Datenbanksysteme II: Implementing Joins

Ulf Leser
Content of this Lecture

- Nested loop and blocked nested loop
- Sort-merge join
- Hash-based join strategies
- Index join
Join Operator

• Join: Highly **time-critical operator**
 - Required in all practical queries and applications
 - Often appears in groups (multi-way join)
 - May create very large results
 - Many variations, suited for different situations

• Example: ```
SELECT * FROM R, S
WHERE R.B = S.B
```  

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0</td>
</tr>
<tr>
<td>A2</td>
<td>1</td>
</tr>
<tr>
<td>A3</td>
<td>2</td>
</tr>
<tr>
<td>A4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
</tr>
<tr>
<td>2</td>
<td>C2</td>
</tr>
<tr>
<td>1</td>
<td>C3</td>
</tr>
<tr>
<td>3</td>
<td>C4</td>
</tr>
<tr>
<td>1</td>
<td>C5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>1</td>
<td>C1</td>
</tr>
<tr>
<td>A2</td>
<td>1</td>
<td>C3</td>
</tr>
<tr>
<td>A2</td>
<td>1</td>
<td>C5</td>
</tr>
<tr>
<td>A3</td>
<td>2</td>
<td>C2</td>
</tr>
<tr>
<td>A4</td>
<td>1</td>
<td>C1</td>
</tr>
<tr>
<td>A4</td>
<td>1</td>
<td>C3</td>
</tr>
<tr>
<td>A4</td>
<td>1</td>
<td>C5</td>
</tr>
</tbody>
</table>
Nested-loop Join

- Super-naïve
  
  ```
 FOR EACH r IN R DO
 FOR EACH s IN S DO
 LOAD block(r) into M;
 LOAD block(s) into M;
 IF (r.B=s.B) THEN OUTPUT (r \Join s)
  ```

- Obvious improvement
  
  ```
 FOR EACH block x IN R DO
 READ x into M;
 FOR EACH block y IN S DO
 READ y into M;
 FOR EACH r in x DO
 FOR EACH s in y DO
 IF (r.B=s.B) THEN OUTPUT (r \Join s)
  ```
Cost Estimation

- Let \( b(R) \), \( b(S) \) be number of blocks in \( R \) and in \( S \)
- Each block of outer relation is read once
- Inner relation is read once for each block of outer relation
- Inner two loops are free (only main memory ops)
- Altogether IO: \( b(R) + b(R) \cdot b(S) \)
Example

- Assume $b(R) = 10,000$, $b(S) = 2,000$
- $R$ as outer relation
  - $IO = 10,000 + 10,000 \times 2,000 = 20,001,000$
- $S$ as outer relation
  - $IO = 2,000 + 2,000 \times 10,000 = 20,002,000$
- Use smaller relation as outer relation
- But choice doesn’t really matter here …
- Can’t we do better?
• There is no “m” in the formula
  – m: Size of main memory in blocks
• We are not using our available main memory
• This should make us suspicious
Blocked nested-loop join

- Rule of thumb: **Use all memory** you can get
  - Use all memory the buffer manager allocates to your process
  - This is a difficult decision even for a single query – which operations get how much memory?

- **Blocked-nested-loop**

  ```
 FOR i=1 TO b(R)/(m-1) DO
 READ NEXT m-1 blocks of R into M
 FOR EACH block y IN S DO
 READ BLOCK y into M
 FOR EACH r in R-chunk DO
 FOR EACH s in y do
 IF (r.B=s.B) THEN OUTPUT (r \bowtie s)
  ```
Cost

- Outer relation is read once
- Inner relation is read once for every chunk of $R$
- There are $\sim b(R)/m$ chunks
- Total IO: $b(R) + b(R) \times b(S)/m$
- Further advantage: Chunks of outer relation are read sequentially
Example

- Assume \( b(R) = 10.000 \), \( b(S) = 2.000 \), \( m = 500 \)
- \( R \) as outer relation: \( 10.000 + 10.000 \times 2.000 / 500 = 50.000 \)
- \( S \) as outer relation: \( 2.000 + 2.000 \times 10.000 / 500 = 42.000 \)
- Again: Use smaller relation as outer relation
- Sizes of relations do matter
  - If one relation fits into memory (\( b < m \))
  - Total cost: \( b(R) + b(S) \)
  - One pass blocked-nested-loop
- We can do a little better with blocked-nested loop?
Zig-Zag Join

- When finishing a chunk of the outer relation, hold last block of inner relation in memory
- Load next chunk of outer relation and compare with the still available last block of inner relation
- For each chunk, we need to read one block less
- Thus: Saves $b(R)/m$ IO
  - If $R$ is outer relation
Content of this Lecture

- Nested loop and blocked nested loop
- Sort-merge join
- Hash-based join strategies
- Index join
Sort-Merge Join

- Sort both relations on join attribute(s)
- Merge both sorted relations
- Caution if join values appear multiple times
  - The result size still is $|R| \times |S|$ in worst case
  - If there are $r/s$ tuples with value $x$ in the join attribute in $R / S$, we need to output $r \times s$ tuples for $x$
Example
Merge Phase

\begin{verbatim}
r := first (R);  s := first (S);
WHILE NOT EOR(R) and NOT EOR(S) DO
    IF r[B] < s[B] THEN r := next (R)
    ELSEIF r[B] > s[B] THEN s := next (S)
    ELSE     /* r[B] = s[B]*/
        b := r[B];  B := ∅;
        WHILE NOT EOR(S) and s[B] = b DO
            B := B ∪ {s};
            s = next (S);
        END DO;
        WHILE NOT EOR(R) and r[B] = b DO
            FOR EACH e in B DO
                OUTPUT (r,e);
                r := next (R);
            END DO;
    END DO;
END DO;
\end{verbatim}
Cost estimation

- Sorting R costs $\sim 2b(R) \cdot \text{ceil}(\log_m(b(R)))$
- Sorting S costs $\sim 2b(S) \cdot \text{ceil}(\log_m(b(S)))$
- Merge phase reads each relation once
- Total: $b(R) + b(S) + 2b(R) \cdot \text{ceil}(\log_m(b(R))) + 2b(S) \cdot \text{ceil}(\log_m(b(S)))$
- Improvement
  - While sorting, do not perform last read/write phase
  - Open all sorted runs in parallel for merging
  - Saves $2b(R) + 2b(S)$ IO
- If sort was performed already somewhere down in the tree, sort phase can be skipped
Better than Blocked-Nested-Loop?

• Assume $b(R)=10.000$, $b(S)=2.000$, $m=500$
  - BNL costs 42.000 (with S as outer relation)
  - SM: $10.000 + 2.000 + 4 \times 10.000 + 4 \times 2.000 = 60.000$
  - Improved SM: 36.000
• Assume $b(R)=1.000.000$, $b(S)=1.000$, $m=500$
  - BNL costs $1000 + 1.000.000 \times 1000/500 = 2.001.000$
  - SM: $1.000.000 + 1.000 + 6 \times 1.000.000 + 4 \times 1.000 = 7.005.000$
• When is SM better than BNL?
  - Consider improved version with
    • $2 \times b(R) \times \lceil \log_m(b(R)) \rceil + 2 \times b(S) \times \lceil \log_m(b(S)) \rceil - b(R) - b(S) \sim$
    • $2 \times b(R) \times (\log_m(b(R)) + 1) + 2 \times b(S) \times (\log_m(S) + 1) - b(R) - b(S) =$
    • $2 \times b(R) \times \log_m(b(R)) + 2 \times b(S) \times \log_m(S) + b(R) + b(S) \sim$
    • $b(R) \times (2 \times \log_m(b(R)) + 1) + b(S) \times (2 \times \log_m(S) + 1)$
  - Compare to BNL: $b(R) + b(R) \times b(S)/m$
Comparison

- Assume relations of equal size $b$
- SM: $2b(2\log_m(b)+1)$
- BNL: $b + \frac{b^2}{m}$
- BNL $> SM$ iff
  - $b + \frac{b^2}{m} > 2b(2\log_m(b)+1)$
  - $1 + \frac{b}{m} > 4\log_m(b) + 2$
  - $b > 4m\log_m(b) + m$
- Example
  - $b=10.000$, $m=100$ ($10.000 > 500$)
    - BNL: $10.000 + 1.000.000$, SM: $6\times10.000 = 60.000$
  - $b=10.000$, $m=5000$ ($10.000 < 25.000$)
    - BNL: $10.000 + 20.000$, SM: $6\times10.000 = 60.000$
Comparison 2

- \( b(R) = 1.000.000, \ b(S) = 2.000, \ m \) between 100 and 90.000

- BNL very good if one relation is much smaller than other and sufficient memory available (~1 pass suffices)
- SM can better cope with limited memory (and can be chained)
Comparison 3

- \( b(R) = 1,000,000 \), \( b(S) = 50,000 \), \( m \) between 500 and 90,000

- **BNL** very sensible to small memory sizes
Merge-Join and Main Memory

- We have no "m" in the formula of the merge phase
  - Implicitly, it is in the number of runs required
- More memory can be used for sequential reads
  - Always fill memory with m/2 blocks from R and m/2 blocks from S
  - Use asynchronous I/O
    1. Schedule request for m/4 blocks from R and m/4 blocks from S
    2. Wait until loaded
    3. Schedule request for next m/4 blocks from R and next m/4 blocks from S
    4. Do not wait – perform merge on first 2 chunks of m/4 blocks
    5. Wait until previous request finished
      1. We used this waiting time very well
    6. Jump to 3, using m/4 chunks of M in turn
Content of this Lecture

- Nested loop and blocked nested loop
- Sort-merge join
- Hash-based join strategies
- Index join
Hash Join

• As usual, we can avoid sorting if good hash function is available
• Assume a very good hash function
  – Distributes hash values essentially uniformly over hash table
  – If we have good histograms (later), a simple interval-based hash function might do the job
• How can we apply hashing to joins?
Idea

- Use join attribute(s) as hash keys in both R and S
  - Assume hash table of size $m$ (use all memory)
  - Each bucket will have size approx. $b(R)/m$, $b(S)/m$

- Hash phase
  - Scan R, add to bucket, writing full blocks to disk immediately
  - Scan S, add to bucket, writing full blocks to disk immediately
  - [Better to use some $n < b(R)/m$ to allow for sequential writes]

- Merge phase
  - Iteratively, load same buckets of R and of S (assume we can)
  - Compute join
Cost

- Hash phase costs $2 \cdot b(R) + 2 \cdot b(S)$
- Merge phase costs $b(R) + b(S)$
- Total: $3 \cdot (b(R) + b(S))$
  - What happens if hash function creates skew?
Hash Join with Large Tables

- **Merge phase assumes two buckets can be held in memory**
  - We assume that $2\cdot \frac{b(R)}{m} < m$ and $b(R) \sim b(S)$
  - Note: Merge phase of sorting requires $|\text{runs}|$ blocks, hashing requires 2 buckets to be loaded

- **What if $b(R) > \frac{m^2}{2}$?**
  - We need to create smaller buckets
  - **Two phase hash join**: First partition $R$ and $S$ such that each partition hopefully has buckets smaller than $\frac{m^2}{2}$
  - Compute buckets for all partitions in both relations
  - Merge in cross-product manner
    - $P_{R,1}$ with $P_{S,1}$, $P_{S,2}$, ..., $P_{S,n}$
    - ...
    - $P_{R,m}$ with $P_{S,1}$, $P_{S,2}$, ..., $P_{S,n}$
Improvement

- Actually, it suffices if either $b(R)$ or $b(S)$ is small enough
- Chose the smaller relation as driver (outer relation)
- Load one bucket into main memory
- Load same bucket in other relation block by block and filter tuples
Cost (with Partitioning)

- Assume $b(R) = b(S) = b$
- How many partitions ($p$) do we need (if buckets are of equal size)?
  - Goal: For each partition $P$, $b(P) < \frac{m^2}{2}$
  - Hence: $\frac{b}{p} \sim \frac{m^2}{2}$, or $p \sim \frac{2b}{m^2}$
- In each partition, there are (still) $m$ buckets of size $\sim \frac{m}{2}$
- Hash/partition phase: $2b + 2b$ (partitions are not materialized)
- Merge phase: $b + p \cdot m \cdot \frac{p \cdot m}{2} = b + \frac{p^2 \cdot m^2}{2} = b + \frac{2b^2}{m^2}$
  - There are $p \cdot m$ buckets in outer relation
  - For each bucket of outer relation, we have to read $p$ buckets of inner relation, each of size $\frac{m}{2}$
Alternative

- Accept overly large buckets
- Perform **blocked-nested loop for each pair** of buckets
- There are m buckets, each of size n=b/m (>m/2)
- Hash phase: 2b+2b
- BNL phase: \( m \times (n + n \times n/m) = m \times (b/m + b^2/m^3) = b + b^2/m^2 \)
  - There are m bucket pairs
  - For each, we perform blocked nested loop over two buckets of size n
- Note: Since in fact only one relation must be small enough, the cross-product large hash join has app. the same cost
Hybrid Hash Join

- Assume that \( \min(b(R), b(S)) < m^2/2 \)
- Note: During merge phase, we used only \( (b(R) + b(S))/m \) memory blocks (size of two buckets)
- This does usually not fill the entire memory
- Improvement
  - Chose smaller relation (assume \( S \))
  - Chose a number \( k \) of buckets (with \( k < m \))
    - Again, assuming perfect hash functions, each bucket has size \( b(S)/k \)
  - When hashing \( S \), keep first \( x \) buckets completely in memory, but only one block for each of the \( (k-x) \) other buckets
    - These first \( x \) buckets are never written to disk
Continued

- ...  
- When hashing R  
  - If hash value maps into buckets 1..x, perform join immediately  
  - Otherwise, map to the k-x other buckets and write to disk  
- After first round, we have performed the join on x buckets and have k-x buckets of both relations on disk  
- Perform “normal” merge phase on k-x buckets
Cost

- Total saving (compared to normal hash join)
  - We save 2 IO for every block in either relation that is never written
  - We keep x buckets in memory, having $\sim b(S)/k$ and $\sim b(R)/k$ blocks
  - Together, we save $2 \times x \times (b(S) + b(R))/k$ IO operations

- How should we choose k and x?
  - Best solution: $x=1$ and $k$ as small as possible
    - Build buckets as large as possible, such that still one entire bucket and one block for all other buckets fits into memory
    - Optimum reached at $k \sim b(S)/m$
      - Note: $k$ actually must be a little smaller since we must additionally hold one block for each other bucket

- Together, we save $2 \times (b(S) + b(R)) \times m/b(S)$
- Total cost: $(3 - 2m/b(S)) \times (b(S) + b(R))$
Quantitative Comparison

- BNLJ sensitive to memory and size differences
- HJ (both) with very robust performance, sometimes better, sometimes worse than SMJ
Comparing Join Methods

Nested-Loops-Join

Merge-Join

Hash-Join
Comparing Hash Join and Sort-Merge Join

• With enough memory, both require approximately the same number of IO
  - Hybrid-hash join improves slightly
• SM generates sorted results – sort phase of other joins in query plan can be dropped
• HJ does not need to perform sorting in main memory
• HJ only requires that one relation is “small enough”
• HJ only performs well if we have equally sized buckets
  - Otherwise, performance might degrade due to unexpected paging
  - To prevent, estimate k conservative and do not fill m completely
• Both can be tuned to generate mostly sequential IO
Content of this Lecture

- Nested loop and blocked nested loop
- Sort-merge join
- Hash-based join strategies
- Index join
Index Join

- Assume we have an index “B_Index” on join attribute B in one relation
- Choose indexed relation as inner relation

\[
\text{FOR EACH } r \text{ IN } R \text{ DO}
\]
\[
X = \{ \text{SEARCH (S.B_Index, } <r.B>) \} \text{ } \text{FOR EACH TID } i \text{ in } X \text{ DO}
\]
\[
s = \text{READ (S, } i) \text{ ; output } (r \bowtie s).
\]

- Nested loop with index access
Cost

- Typical situation: R.B is primary key, S.B is foreign key
  - Every tuple from R has zero, one or more join tuples in S
- Let $v(X,B)$ be # of different values of B in relation X
  - Each value in S.B appears $\approx |S|/v(S,B)$ times
- For each $r \in R$, we read all tuples with given value in S
- Assume every $r$ has at least one join partner:
  $b(R) + |R|*(\log_k(|S|) + v/k + v)$
  - Outer relation read once
  - Find value in B*-tree index, read all matching TIDs (with block size $k$), access S for each TID (assume they are all in different blocks)
- Assume only $r$ tuples of R have partner:
  $b(R) + |R|*\log_k(|S|) + r(v/k + v)$
Comparison

• **Compare to sort-merge join**
  - Neglect $\log_k(|S|) + v/k$
    - First term is mostly ~2, second mostly ~1
  - $SM > IJ$ roughly requires
    - Assume that 2 passes suffice for sorting
    - $3*(b(R)+b(S)) > b(R)+|R|*b(S)/v(S,B)$

• **Example**
  - $b(R)=10.000$, $b(S)=2.000$, $m=500$, $v(S,B)=10$, $k=50$
  - $SM$: 36.000
  - $IJ$: $10.000 + 10.000*50*2.000/10 \sim 1.000.000.000$

• **When is an index join a good idea?**
Index Join: Advantageous Situations

- When $r (|R|)$ is really small
  - If join is combined with selection on $R$
  - Most tuples are filtered, only very few require access to $S$
- When $r$ is very small, $R.B$ is foreign key, $S.B$ is primary key
  - Similar to previous case
  - If $S$ is primary key, then $v(S,B) = |S|$, and hence $v=1$
  - $R$ can be read fast and “probes” into $S$
  - We get total cost of $\sim b(R) + r$ (plus index access etc.)
Index Join with Sorting

• Note: **Blocks of S are read many times**
  - Caching will reduce the overhead – difficult to predict

• Alternative
  - First compute all necessary TID’s from S
  - Sort and read tuples from S in sorted order
    • Sort in which order? Assumption?
  - Advantage: Blocks of S will be in cache when accessed
  - Requires enough memory for keeping TID list and tuples of R
  - Pipeline breaker
Index Join with 2 Indexes

- Assume we have an index on both join attributes
- What are we doing?
Index Join with 2 Indexes

- **TID-list join**
- Read both indexes sequentially
- Join (value,TID) lists on value
- Probe into R and S only if necessary
- Large advantage if intersection is small
- Otherwise, we need sorted tables (index-organized)
  - But then sort-merge is probably faster