...A,, , B;...B, and A;...A,
appear in E, , resp. B;...B,, InE,

e Rule 10. Exchange of projection and union:

rI{Al,.,An} (EluEz) =
T, .. sy ED UL 0 0y (E)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 32

Example

e Query on CUSTOMER database

SELECT Name, Account#, Savings

FROM customer C, account A, journal J
WHERE “Bond” < Name < “Carter”

Address = “World”

Transaction = “Withdraw”

Amount > 1,000,000
C.Account# = A_Account#
C.Account# = J_Account#

and
and
and
and
and

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

33

Initial Operator Tree

“Bond” < Name
Name < “Carter”
Address = “World”
Transaction = “Withdraw”
Amount > $1,000,000
C.Account# = A_Account#
C.Account# = J.Account#

A II
/
Name, Account#, 7/
Savings
(9)
X
X
(CUStomer) account

journal

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 34

Breaking and Pushing Selections

—~1 II
Name , Account#,
Savings
c [~ C.Account#=J.Account#
X

-

~N

~N
~N
~N

“Bond’’<Name

Name<‘“Carter”

Address=“World”

e

‘/’///l °

(CUSTOMER)

Transac=“Withdraw”
o [~ Amount>1000000

ACCOUNT Journal

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 35

Introduce Joins

Name , Account#, —— =1 11
Savings
C.Account#=J.Account#
D -
\

N

N

“Bond’’<Name N Transac=“Withdraw”

Name<‘“‘Carter” Amount>1000000
Address=“World’,
//
G e a—
\
(0]

(CUSTOMER)/ ACCOUNT Journal

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 36

Pushing Projections

IT

Name , Account#,
Savings

Name , Account#
1'IIIIIIIIIIIIIII'\\ g I1

\
Name , Account#, 11
Address
o

IT

0T S

(CUSTOMER)

\

ACCOUNT

Journal

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

37

Caution

e Sometimes, pushing up selections is good
— Especially for conditions on join attributes

e Example
CREATE VIEW movies99 AS SELECT m.title, a.name
SELECT title, year, studio FROM movies99 m, actsin a

FROM movie WHERE year=1999 WHERE m.tirtle=a.title AND
m.year=a.year

by 0'year=99

P

/\ -~ /\
Oyenr= Actsin
year=99 A Gyear=99 Gyear:99

movie movie Actsin movie Actsin

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 38

Term Rewriting: Algebraic Optimization

e Usually there infinitely many rewrite steps
— But not infinitely many different plans
— Rewritings often go back and forth

e General heuristic: Minimize intermediate results
— Less 10 if materialization is necessary
— Less input for operations that are higher in the plan

e Optionl: Rule-based
— Use heuristics for selecting order of rule application
— Based on experience — rules that are beneficial in most cases
— Simple to implement, fast optimizer
— But: Unusual queries lead to bad plans

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

39

A Simple Rule-Based Optimizer

e Down — break and push down
— Break combined selections into many simple selections
— Break combined projections into many simple projections
— Push selects/projects as much down the tree as possible
— Introduce add. projections as deep in the tree as possible
e Up — merge operations
— Replace selection and Cartesian product with join
— Merge simple selections into combined selections
— Merge simple projections into combined projections
e Physical
— If there is a condition on an indexed attribute — use the index
e Conflicts with break / merge patterns
— For a join over PK-FK relationships: Use sort-merge
— Other joins: Use hash join

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 40

Another Example

TES .semester

SELECT s.Semester |
FROM student s, hoeren h

vorlesung v, professor p Op_name = “Sokrates” and - - -
WHERE p.name = “Sokrates” and |

v.gelesenvon = p.persnr and

v.vorlnr = h.vorlnr and %

h.matrnr = s.matrnr ~\\\\
////// professor
X
X vorlesung

——

student hoeren

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 41

Break Up Selections

ﬂ:S.S.emester

0-p.Name = "Sokrates” and **-
X \ ‘
/ P
X
></ \

Vv _—

N X

S

ns.Semester

o-p.PersNr:v.geIesenVon

GV.VOI‘|NI’:h.VOI‘|NI‘

Gs.MatrNr:h.MatrNr

Gp.Name = "Sokrates’

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

42

Push Selections

ns.Semester

c ‘ Tls semester
p.PersNr=v.gelesenVon ‘

cyp.PersNr:v.geIesenVon

0-v.VorII\IIr:h.VorINr ‘
Gs.MatrNIr:h.MatrNr ' X

O .Name = "Sokrates G, vorINr=h.VorNr
| .
X C =" ‘
p.Name = Sokrates
/7 —
X \ O-S.MatrNr:h.l\/Iatrl\I\ T
X - \ P / \V/ P
/\ /\
h y S h

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 43

Rewrite Product+Selection into Joins

ns.Semester

I

0-p.PersNr:v.geIesenVon Tts semester

|

O-vVorINr h.VorINr \

p Name = "Sokrates’

O-S.Ma?lr:h.l\/latr'\N pl vVor Nr=h.VorINr

p PersNr=v.gelesenVon

X v p Name = "Sokrates’
—_— Dqs.MatrNr:h.MatrNr ‘
S h /\
v P
S h

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 44

Introduce Additional Projections

Tcs.Semester Tcs.Semester

P p.PersNr=v.gelesenVon P p.PersNr=v.gelesenVon

T~

O-p.Name = "Sokrates’

Gp.Name = "Sokrates’

|
p

[X]v.VorINr:h.VorINr [x]v.VorINr:h.VorINr

[x]s.MatrNr:h.MatrNr

Vv

Vv

[x]s.MatrNr:h.MatrNr

| TU\MatrNr,semester | TU\MatrNr,vorINr

S h [|
S h

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 45

Limitations

e Rule-based optimization is data-independent

— Optimal selection of operators impossible without estimates about
size of results (cardinality, width)

— No rules for order of join processing

— Rules are partly contradictory
e E.g. Conjunctive selections and composite indexes

— Benefit of indexes depends on selectivity

e Option 2: Cost-based optimization
— Estimate effect of rewritings on size of intermediate results (SIR)
— Different optimization goals
e Greedy: Chose next rewrite with greatest saving in SIR

e Global: Chose plan with overall smallest SIR
e Bound: Chose plan with smallest maximal SIR

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 46

Order of Joins: Indistinguishable

ns.Semester

ﬂ:s.Semester

p PersNr=v.gelesenVon [X]s MatrNr=h.MatrNr

/ ﬁ vVorINr h.VVorINr
vVorI r=h.VorINr /
nvon

p Name = Sokrates
‘ p PersNr=v.gelese

s MatrNr=h.MatrNr P
/\ 0-p.Name = "Sokrates’
S h ‘ V

P

]

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

a7

Join Order — Does it Matter?

e Assume uniform distributions
— There are 1.000 students, 20 professors, 80 courses
— Each professor gives 4 courses
— Each student listens to 4 courses
— Each course is followed by 50 students (4000 “hdren” tuples)

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

48

Join Order — Does it Matter?

SELECT s.Semester

FROM student s, hoeren h
vorlesung v, professor p

WHERE p.name = “Sokrates” and
v.gelesenvon = p.persnr and
v.vorilnr = h_.vorlnr and
h.matrnr = s_matrnr

* Compute Gggyrares(P)PI(VII(SHH))

— Inner join: 1000*4 = 4000 tuples
— Next join: Again 4000 tuples
— Last join selects only 1/20 of intermediate results = 200
— Intermediate result sizes: 4000 + 4000 + 1 = 8001
® Compute S[X](H[X](GSokrates(P)NV))

— Inner join selects 4 tuples

— Next join generates 50*4= 200 tuples

— Last join: No change

— Intermediate result sizes: 1 + 4 + 200 = 205

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 49

Content of this Lecture

e [ntroduction

e Rewriting Subqueries

e Algebraic Term Rewriting
e Optimizing Join Order

e Plan Enumeration

e A counter-example

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

50

Optimizing Join Order

e From the relation algebra perspective, join Is associative
and commutative - reordering doesn’t change result

e But execution times of different orders differ tremendously
— |If there are at least two joins, e.g. Rx<i(S<iT) = (Se<R)<T

e Join versus cross-product

— Depending on join conditions, many orders involve intermediate
cross-products

— Most join-order algorithms disregard any plan containing a cross-
product — which heavily reduces the search space

— In the following, we assume that no order involves a cross-product
e Given n relations, there are n! possible orders

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 51

Query Types

Product
product_id
)
v
Sales
Product_id
. | Day_1id
Time * Shop_id T
day_id < amount
= price

Persons 4

group_id
Groups Branch
group_1id branch_id

department_id

section_id

A

Localization
shop_1d

e ((SxR)xT)mL
e ((SHL)™MR)xT

A

department_id
branch_id

Department

a

e ((PxG)™T)~B
e (PxG)x(TxB)

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

52

Left/Right-deep versus Bushy Join Trees

R S

4 VAN
D]
R/{\\U 2PN

Left-deep join tree Bushy join tree

e There is one left-deep tree topology, but still O(n!) orders

e There are (2n-3)!/(2"2*(n-2)!) unordered binary trees with
n leaves, and for each O(n!) orders
— Some are equivalent

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 53

Choosing a Join Order

e Typical first heuristic: Consider only left-deep trees
— Can be pipelined efficiently
— Usually generates among the best plans

e But there are still O(n!) possible orders

e Second Heuristic: Use dynamic programming with pruning
— Generate plans bottom up: Plans for pairs, triples, ...
— For each join group, keep only best plan
— Use these to enumerate possibilities for larger join groups
— Prune all subplans containing a cross product

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 54

Join Groups

{}
(RI / \\

{RS\} RT R Y ST S U {T U}

(RS T {RS%S/}}
(RS T U

e There are (n over i) join groups with i elements

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

55

Detalls

e Create a table containing for each join group
— [Prune if this would involve a Cartesian product]
— Estimated size of result (how: later)

— Optimal cost for computing this group
e For now, we simply take sum of sizes of intermediate results so far

— Optimal plan for computing this group

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

56

Induction

e Induction over plan length = sizes of join groups

— 1=1: Consider every relation in isolation
e Size = Size of relation
e Cost = 0 (access costs are fixed for all plans anyway)
— Not true is pushing of selections is considered
— 1=2: Consider each pair of relations
e Size: Estimated size of “joining” both relations (might be product)
e Cost = 0 (no intermediate result so far due to previous assumption)
e Fix join method to use (e.g.: BNL with smaller relation as inner relation)
— This method will never change again
— 1=3: Consider each pair in each triple and join with third relation
e Consider only chosen methods for pairs involved

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 57

Example 1

e \We join four relations R, S, T, U

e Four join conditions

Kardinalitat

Kosten

Optimaler Plan

S T
R U
{1} {U}
1000 1000 1000 1000
0 0 0 0
scan(R) scan(S) scan(T) scan(V)

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

58

Example 2

{R,S} {R,T} {R,U} {S,T} {S,U} {T,U}
Kardinalitat 5000 10000 2000 M 1000
Kosten 0 0 0 0
opt. Plan | RDS RPDIT R DU ST SNU TDU
Prune products }
{R,S,T} | {R,S,U} | {RT,U} | {S,T,U} S
Kardinalitat| 10000 50000 10000 2000
Kosten 2000 5000 1000 1000
opt. Plan [(S<T)R|(R>< S)DAU[(T><1 U)X R|(T>x1 U)X S
R

Better than

|

T

UIf Leser: Implem‘ S X (T X R) and (R X S) MT L2017

59

Example 3

S T
{R,S, T} {R,S,U} {R,T,U} {S,T,U}
Kardinalitat| 10000 50000 10000 2000
Kosten 2000 5000 1000 1000
R U
opt. Plan [(SD<IT)DIR|(R>< S)D U[(TD<tU)DI R|(T<1U)D S
k ([Plan Kosten
\\ —> | ((SXT)XR)XU 12k
\ \ > (RXS)XU)XT 55k
—> | ((TU)XIR)X S
~— | ((T=U)X<S)R

((Hopefully) optimal
_ left-deep plan

Ulf Leser: Implementation of Database Systems, Winter Semester 20167zux7 60

Algorithm

, Enumerate physical
Input: SPJ query ¢ on relations Ry,..., R, | f .
Output: A query plan for g Plans 1or accessing Ri

1: fori =1ton do|

2: optPlan({R;}) = accessPlans(R;)

3: prunePlans(optPlan({R;})) —

4 LPrune all except one}
5. fori =2tondo|

6: forall S C {Ry,..., R, such that |S| =i do |

7: optPlan(S) = ()

8: for all O such that S o X = 0

9. optPlan(S) = optPlan(S) U joinPlans(optPlan(O), X)
10: prunePlans(optPlan(S))

11: }

12: }

13:)

14: return optPlan({R, ..., R,})

Prune all except one}

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 61

Dynamic Programming

e DP here is a heuristic
— Assumption of DP: Any subplan of an optimal plan is optimal
— True for computing shortest paths, edit distance, ...

e But not true for join-order

— Using a sort-merge join early in a plan might not be optimal for this
particular join group - but result is sorted

— Later joins can profit and also use sort-merge without sorting one
Intermediate relation again

— Optimal plan might involve Cartesian product

e Solution (for sort order)
— Keep different “optimal” plans for each join group

— System R: One “optimal” plan per interesting sort order

e Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A. and Price, T. G. (1979).
"Access Path Selection in a Relational Database Management System". SIGMOD 1979

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 62

Content of this Lecture

e [ntroduction

e Rewriting Subqueries

e Algebraic Term Rewriting
e Optimizing Join Order

e Plan Enumeration

e A counter-example

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

63

Ingredients

e \We can evaluate different access paths for a single relation

e \We can generate various equivalent relational algebra
terms for computing a query

e \We can optimize join order
— Given selectivity estimates

e Query optimization =
Search space (space of all possible plans) +
Search strategy (algorithm to enumerate plans) +
Cost functions for pruning plans (still missing)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 64

Search Strategies

e Searching a huge search space for a good (optimal)
solution is a common computer science problem
— Exhaustive search
e Guarantees optimal result, but often too expensive
— Heuristic method
e Greedy/Hill-Climbing: only use one alternative for further search
— Genetic optimization

e Generate some good plans
e Build combinations

— Simulated annealing

e Many join-order algorithms: Steinbrunn, Moerkotte, Kemper (1997).
"Heuristic and randomized optimization for the join ordering problem." VLDB
Journal: 191-208.

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 65

Content of this Lecture

e [ntroduction

e Rewriting Subqueries

e Algebraic Term Rewriting
e Optimizing Join Order

e Plan Enumeration

e A counter-example

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

66

Star Join

Product
product_id
» product_name
pg_id
n v pg_name
T{We Sales
day_id Product_id
By | Day_id
month_i1d |« " shop_id
mon:h_d amount 4
zggr—l price Localization
shop_1d
shop_name
region_id
region_name

e Typische Anfrage gegen Star Schema
— Aggregation und Gruppierung
— Bedingungen auf den Werten der Dimensionstabellen
— Joins zwischen Dimensions- und Faktentabelle

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Beispielquery

e Alle Verkaufe von Produkten der Produktgruppe ,Wasser*
In Berlin im Januar der Jahre 1997, 1998, 1999,
gruppiert nach Jahr

SELECT T.year, sum(amount*price)

FROM Sales S, Product P, Time T, Localization L
WHERE P.pg_name=,Wasser“ AND

-product _1d = S.product _id AND

.day 1d = S.day_i1d AND

-year 1n (1997, 1998, 1999) AND

_.month = ,1“ AND

.shop_1d = S.shop_i1d AND
.region_name=,Berlin®

GROUP BY T.year

r—-—T

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

68

Anfrageplanung

e Anfrage enthalt 3 Joins Uber 4 Tabellen

e Zunachst 4! left-deep join trees
— Aber: Nicht alle Tabellen sind mit allen gejoined

e Nur 3! beinhalten kein Kreuzprodukt

/ \
G name=,Wasser"
\ PO_ »

/
year in (1997,1998, 1999)
/\

Sales reglon name=,Berlin*
cymonthzl

‘ Product

Location

Time

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Heuristiken

e Typisches Vorgehen
— Auswahl des Planes nach GrofRe der Zwischenergebnisse
— Keine Beachtung von Planen, die kartesisches Produkt enthalten

Kartesisches Produkt

-
-

>
c

cspg_name: ,Vasser*

Product

—
>
\

(>

\

Sales

region_name=,Berli

Location

\

Oyear in (1997,1998, 1999)

0-month=1

Time

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

70

Abschatzung von Zwischenergebnissen

SELECT T.year, sum(amount*price)

FROM Sales S, Product P, Time T, Localization L
WHERE -pg_name=,Wasser“ AND

.product_id = S_product_id AND
.day_id = S.day_id AND

.year in (1997, 1998, 1999) AND
.month = ,1° AND

.shop_id = S.shop_id AND
.region_name=,Berlin“

GROUP BY T.year

r—r—-4—-4+4 7T ™

Grolite des Ergebnis

Annahmen « Selektivitat Zeit

M= |S| = 100.000.000 - 60 Tage:
(M / (20%12*10)) * 3*20

20 Verkaufstage pro Monat Selektivitat Wasser"
Daten von 10 Jahren 20 Produkte
50 Produktgruppen a 20 (M /(20*50)) * 20
Produkten = Selektivitat ,Berlin’
: e 100 Shops

15 Reglone_rl a 100 Shops (M / (15*100)) * 100
Gleichverteilung aller Verkaufe . gasamt

e 3.333 Tupel

UIf Leser: Implementation of Database Systems, Winter Se ® Selektivitat: 0,00003%

71

Left-deep Plane

b4
/ \
/////Dd\\\\\ Product
/////Dd\\\\\ Time
Sales Location
Zwischen-
ergebnis
1. Join 6.666.666
(M /15)
2. Join 166.666
(]3,1*3/120)
3. Join 3.333
(1J,1/50)

bd
/ \
/////Dq\\\\ Location
/N\ Time
Sales Product
Zwischen-
ergebnis
1. Join 2.000.000
(M 7/ 50)
2. Join 50.000
(]3,1*3/120)
3. Join 3.333
(19,17 15)

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

72

Plan mit kartesischen Produkten

d
/\
////><\\\\ Sales
/////><\\\\\ Product

Time Location

Zwischenergebnis

1. Time X Location 6.000
(3*20 * 100)

2. ... X Product 120.000

(IP, [*20)
3. ... X Sales 3.333

e Es gibt mehr ,Zellen“ als Verkaufe
e Nicht an jedem Tag wird jed. Produkt in jed. Shop verkauft

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 73

STAR Join in Oracle (v7)

e STAR Join Strategie in Oracle v7
— Kartesisches Produkt aller Dimensionstabellen

— Zugriff auf Faktentabelle Gber Index
 Hohe Selektivitat fur Anfrage wichtig
e Zusammengesetzter Index auf allen FKs muss vorhanden sein
e Sonst ,,nur* kleinere Zwischenergebnisse, aber trotzdem teurer Scan

e Aber: Nicht immer gut
— Daten fur 3 Monate, 10 Jahre, 5 Regionen, 10 Produktgruppen

— GrolRe des kartesischen Produkts:
3*20*10 * 5100 * 10*20 = 60.000.000

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

74

STAR Join In Oracle 81 — 9i

e Moglichkeit der (komprimierten) Bitmapindexe lasst
kartesisches Produkt weniger vorteilhaft erscheinen

e Phasen

1.

>

Berechnung aller FKs in Faktentabelle gemaRi
Dimensionsbedingungen einzeln fur jede Dimension

Anlegen/laden von Join-Bitmapindexen auf allen FK Attributen der
Faktentabelle

Merge (AND) aller Bitmapindexe
Direkter Zugriff auf Faktentabelle tber TID

Join nur der selektierten Fakten mit Dimensionstabellen zum
Zugriff auf Dimensionswerte

e Zwischenergebnisse sind nur (komprimierte) Bitlisten

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 75

Gesamtplan

Phase 2 <

Phase 1 <

(.SELECT STATEMENT
SORT GROUP BY
HASH JOIN
TABLE ACCESS FULL
HASH JOIN
TABLE ACCESS FULL
HASH JOIN
TABLE ACCESS FULL
N PARTITION RANGE ALL
(— TABLE ACCESS BY LOCAL INDEX ROWID
BITMAP CONVERSION TO ROWIDS
BITMAP AND
BITMAP INDEX SINGLE VALUE
BITMAP MERGE
BITMAP KEY ITERATION
BUFFER SORT
TABLE ACCESS FULL
BITMAP INDEX RANGE SCAN
BITMAP MERGE
BITMAP KEY ITERATION
BUFFER SORT
TABLE ACCESS FULL

\~ BITMAP INDEX RANGE SCAN

LOCATION
TIME
PRODUCT

SALES

SALES L _BJIX

PRODUCT
SALES P BIX

TIME
SALES_TIME_BIX

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

76

	Foliennummer 1
	5 Layer Architecture
	Content of this Lecture
	Is Optimization Worth It?
	Example
	First Attempt
	Cost
	Use Term Rewriting
	Better Plan
	Even Better – Use Indexes
	Even Better – Use Indexes
	Comparison
	Steps in Optimization
	Content of this Lecture
	Subquery Rewriting
	Example
	Uncorrelated Subquery without Aggregation
	Uncorrelated Subquery with Aggregation
	Correlated Subquery without Aggregation
	Correlated Subquery with Aggregation
	Correlated Subquery with Aggregation
	Can be Combined
	Improvements
	Query Minimization 1
	Query Minimization 2
	Content of this Lecture
	Equivalence of Relational Algebra Expressions
	Rules for Joins and Products
	For Projection and Selection
	For Projection and Selection
	Joins and Projection/Selection
	Joins and Projection/Selection
	Example
	Initial Operator Tree
	Breaking and Pushing Selections
	Introduce Joins
	Pushing Projections
	Caution
	Term Rewriting: Algebraic Optimization
	A Simple Rule-Based Optimizer
	Another Example
	Break Up Selections
	Push Selections
	Rewrite Product+Selection into Joins
	Introduce Additional Projections
	Limitations
	Order of Joins: Indistinguishable
	Join Order – Does it Matter?
	Join Order – Does it Matter?
	Content of this Lecture
	Optimizing Join Order
	Query Types
	Left/Right-deep versus Bushy Join Trees
	Choosing a Join Order
	Join Groups
	Details
	Induction
	Example 1
	Example 2
	Example 3
	Algorithm
	Dynamic Programming
	Content of this Lecture
	Ingredients
	Search Strategies
	Content of this Lecture
	Star Join
	Beispielquery
	Anfrageplanung
	Heuristiken
	Abschätzung von Zwischenergebnissen
	Left-deep Pläne
	Plan mit kartesischen Produkten
	STAR Join in Oracle (v7)
	STAR Join in Oracle 8i – 9i
		Gesamtplan

