

Datenbanksysteme II: Implementing J oins

Ulf Leser

Content of this Lecture

- Nested loop and blocked nested loop
- Sort-merge join
- Hash-based join strategies
- Index join

J oin Operator

- J oin: Highly time-critical operator
- Required in all practical queries and applications
- Often appears in groups (multi-way join)
- May create very large results
- Many variations, suited for different situations
- Example: select * from r, s WHERE R.B = S.B

\mathbf{A}	\mathbf{B}			
A 1	0			
A 2	1			
A 3	2			
A 4	1	\quad	\mathbf{B}	\mathbf{C}
:---:	:---:			
1	C 1			
2	C 2			
1	C 3			
3	C 4			
1	C 5			

\mathbf{A}	\mathbf{B}	\mathbf{C}
A 2	1	C 1
A 2	1	C 3
A 2	1	C 5
A 3	2	C 2
A 4	1	C 1
A 4	1	C 3
A 4	1	C 5

Nested-loop J oin

- Super-naïve

```
FOR EACH r IN R DO
    FOR EACH s IN S DO
        LOAD block(r) into M;
        LOAD block(s) into M;
        IF (r.B=s.B) THEN OUTPUT (r \bowtie s)
```


- Obvious improvement FOR EACH block x IN R DO

READ x into M;
FOR EACH block y IN S DO
READ y into M;
FOR EACH r in x DO
FOR EACH s in y DO

$$
\text { IF (r.B=s.B) THEN OUTPUT (r } \bowtie s)
$$

Cost Estimation

- Let $b(R), b(S)$ be number of blocks in R and in S
- Each block of outer relation is read once
- Inner relation is read once for each block of outer relation
- Inner two loops are free (only main memory ops)
- Altogether IO: $b(R)+b(R) * b(S)$

Example

- Assume $b(R)=10.000, b(S)=2.000$
- R as outer relation
$-\mathrm{IO}=10.000+10.000 * 2.000=20.010 .000$
- S as outer relation
$-10=2.000+2.000 * 10.000=20.002 .000$
- Use smaller relation as outer relation
- But choice doesn't really matter here ...
- Can't we do better?
- There is no " m " in the formula
- m: Size of main memory in blocks
- We are not using our available main memory
- This should make us suspicious

Blocked nested-loop join

- Rule of thumb: Use all memory you can get
- Use all memory the buffer manager allocates to your process
- This is a difficult decision even for a single query - which operations get how much memory?
- Blocked-nested-loop
FOR i=1 TO b(R)/(m-1) DO

READ NEXT m-1 blocks of R into M

FOR EACH block y IN S DO
READ BLOCK y into M
FOR EACH r in R-chunk DO
FOR EACH s in y do

$$
\text { IF (} \mathrm{r} . \mathrm{B}=\mathrm{s} . \mathrm{B}) \text { THEN OUTPUT }(\mathrm{r} \bowtie s)
$$

Cost

- Outer relation is read once
- Inner relation is read once for every chunk of R
- There are $\sim b(R) / m$ chunks
- Total IO: $b(R)+b(R) * b(S) / m$
- Further advantage: Chunks of outer relation are read sequentially

Example

- Assume $b(R)=10.000, b(S)=2.000, m=500$
- R as outer relation: $10.000+10.000 * 2.000 / 500=50.000$
- S as outer relation: $2.000+2.000 * 10.000 / 500=42.000$
- Again: Use smaller relation as outer relation
- Sizes of relations do matter
- If one relation fits into memory ($b<m$)
- Total cost: b(R) + b(S)
- One pass blocked-nested-loop
- We can do a little better with blocked-nested loop?

Zig-Zag J oin

- When finishing a chunk of the outer relation, hold last block of inner relation in memory
- Load next chunk of outer relation and compare with the still available last block of inner relation
- For each chunk, we need to read one block less
- Thus: Saves b(R)/m IO
- If R is outer relation

Content of this Lecture

- Nested loop and blocked nested loop
- Sort-merge join
- Hash-based join strategies
- Index join

Sort-Merge Join

- Sort both relations on join attribute(s)
- Merge both sorted relations
- Caution if join values appear multiple times
- The result size still is $|\mathrm{R}| *|S|$ in worst case
- If there are r/s tuples with value x in the join attribute in R / S, we need to output r^{*} s tuples for x

Example

\mathbf{A}	\mathbf{B}			
A 1	0			
A 2	1			
A 3	2			
A 4	1			
A		\longrightarrow	\mathbf{A}	\mathbf{B}
:---:	:---:			
A 1	0			
A 2	1			
A 4	1			
A 3	2	\longrightarrow	\mathbf{B}	\mathbf{C}
:---	:---			
1	C 1			
1	C 3			
1	C 5			
2	C 2			
3	C 4	\quad	\mathbf{B}	\mathbf{C}
:---	:---			
1	C 1			
2	C 2			
1	C 3			
3	C 4			
1	C 5			

A	\mathbf{B}	\mathbf{C}
A2	1	C 1
A2	1	C 3
A2	1	C 5
A4	1	C 1
A4	1	C 3
A4	1	C 5
A3	2	C 2

Merge Phase

```
r := first (R); s := first (S);
WHILE NOT EOR(R) and NOT EOR(S) DO
    IF r[B] < s[B] THEN r := next (R)
    ELSEIF r[B] > s[B] THEN s := next (S)
    ELSE /* r[B] = s[B]*/
        b := r[B]; B := \varnothing;
        WHILE NOT EOR(S) and s[B] = b DO
        B := B \cup {s};
        s = next (S);
        END DO;
        WHILE NOT EOR(R) and r[B] = b DO
        FOR EACH e in B DO
            OUTPUT (r,e);
        r := next (R);
        END DO;
END DO;
```


Cost estimation

- Sorting R costs $\sim 2 * b(R) *$ ceil $\left(\log _{m}(b(R))\right)$
- Sorting S costs $\sim 2 * b(S) *$ ceil $\left(\log _{m}(b(S))\right)$
- Merge phase reads each relation once
- Total: $b(R)+b(S)+2 * b(R) * \operatorname{ceil}\left(\log _{m}(b(R))\right)+$ 2*b(S)*ceil($\left.\log _{m}(b(S))\right)$
- Improvement
- While sorting, do not perform last read/write phase
- Open all sorted runs in parallel for merging
- Saves 2*b(R)+2*b(S) IO
- If sort was performed already somewhere down in the tree, sort phase can be skipped

Better than Blocked-Nested-Loop?

- Assume $b(R)=10.000, b(S)=2.000, m=500$
- BNL costs 42.000 (with S as outer relation)
- SM: 10.000+2.000+4*10.000+4*2.000 = 60.000
- Improved SM: 36.000
- Assume $b(R)=1.000 .000, b(S)=1.000, m=500$
- BNL costs $1000+1.000 .000 * 1000 / 500=2.001 .000$
- SM: 1.000.000+1.000+6*1.000.000+4*1.000 $=7.005 .000$
- When is SM better than BNL?
- Consider improved version with
- $2 * b(R) *$ ceil $\left(\log _{m}(b(R))\right)+2 * b(S) *$ ceil $\left(\log _{m}(b(S))\right)-b(R)-b(S) \sim$
- $2 * b(R) *\left(\log _{m}(b(R))+1\right)+2 * b(S) *\left(\log _{m}(S)+1\right)-b(R)-b(S)=$
- $2 * b(R) * \log _{m}(b(R))+2 * b(S) * \log _{m}(S)+b(R)+b(S) \sim$
- $b(R) *\left(2 * \log _{m}(b(R))+1\right)+b(S) *\left(2 * \log _{m}(S)+1\right)$
- Compare to BNL: $b(R)+b(R) * b(S) / m$

Comparison

- Assume relations of equal size b
- SM: $2 *{ }^{*} *\left(2 * \log _{m}(b)+1\right)$
- BNL: b+b²/m
- BNL > SM iff
$-b+b^{2} / m>2^{*} b^{*}\left(2 * \log _{m}(b)+1\right)$
- $1+b / m>4 * \log _{m}(b)+2$
- $b>4 m^{*} \log _{m}(b)+m$
- Example
- $b=10.000, m=100(10.000>500)$
- BNL: $10.000+1.000 .000, \mathrm{SM}: 6^{*} 10.000=60.000$
- $b=10.000, m=5000(10.000<25.000)$
- BNL: $10.000+20.000$, SM: $6 * 10.000=60.000$

Comparison 2

- $b(R)=1.000 .000, b(S)=2.000, \mathrm{~m}$ between 100 and 90.000

- BNL very good if one relation is much smaller than other and sufficient memory available (~ 1 pass suffices)
- SM can better cope with limited memory (and can be chained)

Comparison 3

- $b(R)=1.000 .000, b(S)=50.000, m$ between 500 and 90.000

- BNL very sensible to small memory sizes

Merge-J oin and Main Memory

- We have no „m" in the formula of the merge phase
- Implicitly, it is in the number of runs required
- More memory can be used for sequential reads
- Always fill memory with $m / 2$ blocks from R and $m / 2$ blocks from S
- Use asynchronous IO

1. Schedule request for $\mathrm{m} / 4$ blocks from R and $\mathrm{m} / 4$ blocks from S
2. Wait until loaded
3. Schedule request for next $\mathrm{m} / 4$ blocks from R and next $\mathrm{m} / 4$ blocks from S
4. Do not wait - perform merge on first 2 chunks of $m / 4$ blocks
5. Wait until previous request finished
6. We used this waiting time very well
7. Jump to 3 , using $m / 4$ chunks of M in turn

Content of this Lecture

- Nested loop and blocked nested loop
- Sort-merge join
- Hash-based join strategies
- Index join

Hash Join

- As usual, we can avoid sorting if good hash function is available
- Assume a very good hash function
- Distributes hash values essentially uniformly over hash table
- If we have good histograms (later), a simple interval-based hash function might do the job
- How can we apply hashing to joins?

Idea

- Use join attribute(s) as hash keys in both R and S
- Assume hash table of size m (use all memory)
- Each bucket will have size approx. $b(R) / m, b(S) / m$
- Hash phase
- Scan R, add to bucket, writing full blocks to disk immediately
- Scan S, add to bucket, writing full blocks to disk immediately
- [Better to use some $n<b(R) / m$ to allow for sequential writes]
- Merge phase
- Iteratively, load same buckets of R and of S (assume we can)
- Compute join

Cost

- Hash phase costs $2 * b(R)+2 * b(S)$
- Merge phase costs $b(R)+b(S)$
- Total: $3^{*}(b(R)+b(S))$
- What happens if hash function creates skew?

Hash J oin with Large Tables

- Merge phase assumes two buckets can be held in memory
- We assume that $2 * b(R) / m<m$ and $b(R) \sim b(S)$
- Note: Merge phase of sorting requires |runs| blocks, hashing requires 2 buckets to be loaded
- What if $\mathrm{b}(\mathrm{R})>\mathrm{m}^{2} / 2$?
- We need to create smaller buckets
- Two phase hash join: First partition R and S such that each partition hopefully has buckets smaller than $\mathrm{m}^{2} / 2$
- Compute buckets for all partitions in both relations
- Merge in cross-product manner
- $\mathrm{P}_{\mathrm{R}, 1}$ with $\mathrm{P}_{\mathrm{S}, 1}, \mathrm{P}_{\mathrm{S}, 2}, \ldots, \mathrm{P}_{\mathrm{S}, \mathrm{n}}$
- ...
- $\mathrm{P}_{\mathrm{R}, \mathrm{m}}$ with $\mathrm{P}_{\mathrm{s}, 1}, \mathrm{P}_{\mathrm{s}, 2}, \ldots, \mathrm{P}_{\mathrm{S}, \mathrm{n}}$

Improvement

- Actually, it suffices if either $b(R)$ or $b(S)$ is small enough
- Chose the smaller relation as driver (outer relation)
- Load one bucket into main memory
- Load same bucket in other relation block by block and filter tuples

Cost (with Partioning)

- Assume $b(R)=b(S)=b$
- How many partitions (p) do we need (if buckets are of equal size)?
- Goal: For each partition $P, b(P)<m^{2} / 2$
- Hence: $b / p \sim m^{2} / 2$, or $p \sim 2 * b / m^{2}$
- In each partition, there are (still) m buckets of size $\sim \mathrm{m} / 2$
- Hash/partition phase: $2 b+2 b$ (partitions are not materialized)
- Merge phase: $b+p^{*} m^{*} p^{*} m / 2=b+p^{2 *} m^{2} / 2=b+2 b^{2} / m^{2}$
- There are $p^{*} m$ buckets in outer relation
- For each bucket of outer relation, we have to read p buckets of inner relation, each of size m/2

Alternative

- Accept overly large buckets
- Perform blocked-nested loop for each pair of buckets
- There are m buckets, each of size $n=b / m(>m / 2)$
- Hash phase: $2 b+2 b$
- BNL phase: $m^{*}\left(n+n^{*} n / m\right)=m^{*}\left(b / m+b^{2} / m^{3}\right)=b+b^{2} / m^{2}$
- There are m bucket pairs
- For each, we perform blocked nested loop over two buckets of size n
- Note: Since in fact only one relation must be small enough, the crossproduct large hash join has app. the same cost

Hybrid Hash Join

- Assume that $\min (b(R), b(S))<m^{2} / 2$
- Note: During merge phase, we used only (b(R)+b(S))/m memory blocks (size of two buckets)
- This does usually not fill the entire memory
- Improvement
- Chose smaller relation (assume S)
- Chose a number k of buckets (with $k<m$)
- Again, assuming perfect hash functions, each bucket has size $b(S) / k$
- When hashing S, keep first x buckets completely in memory, but only one block for each of the ($k-x$) other buckets
- These first x buckets are never written to disk

Continued

- When hashing R
- If hash value maps into buckets 1..x, perform join immediately
- Otherwise, map to the $k-x$ other buckets and write to disk
- After first round, we have performed the join on x buckets and have k-x buckets of both relations on disk
- Perform "normal" merge phase on k-x buckets

Cost

- Total saving (compared to normal hash join)
- We save 2 IO for every block in either relation that is never written
- We keep x buckets in memory, having $\sim b(S) / k$ and $\sim b(R) / k$ blocks
- Together, we save $2^{*} x^{*}(b(S)+b(R)) / k I O$ operations
- How should we choose k and x ?
- Best solution: $x=1$ and k as small as possible
- Build buckets as large as possible, such that still one entire bucket and one block for all other buckets fits into memory
- Optimum reached at $k \sim b(S) / m$
- Note: k actually must be a little smaller since we must additionally hold one block for each other bucket
- Together, we save $2^{*}(b(S)+b(R)) * m / b(S)$
- Total cost: $(3-2 m / b(S)) *(b(S)+b(R))$

Quantitative Comparison

- HJ (both) with very robust performance, sometimes better, sometimes worse than SMJ

Comparing J oin Methods

Nested-Loops-Join

Merge-Join

Hash-Join

Comparing Hash Join and Sort-Merge Join

- With enough memory, both require approximately the same number of IO
- Hybrid-hash join improves slightly
- SM generates sorted results - sort phase of other joins in query plan can be dropped
- HJ does not need to perform sorting in main memory
- HJ only requires that one relation is "small enough"
- HJ only performs well if we have equally sized buckets
- Otherwise, performance might degrade due to unexpected paging
- To prevent, estimate k conservative and do not fill m completely
- Both can be tuned to generate mostly sequential IO

Content of this Lecture

- Nested loop and blocked nested loop
- Sort-merge join
- Hash-based join strategies
- Index join

Index Join

- Assume we have an index "B_Index" on join attribute B in one relation
- Choose indexed relation as inner relation FOR EACH r IN R DO

```
    X = { SEARCH (S.B_Index, <r.B>) }
    FOR EACH TID i in X DO
        s = READ (S, i) ; output (r \bowties).
```

\mathbf{A}	\mathbf{B}
A1	0
A2	1
A3	2
A4	1

- Nested loop with index access

Cost

- Typical situation: R.B is primary key, S.B is foreign key
- Every tuple from R has zero, one or more join tuples in S
- Let $v(X, B)$ be \# of different values of B in relation X
- Each value in S.B appears v~|S|/v(S,B) times
- For each $r \in R$, we read all tuples with given value in S
- Assume every r has at least one join partner: $b(R)+|R| *\left(\log _{k}(|S|)+v / k+v\right)$
- Outer relation read once
- Find value in B^{*}-tree index, read all matching TIDs (with block size k), access S for each TID (assume they are all in different blocks)
- Assume only r tuples of R have partner: $b(R)+|R| * \log _{k}(|S|)+r(v / k+v)$

Comparison

- Compare to sort-merge join
- Neglect $\log _{k}(|S|)+v / k$
- First term is mostly ~ 2, second mostly ~ 1
- $\mathrm{SM}>\mathrm{I}$, roughly requires
- Assume that 2 passes suffice for sorting
- $3^{*}(\mathrm{~b}(\mathrm{R})+\mathrm{b}(\mathrm{S}))>\mathrm{b}(\mathrm{R})+|\mathrm{R}| * \mathrm{~b}(\mathrm{~S}) / \mathrm{v}(\mathrm{S}, \mathrm{B})$
- Example
$-b(R)=10.000, b(S)=2.000, m=500, v(S, B)=10, k=50$
- SM: 36.000
- IJ: $10.000+10.000 * 50 * 2.000 / 10 \sim 1.000 .000 .000$
- When is an index join a good idea?

Index J oin: Advantageous Situations

- When $r(|R|)$ is really small
- If join is combined with selection on R
- Most tuples are filtered, only very few require access to S
- When r is very small, R.B is foreign key, S.B is primary key
- Similar to previous case
- If S is primary key, then $v(S, B)=|S|$, and hence $v=1$
- R can be read fast and "probes" into S
- We get total cost of $\sim b(R)+r$ (plus index access etc.)

Index J oin with Sorting

- Note: Blocks of S are read many times
- Caching will reduce the overhead - difficult to predict
- Alternative
- First compute all necessary TID's from S
- Sort and read tuples from S in sorted order
- Sort in which order? Assumption?
- Advantage: Blocks of S will be in cache when accessed
- Requires enough memory for keeping TID list and tuples of R
- Pipeline breaker

Index J oin with 2 Indexes

- Assume we have an index on both join attributes
- What are we doing?

Index J oin with 2 Indexes

- TID-list join
- Read both indexes sequentially
- Join (value,TID) lists on value
- Probe into R and S only if necessary
- Large advantage if intersection is small
- Otherwise, we need sorted tables (index-organized)
- But then sort-merge is probably faster

