
Ulf Leser 

Datenbanksysteme II: 
Implementing Joins  

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 2 

Content of this Lecture 

 
 
 

• Nested loop and blocked nested loop 
• Sort-merge join 
• Hash-based join strategies 
• Index join 

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 3 

Join Operator 

• Join: Highly time-critical operator 
– Required in all practical queries and applications 
– Often appears in groups (multi-way join) 
– May create very large results 
– Many variations, suited for different situations 

• Example: SELECT * FROM R, S  
           WHERE R.B = S.B 

R ⋈ S 

A B 

A1 0 

A2 1 

A3 2 

A4 1 

B C 

1 C1 

2 C2 

1 C3 

3 C4 

1 C5 

A B C 

A2 1 C1 

A2 1 C3 

A2 1 C5 

A3 2 C2 

A4 1 C1 

A4 1 C3 

A4 1 C5 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 4 

• Super-naïve 
FOR EACH r IN R DO 

FOR EACH s IN S DO 
 LOAD block(r) into M; 
LOAD block(s) into M; 
IF (r.B=s.B) THEN OUTPUT (r ⋈ s) 

 

• Obvious improvement 
FOR EACH block x IN R DO 

READ x into M; 
FOR EACH block y IN S DO 
  READ y into M; 
  FOR EACH r in x DO 
    FOR EACH s in y DO 
      IF (r.B=s.B) THEN OUTPUT (r ⋈ s) 

 

Nested-loop Join 

R 

S 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 5 

 

 
 

• Let b(R), b(S) be number of blocks in R and in S 
• Each block of outer relation is read once 
• Inner relation is read once for each block of outer relation 
• Inner two loops are free (only main memory ops) 
• Altogether IO: b(R)+b(R)*b(S) 

Cost Estimation 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 6 

Example 

 
• Assume b(R)=10.000, b(S)=2.000 
• R as outer relation 

– IO = 10.000 + 10.000*2.000 = 20.010.000 

• S as outer relation 
– IO = 2.000 + 2.000*10.000 = 20.002.000 

• Use smaller relation as outer relation 
• But choice doesn’t really matter here … 
• Can’t we do better? 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 7 

... 

 
 
 

• There is no “m” in the formula 
– m: Size of main memory in blocks 

• We are not using our available main memory 
• This should make us suspicious 
 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 8 

Blocked nested-loop join 

• Rule of thumb: Use all memory you can get 
– Use all memory the buffer manager allocates to your process 
– This is a difficult decision even for a single query – which 

operations get how much memory? 

 
• Blocked-nested-loop 

FOR i=1 TO b(R)/(m-1) DO 
 READ NEXT m-1 blocks of R into M 
  FOR EACH block y IN S DO 
    READ BLOCK y into M 
    FOR EACH r in R-chunk DO 

   FOR EACH s in y do 
 IF (r.B=s.B) THEN OUTPUT (r ⋈ s)  



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 9 

Cost 

 
 

 
• Outer relation is read once 
• Inner relation is read once for every chunk of R 
• There are ~b(R)/m chunks 
• Total IO: b(R) + b(R)*b(S)/m 
• Further advantage: Chunks of outer relation are read 

sequentially 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 10 

Example 

 
• Assume b(R)=10.000, b(S)=2.000, m=500 
• R as outer relation: 10.000 + 10.000*2.000/500 = 50.000 
• S as outer relation: 2.000 + 2.000*10.000/500 = 42.000 
• Again: Use smaller relation as outer relation 
• Sizes of relations do matter 

– If one relation fits into memory (b<m) 
– Total cost: b(R) + b(S) 
– One pass blocked-nested-loop 

• We can do a little better with blocked-nested loop? 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 11 

Zig-Zag Join 

 
 

• When finishing a chunk of the outer relation, hold last 
block of inner relation in memory 

• Load next chunk of outer relation and compare with the 
still available last block of inner relation 

• For each chunk, we need to read one block less 
• Thus: Saves b(R)/m IO 

– If R is outer relation 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 12 

Content of this Lecture 

 
 
 

• Nested loop and blocked nested loop 
• Sort-merge join 
• Hash-based join strategies 
• Index join 

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 13 

Sort-Merge Join 

 
 

• Sort both relations on join attribute(s) 
• Merge both sorted relations 
• Caution if join values appear multiple times 

– The result size still is |R|*|S| in worst case 
– If there are r/s tuples with value x in the join attribute in R / S, we 

need to output r*s tuples for x 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 14 

Example 

A B 

A1 0 

A2 1 

A3 2 

A4 1 

B C 

1 C1 

2 C2 

1 C3 

3 C4 

1 C5 

A B 

A1 0 

A2 1 

A4 1 

A3 2 

B C 

1 C1 

1 C3 

1 C5 

2 C2 

3 C4 

A B C 

A2 1 C1 

A2 1 C3 

A2 1 C5 

A4 1 C1 

A4 1 C3 

A4 1 C5 

A3 2 C2 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 15 

r := first (R);  s := first (S); 
WHILE NOT EOR(R) and NOT EOR(S) DO 
  IF r[B] < s[B] THEN r := next (R) 
  ELSEIF r[B] > s[B] THEN s := next (S) 
  ELSE     /* r[B] = s[B]*/ 
    b := r[B];  B := ∅; 
       WHILE NOT EOR(S) and s[B] = b DO 
    B := B ∪ {s}; 
    s = next (S); 
    END DO; 
    WHILE NOT EOR(R) and r[B] = b DO 
    FOR EACH e in B DO 
     OUTPUT (r,e); 
    r := next (R); 
    END DO; 
END DO; 

Merge Phase 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 16 

Cost estimation 

 
• Sorting R costs ~2*b(R)*ceil(logm(b(R))) 
• Sorting S costs ~2*b(S)*ceil(logm(b(S))) 
• Merge phase reads each relation once 
• Total: b(R) + b(S) + 2*b(R)*ceil(logm(b(R))) + 

2*b(S)*ceil(logm(b(S))) 
• Improvement 

– While sorting, do not perform last read/write phase 
– Open all sorted runs in parallel for merging 
– Saves 2*b(R)+2*b(S) IO 

• If sort was performed already somewhere down in the 
tree, sort phase can be skipped 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 17 

Better than Blocked-Nested-Loop? 

• Assume b(R)=10.000, b(S)=2.000, m=500 
– BNL costs 42.000 (with S as outer relation) 
– SM: 10.000+2.000+4*10.000+4*2.000 = 60.000 
– Improved SM: 36.000 

• Assume b(R)=1.000.000, b(S)=1.000, m=500 
– BNL costs 1000 + 1.000.000*1000/500 = 2.001.000 
– SM: 1.000.000+1.000+6*1.000.000+4*1.000 = 7.005.000 

• When is SM better than BNL? 
– Consider improved version with  

• 2*b(R)*ceil(logm(b(R))) + 2*b(S)*ceil(logm(b(S))) – b(R) - b(S) ~ 
• 2*b(R)*(logm(b(R))+1) + 2*b(S)*(logm(S)+1) – b(R) – b(S) = 
• 2*b(R)*logm(b(R)) + 2*b(S)*logm(S) + b(R) + b(S) ~  
• b(R)*(2*logm(b(R))+1) + b(S)*(2*logm(S)+1) 

– Compare to BNL: b(R) + b(R)*b(S)/m 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 18 

Comparison 

• Assume relations of equal size b 
• SM: 2*b*(2*logm(b)+1) 
• BNL: b+b2/m 
• BNL > SM iff 

– b+b2/m > 2*b*(2*logm(b)+1) 
– 1+b/m > 4*logm(b) + 2 
– b > 4m*logm(b) + m 

• Example 
– b=10.000, m=100 (10.000 > 500) 

• BNL: 10.000 + 1.000.000, SM: 6*10.000 = 60.000 

– b=10.000, m=5000 (10.000 < 25.000) 
• BNL: 10.000 + 20.000, SM: 6*10.000 = 60.000 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 19 

Comparison 2 

• b(R)=1.000.000, b(S)=2.000, m between 100 and 90.000 
 
 
 
 

 
 

 
 

 
– BNL very good if one relation is much smaller than other and 

sufficient memory available (~1 pass suffices ) 
– SM can better cope with limited memory (and can be chained) 

 

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

10
0

40
0

70
0

10
00

40
00

70
00

10
00

0
40

00
0

70
00

0

BNL Join
SM+Join



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 20 

Comparison 3 

• b(R)=1.000.000, b(S)=50.000, m between 500 and 90.000 

• BNL very sensible to small memory sizes 
 

0
10.000.000
20.000.000
30.000.000
40.000.000
50.000.000
60.000.000
70.000.000
80.000.000
90.000.000

50
0

70
0

90
0

20
00

40
00

60
00

80
00

10
00

0

30
00

0

50
00

0

70
00

0

90
00

0

BNL+Join
SM-Join



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 21 

Merge-Join and Main Memory 

• We have no „m“ in the formula of the merge phase 
– Implicitly, it is in the number of runs required 

• More memory can be used for sequential reads 
– Always fill memory with m/2 blocks from R and m/2 blocks from S 
– Use asynchronous IO 

1. Schedule request for m/4 blocks from R and m/4 blocks from S 
2. Wait until loaded 
3. Schedule request for next m/4 blocks from R and next m/4 blocks 

from S 
4. Do not wait – perform merge on first 2 chunks of m/4 blocks 
5. Wait until previous request finished 

1. We used this waiting time very well 

6. Jump to 3, using m/4 chunks of M in turn 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 22 

Content of this Lecture 

 
 
 

• Nested loop and blocked nested loop 
• Sort-merge join 
• Hash-based join strategies 
• Index join 

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 23 

Hash Join 

 
 

• As usual, we can avoid sorting if good hash function is 
available 

• Assume a very good hash function 
– Distributes hash values essentially uniformly over hash table 
– If we have good histograms (later), a simple interval-based hash 

function might do the job 

• How can we apply hashing to joins? 
 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 24 

Idea 

• Use join attribute(s) as hash keys in both R and S 
– Assume hash table of size m (use all memory) 
– Each bucket will have size approx. b(R)/m, b(S)/m 

• Hash phase 
– Scan R, add to bucket, writing full blocks to disk immediately 
– Scan S, add to bucket, writing full blocks to disk immediately 
– [Better to use some n<b(R)/m to allow for sequential writes] 

• Merge phase 
– Iteratively, load same buckets of R and of S (assume we can) 
– Compute join 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 25 

Cost 

 
 
 

• Hash phase costs 2*b(R)+2*b(S) 
• Merge phase costs b(R) + b(S) 
• Total: 3*(b(R)+b(S)) 

– What happens if hash function creates skew? 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 26 

Hash Join with Large Tables 

• Merge phase assumes two buckets can be held in memory 
– We assume that 2*b(R)/m<m and b(R)~b(S) 
– Note: Merge phase of sorting requires |runs| blocks, hashing 

requires 2 buckets to be loaded  

• What if b(R)>m2/2 ? 
– We need to create smaller buckets 
– Two phase hash join: First partition R and S such that each 

partition hopefully has buckets smaller than m2/2 
– Compute buckets for all partitions in both relations 
– Merge in cross-product manner 

• PR,1 with PS,1, PS,2, …, PS,n 
• … 
• PR,m with PS,1, PS,2, …, PS,n 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 27 

Improvement 

 

 
 

• Actually, it suffices if either b(R) or b(S) is small enough 
• Chose the smaller relation as driver (outer relation) 
• Load one bucket into main memory 
• Load same bucket in other relation block by block and filter 

tuples 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 28 

Cost (with Partioning) 

• Assume b(R)=b(S)=b 
• How many partitions (p) do we need (if buckets are of equal size)? 

– Goal: For each partition P, b(P)<m2/2 
– Hence: b/p ~ m2/2, or p ~ 2*b/m2 

• In each partition, there are (still) m buckets of size ~m/2 
• Hash/partition phase: 2b+2b (partitions are not materialized) 
• Merge phase: b + p*m * p*m/2 = b+ p2*m2/2 = b + 2b2/m2 

– There are p*m buckets in outer relation 
– For each bucket of outer relation, we have to read p buckets of inner 

relation, each of size m/2 

1 2 3 1 2 3 1 2 3 

1 2 3 1 2 3 1 2 3 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 29 

Alternative 

• Accept overly large buckets  
• Perform blocked-nested loop for each pair of buckets 
• There are m buckets, each of size n=b/m (>m/2) 
• Hash phase: 2b+2b 
• BNL phase: m * (n + n*n/m) = m*(b/m+b2/m3) = b+b2/m2 

– There are m bucket pairs 
– For each, we perform blocked nested loop over two buckets of size n 

• Note: Since in fact only one relation must be small enough, the cross-
product large hash join has app. the same cost 

1 2 3 

1 2 3 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 30 

Hybrid Hash Join 

 
• Assume that min(b(R),b(S))<m2/2 
• Note: During merge phase, we used only (b(R)+b(S))/m 

memory blocks (size of two buckets) 
• This does usually not fill the entire memory 
• Improvement 

– Chose smaller relation (assume S) 
– Chose a number k of buckets (with k<m) 

• Again, assuming perfect hash functions, each bucket has size b(S)/k 

– When hashing S, keep first x buckets completely in memory, but 
only one block for each of the (k-x) other buckets 

• These first x buckets are never written to disk 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 31 

Continued 

 
 
 

– … 
– When hashing R 

• If hash value maps into buckets 1..x, perform join immediately 
• Otherwise, map to the k-x other buckets and write to disk 

– After first round, we have performed the join on x buckets and 
have k-x buckets of both relations on disk 

– Perform “normal” merge phase on k-x buckets 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 32 

Cost 

• Total saving (compared to normal hash join) 
– We save 2 IO for every block in either relation that is never written 
– We keep x buckets in memory, having ~ b(S)/k and ~b(R)/k blocks 
– Together, we save 2*x*(b(S)+b(R))/k IO operations 

• How should we choose k and x? 
• Best solution: x=1 and k as small as possible 

– Build buckets as large as possible, such that still one entire bucket 
and one block for all other buckets fits into memory 

– Optimum reached at k ~ b(S)/m 
• Note: k actually must be a little smaller since we must additionally hold 

one block for each other bucket 

• Together, we save 2*(b(S)+b(R))*m/b(S) 
• Total cost: (3-2m/b(S))*(b(S)+b(R)) 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 33 

Quantitative Comparison 

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

10
0

30
0

50
0

70
0

90
0

20
00

40
00

60
00

80
00

10
00

0

30
00

0

50
00

0

70
00

0

90
00

0

b(R)=1,000,000, b(S)=2000 

BNL+Join

SM-Join

Hash-Join

Part HJ

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

10
0

30
0

50
0

70
0

90
0

20
00

40
00

60
00

80
00

10
00

0
30

00
0

50
00

0
70

00
0

90
00

0

b(R)=1,000,000; b(S)=50,000 

BNL+J
oin
SM-
Join
Hash-
Join

• BNLJ sensitive to memory 
and size differences 

• HJ (both) with very robust performance, sometimes better, 
sometimes worse than SMJ 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 34 

Comparing Join Methods  



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 35 

Comparing Hash Join and Sort-Merge Join 

• With enough memory, both require approximately the 
same number of IO 
– Hybrid-hash join improves slightly 

• SM generates sorted results – sort phase of other joins in 
query plan can be dropped 

• HJ does not need to perform sorting in main memory 
• HJ only requires that one relation is “small enough” 
• HJ only performs well if we have equally sized buckets 

– Otherwise, performance might degrade due to unexpected paging 
– To prevent, estimate k conservative and do not fill m completely 

• Both can be tuned to generate mostly sequential IO 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 36 

Content of this Lecture 

 
 
 

• Nested loop and blocked nested loop 
• Sort-merge join 
• Hash-based join strategies 
• Index join 

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 37 

Index Join 

• Assume we have an index “B_Index” on join attribute B in 
one relation 

• Choose indexed relation as inner relation 
FOR EACH r IN R DO 
   X = { SEARCH (S.B_Index, <r.B>) } 
     FOR EACH TID i in X DO 
       s = READ (S, i) ; output (r ⋈ s). 

 
 
 
 
 

• Nested loop with index access 

1 
2 
3 

A B 

A1 0 

A2 1 

A3 2 

A4 1 

B C 

1 C1 

2 C2 

1 C3 

3 C4 

1 C5 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 38 

Cost 

• Typical situation: R.B is primary key, S.B is foreign key 
– Every tuple from R has zero, one or more join tuples in S 

• Let v(X,B) be # of different values of B in relation X 
– Each value in S.B appears v~|S|/v(S,B) times 

• For each r∈R, we read all tuples with given value in S 
• Assume every r has at least one join partner:  

b(R) + |R|*(logk(|S|) + v/k + v) 
– Outer relation read once 
– Find value in B*-tree index, read all matching TIDs (with block size 

k), access S for each TID (assume they are all in different blocks) 

• Assume only r tuples of R have partner:  
b(R) + |R|*logk(|S|) + r(v/k + v) 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 39 

Comparison 

 
• Compare to sort-merge join 

– Neglect logk(|S|) + v/k 
• First term is mostly ~2, second mostly ~1 

– SM > IJ roughly requires  
• Assume that 2 passes suffice for sorting 
• 3*(b(R)+b(S)) > b(R)+|R|*b(S)/v(S,B) 

• Example  
– b(R)=10.000, b(S)=2.000, m=500, v(S,B)=10, k=50 
– SM: 36.000 
– IJ: 10.000 + 10.000*50*2.000/10 ~ 1.000.000.000 

• When is an index join a good idea? 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 40 

Index Join: Advantageous Situations 

 
 

• When r (|R|) is really small 
– If join is combined with selection on R 
– Most tuples are filtered, only very few require access to S 

• When r is very small, R.B is foreign key, S.B is primary key 
– Similar to previous case 
– If S is primary key, then v(S,B)=|S|, and hence v=1 
– R can be read fast and “probes” into S 
– We get total cost of ~b(R)+r (plus index access etc.) 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 41 

Index Join with Sorting 

 
• Note: Blocks of S are read many times 

– Caching will reduce the overhead – difficult to predict 

• Alternative 
– First compute all necessary TID’s from S 
– Sort and read tuples from S in sorted order 

• Sort in which order? Assumption? 

– Advantage: Blocks of S will be in cache when accessed 
– Requires enough memory for keeping TID list and tuples of R 
– Pipeline breaker 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 42 

Index Join with 2 Indexes 

 
 
 
 

• Assume we have an index on both join attributes 
• What are we doing? 

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 43 

Index Join with 2 Indexes 

 
• TID-list join 
• Read both indexes sequentially  
• Join (value,TID) lists on value 
• Probe into R and S only if necessary 
• Large advantage if intersection is small 
• Otherwise, we need sorted tables (index-organized) 

– But then sort-merge is probably faster 


	Foliennummer 1
	Content of this Lecture
	Join Operator
	Nested-loop Join
	Cost Estimation
	Example
	...
	Blocked nested-loop join
	Cost
	Example
	Zig-Zag Join
	Content of this Lecture
	Sort-Merge Join
	Example
	Merge Phase
	Cost estimation
	Better than Blocked-Nested-Loop?
	Comparison
	Comparison 2
	Comparison 3
	Merge-Join and Main Memory
	Content of this Lecture
	Hash Join
	Idea
	Cost
	Hash Join with Large Tables
	Improvement
	Cost (with Partioning)
	Alternative
	Hybrid Hash Join
	Continued
	Cost
	Quantitative Comparison
	Comparing Join Methods 
	Comparing Hash Join and Sort-Merge Join
	Content of this Lecture
	Index Join
	Cost
	Comparison
	Index Join: Advantageous Situations
	Index Join with Sorting
	Index Join with 2 Indexes
	Index Join with 2 Indexes

