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Content of this Lecture 

 
 
 

• Nested loop and blocked nested loop 
• Sort-merge join 
• Hash-based join strategies 
• Index join 
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Join Operator 

• Join: Highly time-critical operator 
– Required in all practical queries and applications 
– Often appears in groups (multi-way join) 
– May create very large results 
– Many variations, suited for different situations 

• Example: SELECT * FROM R, S  
           WHERE R.B = S.B 

R ⋈ S 

A B 

A1 0 

A2 1 

A3 2 

A4 1 

B C 

1 C1 

2 C2 

1 C3 

3 C4 

1 C5 

A B C 

A2 1 C1 

A2 1 C3 

A2 1 C5 

A3 2 C2 

A4 1 C1 

A4 1 C3 

A4 1 C5 
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• Super-naïve 
FOR EACH r IN R DO 

FOR EACH s IN S DO 
 LOAD block(r) into M; 
LOAD block(s) into M; 
IF (r.B=s.B) THEN OUTPUT (r ⋈ s) 

 

• Obvious improvement 
FOR EACH block x IN R DO 

READ x into M; 
FOR EACH block y IN S DO 
  READ y into M; 
  FOR EACH r in x DO 
    FOR EACH s in y DO 
      IF (r.B=s.B) THEN OUTPUT (r ⋈ s) 

 

Nested-loop Join 

R 

S 
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• Let b(R), b(S) be number of blocks in R and in S 
• Each block of outer relation is read once 
• Inner relation is read once for each block of outer relation 
• Inner two loops are free (only main memory ops) 
• Altogether IO: b(R)+b(R)*b(S) 

Cost Estimation 
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Example 

 
• Assume b(R)=10.000, b(S)=2.000 
• R as outer relation 

– IO = 10.000 + 10.000*2.000 = 20.010.000 

• S as outer relation 
– IO = 2.000 + 2.000*10.000 = 20.002.000 

• Use smaller relation as outer relation 
• But choice doesn’t really matter here … 
• Can’t we do better? 
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... 

 
 
 

• There is no “m” in the formula 
– m: Size of main memory in blocks 

• We are not using our available main memory 
• This should make us suspicious 
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Blocked nested-loop join 

• Rule of thumb: Use all memory you can get 
– Use all memory the buffer manager allocates to your process 
– This is a difficult decision even for a single query – which 

operations get how much memory? 

 
• Blocked-nested-loop 

FOR i=1 TO b(R)/(m-1) DO 
 READ NEXT m-1 blocks of R into M 
  FOR EACH block y IN S DO 
    READ BLOCK y into M 
    FOR EACH r in R-chunk DO 

   FOR EACH s in y do 
 IF (r.B=s.B) THEN OUTPUT (r ⋈ s)  
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Cost 

 
 

 
• Outer relation is read once 
• Inner relation is read once for every chunk of R 
• There are ~b(R)/m chunks 
• Total IO: b(R) + b(R)*b(S)/m 
• Further advantage: Chunks of outer relation are read 

sequentially 
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Example 

 
• Assume b(R)=10.000, b(S)=2.000, m=500 
• R as outer relation: 10.000 + 10.000*2.000/500 = 50.000 
• S as outer relation: 2.000 + 2.000*10.000/500 = 42.000 
• Again: Use smaller relation as outer relation 
• Sizes of relations do matter 

– If one relation fits into memory (b<m) 
– Total cost: b(R) + b(S) 
– One pass blocked-nested-loop 

• We can do a little better with blocked-nested loop? 
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Zig-Zag Join 

 
 

• When finishing a chunk of the outer relation, hold last 
block of inner relation in memory 

• Load next chunk of outer relation and compare with the 
still available last block of inner relation 

• For each chunk, we need to read one block less 
• Thus: Saves b(R)/m IO 

– If R is outer relation 
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Content of this Lecture 

 
 
 

• Nested loop and blocked nested loop 
• Sort-merge join 
• Hash-based join strategies 
• Index join 
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Sort-Merge Join 

 
 

• Sort both relations on join attribute(s) 
• Merge both sorted relations 
• Caution if join values appear multiple times 

– The result size still is |R|*|S| in worst case 
– If there are r/s tuples with value x in the join attribute in R / S, we 

need to output r*s tuples for x 
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Example 

A B 

A1 0 

A2 1 

A3 2 

A4 1 

B C 

1 C1 

2 C2 

1 C3 

3 C4 

1 C5 

A B 

A1 0 

A2 1 

A4 1 

A3 2 

B C 

1 C1 

1 C3 

1 C5 

2 C2 

3 C4 

A B C 

A2 1 C1 

A2 1 C3 

A2 1 C5 

A4 1 C1 

A4 1 C3 

A4 1 C5 

A3 2 C2 
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r := first (R);  s := first (S); 
WHILE NOT EOR(R) and NOT EOR(S) DO 
  IF r[B] < s[B] THEN r := next (R) 
  ELSEIF r[B] > s[B] THEN s := next (S) 
  ELSE     /* r[B] = s[B]*/ 
    b := r[B];  B := ∅; 
       WHILE NOT EOR(S) and s[B] = b DO 
    B := B ∪ {s}; 
    s = next (S); 
    END DO; 
    WHILE NOT EOR(R) and r[B] = b DO 
    FOR EACH e in B DO 
     OUTPUT (r,e); 
    r := next (R); 
    END DO; 
END DO; 

Merge Phase 
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Cost estimation 

 
• Sorting R costs ~2*b(R)*ceil(logm(b(R))) 
• Sorting S costs ~2*b(S)*ceil(logm(b(S))) 
• Merge phase reads each relation once 
• Total: b(R) + b(S) + 2*b(R)*ceil(logm(b(R))) + 

2*b(S)*ceil(logm(b(S))) 
• Improvement 

– While sorting, do not perform last read/write phase 
– Open all sorted runs in parallel for merging 
– Saves 2*b(R)+2*b(S) IO 

• If sort was performed already somewhere down in the 
tree, sort phase can be skipped 
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Better than Blocked-Nested-Loop? 

• Assume b(R)=10.000, b(S)=2.000, m=500 
– BNL costs 42.000 (with S as outer relation) 
– SM: 10.000+2.000+4*10.000+4*2.000 = 60.000 
– Improved SM: 36.000 

• Assume b(R)=1.000.000, b(S)=1.000, m=500 
– BNL costs 1000 + 1.000.000*1000/500 = 2.001.000 
– SM: 1.000.000+1.000+6*1.000.000+4*1.000 = 7.005.000 

• When is SM better than BNL? 
– Consider improved version with  

• 2*b(R)*ceil(logm(b(R))) + 2*b(S)*ceil(logm(b(S))) – b(R) - b(S) ~ 
• 2*b(R)*(logm(b(R))+1) + 2*b(S)*(logm(S)+1) – b(R) – b(S) = 
• 2*b(R)*logm(b(R)) + 2*b(S)*logm(S) + b(R) + b(S) ~  
• b(R)*(2*logm(b(R))+1) + b(S)*(2*logm(S)+1) 

– Compare to BNL: b(R) + b(R)*b(S)/m 
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Comparison 

• Assume relations of equal size b 
• SM: 2*b*(2*logm(b)+1) 
• BNL: b+b2/m 
• BNL > SM iff 

– b+b2/m > 2*b*(2*logm(b)+1) 
– 1+b/m > 4*logm(b) + 2 
– b > 4m*logm(b) + m 

• Example 
– b=10.000, m=100 (10.000 > 500) 

• BNL: 10.000 + 1.000.000, SM: 6*10.000 = 60.000 

– b=10.000, m=5000 (10.000 < 25.000) 
• BNL: 10.000 + 20.000, SM: 6*10.000 = 60.000 
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Comparison 2 

• b(R)=1.000.000, b(S)=2.000, m between 100 and 90.000 
 
 
 
 

 
 

 
 

 
– BNL very good if one relation is much smaller than other and 

sufficient memory available (~1 pass suffices ) 
– SM can better cope with limited memory (and can be chained) 
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Comparison 3 

• b(R)=1.000.000, b(S)=50.000, m between 500 and 90.000 

• BNL very sensible to small memory sizes 
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Merge-Join and Main Memory 

• We have no „m“ in the formula of the merge phase 
– Implicitly, it is in the number of runs required 

• More memory can be used for sequential reads 
– Always fill memory with m/2 blocks from R and m/2 blocks from S 
– Use asynchronous IO 

1. Schedule request for m/4 blocks from R and m/4 blocks from S 
2. Wait until loaded 
3. Schedule request for next m/4 blocks from R and next m/4 blocks 

from S 
4. Do not wait – perform merge on first 2 chunks of m/4 blocks 
5. Wait until previous request finished 

1. We used this waiting time very well 

6. Jump to 3, using m/4 chunks of M in turn 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 22 

Content of this Lecture 

 
 
 

• Nested loop and blocked nested loop 
• Sort-merge join 
• Hash-based join strategies 
• Index join 
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Hash Join 

 
 

• As usual, we can avoid sorting if good hash function is 
available 

• Assume a very good hash function 
– Distributes hash values essentially uniformly over hash table 
– If we have good histograms (later), a simple interval-based hash 

function might do the job 

• How can we apply hashing to joins? 
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Idea 

• Use join attribute(s) as hash keys in both R and S 
– Assume hash table of size m (use all memory) 
– Each bucket will have size approx. b(R)/m, b(S)/m 

• Hash phase 
– Scan R, add to bucket, writing full blocks to disk immediately 
– Scan S, add to bucket, writing full blocks to disk immediately 
– [Better to use some n<b(R)/m to allow for sequential writes] 

• Merge phase 
– Iteratively, load same buckets of R and of S (assume we can) 
– Compute join 
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Cost 

 
 
 

• Hash phase costs 2*b(R)+2*b(S) 
• Merge phase costs b(R) + b(S) 
• Total: 3*(b(R)+b(S)) 

– What happens if hash function creates skew? 
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Hash Join with Large Tables 

• Merge phase assumes two buckets can be held in memory 
– We assume that 2*b(R)/m<m and b(R)~b(S) 
– Note: Merge phase of sorting requires |runs| blocks, hashing 

requires 2 buckets to be loaded  

• What if b(R)>m2/2 ? 
– We need to create smaller buckets 
– Two phase hash join: First partition R and S such that each 

partition hopefully has buckets smaller than m2/2 
– Compute buckets for all partitions in both relations 
– Merge in cross-product manner 

• PR,1 with PS,1, PS,2, …, PS,n 
• … 
• PR,m with PS,1, PS,2, …, PS,n 
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Improvement 

 

 
 

• Actually, it suffices if either b(R) or b(S) is small enough 
• Chose the smaller relation as driver (outer relation) 
• Load one bucket into main memory 
• Load same bucket in other relation block by block and filter 

tuples 
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Cost (with Partioning) 

• Assume b(R)=b(S)=b 
• How many partitions (p) do we need (if buckets are of equal size)? 

– Goal: For each partition P, b(P)<m2/2 
– Hence: b/p ~ m2/2, or p ~ 2*b/m2 

• In each partition, there are (still) m buckets of size ~m/2 
• Hash/partition phase: 2b+2b (partitions are not materialized) 
• Merge phase: b + p*m * p*m/2 = b+ p2*m2/2 = b + 2b2/m2 

– There are p*m buckets in outer relation 
– For each bucket of outer relation, we have to read p buckets of inner 

relation, each of size m/2 

1 2 3 1 2 3 1 2 3 

1 2 3 1 2 3 1 2 3 
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Alternative 

• Accept overly large buckets  
• Perform blocked-nested loop for each pair of buckets 
• There are m buckets, each of size n=b/m (>m/2) 
• Hash phase: 2b+2b 
• BNL phase: m * (n + n*n/m) = m*(b/m+b2/m3) = b+b2/m2 

– There are m bucket pairs 
– For each, we perform blocked nested loop over two buckets of size n 

• Note: Since in fact only one relation must be small enough, the cross-
product large hash join has app. the same cost 

1 2 3 

1 2 3 
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Hybrid Hash Join 

 
• Assume that min(b(R),b(S))<m2/2 
• Note: During merge phase, we used only (b(R)+b(S))/m 

memory blocks (size of two buckets) 
• This does usually not fill the entire memory 
• Improvement 

– Chose smaller relation (assume S) 
– Chose a number k of buckets (with k<m) 

• Again, assuming perfect hash functions, each bucket has size b(S)/k 

– When hashing S, keep first x buckets completely in memory, but 
only one block for each of the (k-x) other buckets 

• These first x buckets are never written to disk 
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Continued 

 
 
 

– … 
– When hashing R 

• If hash value maps into buckets 1..x, perform join immediately 
• Otherwise, map to the k-x other buckets and write to disk 

– After first round, we have performed the join on x buckets and 
have k-x buckets of both relations on disk 

– Perform “normal” merge phase on k-x buckets 
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Cost 

• Total saving (compared to normal hash join) 
– We save 2 IO for every block in either relation that is never written 
– We keep x buckets in memory, having ~ b(S)/k and ~b(R)/k blocks 
– Together, we save 2*x*(b(S)+b(R))/k IO operations 

• How should we choose k and x? 
• Best solution: x=1 and k as small as possible 

– Build buckets as large as possible, such that still one entire bucket 
and one block for all other buckets fits into memory 

– Optimum reached at k ~ b(S)/m 
• Note: k actually must be a little smaller since we must additionally hold 

one block for each other bucket 

• Together, we save 2*(b(S)+b(R))*m/b(S) 
• Total cost: (3-2m/b(S))*(b(S)+b(R)) 
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Quantitative Comparison 
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• BNLJ sensitive to memory 
and size differences 

• HJ (both) with very robust performance, sometimes better, 
sometimes worse than SMJ 
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Comparing Join Methods  
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Comparing Hash Join and Sort-Merge Join 

• With enough memory, both require approximately the 
same number of IO 
– Hybrid-hash join improves slightly 

• SM generates sorted results – sort phase of other joins in 
query plan can be dropped 

• HJ does not need to perform sorting in main memory 
• HJ only requires that one relation is “small enough” 
• HJ only performs well if we have equally sized buckets 

– Otherwise, performance might degrade due to unexpected paging 
– To prevent, estimate k conservative and do not fill m completely 

• Both can be tuned to generate mostly sequential IO 
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Content of this Lecture 

 
 
 

• Nested loop and blocked nested loop 
• Sort-merge join 
• Hash-based join strategies 
• Index join 
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Index Join 

• Assume we have an index “B_Index” on join attribute B in 
one relation 

• Choose indexed relation as inner relation 
FOR EACH r IN R DO 
   X = { SEARCH (S.B_Index, <r.B>) } 
     FOR EACH TID i in X DO 
       s = READ (S, i) ; output (r ⋈ s). 

 
 
 
 
 

• Nested loop with index access 

1 
2 
3 

A B 

A1 0 

A2 1 

A3 2 

A4 1 

B C 

1 C1 

2 C2 

1 C3 

3 C4 

1 C5 
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Cost 

• Typical situation: R.B is primary key, S.B is foreign key 
– Every tuple from R has zero, one or more join tuples in S 

• Let v(X,B) be # of different values of B in relation X 
– Each value in S.B appears v~|S|/v(S,B) times 

• For each r∈R, we read all tuples with given value in S 
• Assume every r has at least one join partner:  

b(R) + |R|*(logk(|S|) + v/k + v) 
– Outer relation read once 
– Find value in B*-tree index, read all matching TIDs (with block size 

k), access S for each TID (assume they are all in different blocks) 

• Assume only r tuples of R have partner:  
b(R) + |R|*logk(|S|) + r(v/k + v) 
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Comparison 

 
• Compare to sort-merge join 

– Neglect logk(|S|) + v/k 
• First term is mostly ~2, second mostly ~1 

– SM > IJ roughly requires  
• Assume that 2 passes suffice for sorting 
• 3*(b(R)+b(S)) > b(R)+|R|*b(S)/v(S,B) 

• Example  
– b(R)=10.000, b(S)=2.000, m=500, v(S,B)=10, k=50 
– SM: 36.000 
– IJ: 10.000 + 10.000*50*2.000/10 ~ 1.000.000.000 

• When is an index join a good idea? 
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Index Join: Advantageous Situations 

 
 

• When r (|R|) is really small 
– If join is combined with selection on R 
– Most tuples are filtered, only very few require access to S 

• When r is very small, R.B is foreign key, S.B is primary key 
– Similar to previous case 
– If S is primary key, then v(S,B)=|S|, and hence v=1 
– R can be read fast and “probes” into S 
– We get total cost of ~b(R)+r (plus index access etc.) 
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Index Join with Sorting 

 
• Note: Blocks of S are read many times 

– Caching will reduce the overhead – difficult to predict 

• Alternative 
– First compute all necessary TID’s from S 
– Sort and read tuples from S in sorted order 

• Sort in which order? Assumption? 

– Advantage: Blocks of S will be in cache when accessed 
– Requires enough memory for keeping TID list and tuples of R 
– Pipeline breaker 
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Index Join with 2 Indexes 

 
 
 
 

• Assume we have an index on both join attributes 
• What are we doing? 

 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 43 

Index Join with 2 Indexes 

 
• TID-list join 
• Read both indexes sequentially  
• Join (value,TID) lists on value 
• Probe into R and S only if necessary 
• Large advantage if intersection is small 
• Otherwise, we need sorted tables (index-organized) 

– But then sort-merge is probably faster 
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