
Ulf Leser

Datenbanksysteme II:
Multidimensional Index Structures 2

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 2

Content of this Lecture

• Introduction
• Partitioned Hashing
• Grid Files
• kdb Trees

– kd Tree
– kdb Tree

• R Trees
• Example: Nearest neighbor image search

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 3

kd Tree

• Grid file disadvantages
– All hyperregions of the d-dimensional space are eventually split at

the same scales (dimension/position)
– First cell that overflows determines split
– This choice is global and never undone

• kd Trees
– Bentley: Multidimensional Binary Search Trees Used for Associative

Searching. CACM, 1975.
– Multidimensional variation of binary search trees
– Hierarchical splitting of space into regions
– Regions in different subtrees may use different split positions
– Better adaptation to local clustering of data
– Note: kd Tree originally is a main memory data structure

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 4

General Idea

• Binary, rooted tree
• Inner nodes define splits

(dimension / value)
• Dimensions need not

be statically assigned
to levels of the tree

• Leaves: Points+TIDs
• Each leaf represents d-

dimensional convex
hypercube with m
border planes (m≤2d)

(4,6)
(3,3)

(0,4)
(1,1)

(5,6)

(3,1)
 (6,4)

x<3 x≥3

x<5

y<3

x ≥ 5

y ≥ 2

y<7
y≥1 y<1

(2,0)

y≥3
y < 2

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 5

Blocks and Points

• Keep everything in memory
– Leaves are singular points

• Keep tree in memory and blocks
on disk
– Leaves contain many points

• Store everything on disk
– k-DB Tree: Special layout for tree

• On modern hardware
– Block size – level 1/2/3 cache
– Random mem access in inner tree
– But larger leaves create smaller trees
– Parallel search? SIMD? Tree layout?

(4,6)
(3,3)

(5,6)
(6,4)

x<3
x≥3

x<5 x ≥ 5

y ≥ 2

y<7

y≥3
y < 2

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 6

The Brick Wall

(4,6)
(3,3)

(0,4)
(1,1)

(3,1)
 (6,4)

x<3 x≥3

x<5

y<3

x ≥ 5

y ≥ 2

y<7
y≥1 y<1

(2,0)

y≥3
y < 2

10

10

(4,9)

Splits are local
(for their subtree)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 7

Local Adaptation

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 8

Search Operations

• Exact point search

– ?

• Partial match query
– ?

• Range query
– ?

• Nearest Neighborhood
– ?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 9

Search Operations

• Exact point search

– In each inner node, decide upon direction based on split condition
– Search inside leaf

• Partial match query
– If dimension of condition in inner node is part of the query –

proceed as for exact match
– Otherwise, follow all children (multiple search paths)

• Range query
– Follow all children matching the range conditions (multiple paths)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 10

Nearest Neighbor

• Search point
• Upon descending, build a priority queue of all directions

not taken
– Compute minimal distance between point and hyper-region not

followed
– Keep sorted by this minimal distance

• Once at a leaf, visit hyperregions in order of distance to
query point
– Jump to split point and follow closest path
– Regions not visited are put into priority queue
– Iterate until point found such that provably no closer point exists

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 11

The Brick Wall

(4,6)
(3,3)

(0,4)
(1,1)

(3,1)
 (6,4)

x<3 x≥3

x<5

y<3

x ≥ 5

y ≥ 2

y<7
y≥1 y<1

(2,0)

y≥3
y < 2

10

10

(4,9)

Query: (5.1, 2.2)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 12

kd-Tree Insertion

• Search leaf block; if space available – done
• Otherwise, chose split (dimension + position) for this block

– This is a local decision, valid for subtree of this node
– Option: Use each dimension in turn and split region into two

equally sized subspaces (very robust)
– Option: Consider current points in leaf and split in two sets of

approximately equal size
– Finding “optimal” split points is expensive for high dimensional data

(point set needs to be sorted in each dimension) – use heuristics
– Wrong decisions in early splits may lead to tree degradation
– But we don’t know which points will be inserted in future

• Use knowledge on attribute value distributions

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 13

Deletion

• Search leaf block and delete point
• If block becomes (almost) empty

– Leave it – bad fill degree
– Merge with neighbor leaf (if existing)

• Two leaves and one parent node are replaces by one leaf
• Not very clever if neighbor almost full

– Balance with neighbor leaf (if existing)
• Change split condition in parent such that children have equal size
• Not very clever if neighbor almost empty

– Balance with neighborhood
• Also considering maximal depth of leaves

• kd trees have no guaranteed balance (~ depth)
• There is no guaranteed fill degree in blocks

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 14

Static kd Trees

• Assume the set of points to be indexed is static and known
• Worst-case optimal kd Trees

– Rotate through dimensions
• Typically in order of variance – wide spread dimensions first

– Sort remaining points and choose median as split point
– Guarantees tree depth of O(log(n)) for point queries
– But clustering of points not considered – bad similarity queries

• Nearby points are not nearby in the tree

• K-means trees
– Iterative k-means clustering of points
– K: Tree width (fanout)
– Faster similarity queries, tree depth not guaranteed

• n-Ary kd-Trees for exploiting SIMD instructions

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 15

Content of this Lecture

• Introduction
• Partitioned Hashing
• Grid Files
• kdb Trees

– kd Tree
– kdb Tree

• R Trees
• Example: Nearest neighbor image search

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 16

kd Trees on Secondary (Block) Storage – Naive Solution

• Store each inner node in

one block
– Inner blocks are essentially

empty
– As trees may degrade, every

search requires many IO
– Since tree is not balanced,

worst case approaches O(n)
IO

(4,6)
(3,3)

(0,4)
(1,1)

(5,6)

(3,1)
 (6,4)

x<3 x≥3

x<5

y<3

x ≥ 5

y ≥ 2

y<
7

y≥
1

y<1

(2,0)

y≥3
y < 2

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 17

Better IO: Fill Inner Blocks

• Option 1: Build k-ary trees
– Inner node splits a dimension at many scales
– When leaf overflows, insert new split into parent
– When leaf underflows, merge and remove split from parent
– Still not balanced, no guaranteed fill degree

Age 10 30 40 50 60 80

Weight 10 12 14

Weight 8 15 20

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 18

kdb trees

• Option 2: Map many inner nodes to a single blocks
– Robinson: The K-D-B-Tree: A Search Structure for Large

Multidimensional Dynamic Indexes. SIGMOD 1981.
– Inner nodes have two children (mostly in the same block)
– Each block holds many inner nodes
– Inner blocks have many children

• Roots of kd trees in other blocks

– Can be balanced (later)
– No guaranteed fill degree

• Operations
– Searching: As with kd trees, but

has guaranteed tree depth
– Insertion/Deletion: Keep balance

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 19

Another View

• Inner blocks define bounding boxes on subtrees

s1

s22

s2

s11

s13 s12

s21

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 20

Example – Composite Index

• d=3, n=1E9, block size 4096, |point|=9, |b-ptr|=10
– We need ~2.2M leaf blocks

• Composite B+ index
– Inner blocks store 108-215 pointers; assume optimal density
– We need 3 levels

• 2nd level has 215 blocks and 46.000 pointers
• 3rd level has 46K blocks and 10M pointers, 2.2M are needed

– With uniform distribution, 1st level will mostly split on 1st
dimension, 2nd level on 2nd dimension …

• Box query, 5% selectivity in each dimension
– We read 5% of 2nd level blocks = 10 IO
– For each, we read 5% of 3rd level blocks = 107 IO
– For each, we read 5% of data blocks = 1150 IO
– Altogether: ~1250 IO

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 21

Visualization

x-Dim

y-Dim
... 215 ptr ...

... 215 ptr ...

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 22

Example: Partial Box Query

• Box query on 2nd and 3rd dimensions only, asking for a

5% range in both dimensions
– We need to scan all 215 2nd level blocks

• Each 2nd level block contains the 5% range of 1st dimension

– For each, we read 5% of 3rd level blocks = 2300 blocks
– For each, we read 5% of data blocks = ~25K data blocks
– Altogether: 26.000 IO

• Note: 0.05 selectivity in two dimensions means 0.0025
selectivity altogether = 125K points
– Only 270 blocks if optimally packed

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 23

With Balanced kdb Tree

• Balanced kdb tree will have ~22 levels
– ~455 points in one block (assume optimal packaging)
– We need to address 1E9/455 ~221 blocks

• Consider 128=27 inner nodes in one kdb-block
– Rough estimate; we need to store 1 dim indicator, 1 split value,

and 2 ptr for each inner node, but most ptr are just offsets into the
same block

• kdb tree structure
– 1st level block holds 128 inner nodes = levels 1-7 of kd tree
– There are 128 2nd level blocks holding levels 8-14 of kd tree
– There are ~16000 3rd level blocks , each addressing 128 data

blocks

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 24

Space Covered

• 1st block splits space in 128 regions
• 2nd level block split space in ~16K regions, each region

covering 0,00625% of the entire space
• Query selectivity is (0.05)3 = 0,000125% of points and of

space (given uniform distribution)
• Thus, we very likely find all results in 1 region of the 1st

level and in 1 region of the second level
– In the worst case, we overlap in all dimensions – 8 regions
– Not true in high dimensional spaces – everything becomes a border

• See later: Curse of Dimensionality

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 25

x

y

x

y

z

x

y

z

x

y

x

y

z

x

y

z

x

y

x

y

z

x

y

z

x

y

x

y

z

x

y

z

x

y

x

y

z

x

y

z

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 26

Box Query Continued

• Box query in all three coordinates, 5% selectivity in each
dimension
– We need to load the root block
– Very likely, we need to look at only one 2nd level block
– Very likely, we need to look at only one 3rd level block
– Assume we need to load all therein addressed 128 data blocks
– Altogether: 1+1+1+128 = 131 IO

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 27

Example - Partial Box Query with kdb Tree

• Box query on 2nd and 3rd dimensions only, asking for a
5% range in each dimension
– In first block (7 levels), we have ~2 splits in each dimension

• Two times 2 splits, one time three splits
• Assume we miss the dimension with 3 splits

– Hence, in ~4 of 7 splits we know where we need to go, in ~3 splits
we need to follow both children

– We need to check only 23=8 second-level blocks
• Again – number gets higher when query range crosses split points

– Same argument holds in 2nd level blocks = 8*8 data blocks
– Same argument holds in 3nd level blocks = 8*8*8 data blocks
– Altogether: 1+8+64+512 ~580 IO

• Compare to 3100 for composite index

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 28

It‘s the Workload, st …

• Advantages depend on expected queries

• Composite indexes are optimal if prefix of composite key is
(heavily) constrained by the query
– Comp-index also “partition” the space
– Comp-index is similar to a kd-tree where in the first levels, only

dimension X is used, then only dimension Y, …

• MDIS are better if queries address neighboring points in
many dimensions (box queries, neighborhood queries)
– “Better” depends a lot on data and workload distribution

• Scanning is better when selectivity of queries is low

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 29

Balancing upon Insertions

• Similar method as for B+ trees
– Search appropriate leaf
– If leaf overflows, split

• Chose dimension and scale; distribute points
• Propagate to parent node

– In parent node, a leaf must be replaced by an inner node
• With two new blocks as children

– This may make the parent overflow – propagate up the tree

• Splitting an inner node
– Chose a dimension and scale
– Distribute nodes to the two new blocks

• Split might have to be propagated downwards
• “Default” split may lead to very bad fill degree

– Propagate new pointers to parent

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 30

Conclusion

• Beware our simplifying assumptions

– Uniform distribution
– Optimal packaging of points at all levels
– Query ranges contained in hypercubes

• kdb trees have problem with fill degree
– Many insertions/deletions lead to almost empty leaves
– Index grows unnecessary large
– No guarantee for lowest fill degree as in B+ tree

• Nice idea, difficult to implement, rarely used in practice

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 31

Content of this Lecture

• Introduction
• Partitioned Hashing
• Grid Files
• kdb Trees
• R Trees
• Conclusions
• Example: Nearest neighbor image search

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 32

R-Trees

• Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. SIGMOD 1984.

• Can store geometric objects (with size) as well as points
– Arbitrary geometric objects are represented by their minimal

bounding box (MBB)

• Each object is stored in exactly one region on each level
• Since objects may overlap, regions may overlap
• Only regions containing data objects are represented

– Allows for fast stop when searching in empty regions

• Tree is kept balanced (like B tree)
• Guaranteed fill degree (like B tree)
• Many variations (see literature)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 33

General Idea

 b5

b4

b3

b2

b1

c5

c3

c2

c4

c8

c1 c7

c6

 c12

c11

 c10

c9

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

a2

a1

a1 a2

• Spatial objects
– Represented by their minimal

bounding box (MBB)

• Objects are hierarchically
grouped into overlapping
regions

• Objects are stored only once

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 34

Motivation: Objects that are not points

• We need overlapping regions
– For instance, if all MBBs overlap
– No split possible which creates disjoints sets of objects

• Objects crossing a split
– Store in only one (R-Tree)

• Search must examine both
• No redundant data

– Store in both (R+-Tree)
• Search may chose any one
• Redundant data

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 35

R Tree versus kd Tree

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 36

Concepts

• Inner nodes consist of a set of d-dimensional regions

• Every region is a (convex) hypercube - MBB
• Regions are hierarchically organized
• Each region of an inner node points to a subtree or a leaf
• The region border is the MBB of all objects in this subtree

• Inner node: MBB of all child regions
– Leaf blocks: All objects are contained in the respective region

• Regions in one level may overlap
• Regions of a level do not cover the space of its parent

completely

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 37

Searching

• Point query
– At each inner node, find all regions containing the point
– Multi-path: All those subtrees must be searched

• Range query: Find all objects (MBBs) overlapping with a
given query range (MBB)
– In each node, intersect query with all regions
– More than one region might have non-empty overlap
– All those subtrees must be searched

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 38

Inserting an Object

• In each node, find all candidate regions

– Any region may overlap the object completely, partly, or not
– Object may overlap none, one, or many regions – partly or

completely
– At least one region with complete overlap

• Chose one (smallest?) and descend

– None with complete, but at least one with partial overlap
• Chose one (largest overlap?) and descend

– No overlapping region at all
• Chose one (closest?) and descend

• Eventually, we reach a leaf
– We insert object in only one leaf

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 39

Continuation

• If free space in leaf

– Insert object and adapt MBB of leaf
– Recursively adapt MBBs up the tree
– This usually generates larger overlaps – search degrades

• If no free space in leaf
– Split block in two regions
– Compute MBBs
– Adapt parent node: One more child, changed MBBs
– May affect MBB of higher regions and/or incur overflows at high

regions – ascend recursively

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 40

Example (from Donald Kossmann)

c5

c3

c2

c4

c8

c1 c7

c6

 c12

c11

 c10

c9

Compute MBBs for all non-
rectangular objects

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 41

One State

 b5

b4

b3

b2

b1

c5

c3

c2

c4

c8

c1 c7

c6

 c12

c11

 c10

c9

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

a2

a1

a1 a2

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 42

Example: Searching

 b5

b4

b3

b2

b1

a2

a1

c5

c3

c2

c4

c8

c1 c7

c6

 c12

c11

 c10

c9

a1 a2

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

No overlap in child regions
(only in MBB) – stop search

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 43

Example: Insertion, Search Phase

 b5

b4

b3

b2

b1

a2

a1

c5

c3

c2

c4

c8

c1 c7

c6

 c12

c11

 c10

c9

a1 a2

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

• Search regions whose MBB
must be expanded the least

• Repeat on each level
• Here: Leaf overflow, split

– Note: Choosing b4 would
avoid split – but how can we
know?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 44

Example: Insertion, Split Phase

 b5

 c12

c11

 c10

b4 b5

c8 c9 c10 c11 c12

c13

b4 b5 b6

c8 c9 c11 c12 c10 c13

 b5

 c12

c11

 c10

c13

b6

Several splits are possible

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 45

Example: Insertion, Adaptation Phase

a1 a2

b1 b2 b3

c1 c2 c3 c4 c5 c6 c7

b4 b5 b6

c8 c9 c11 c12 c10 c13

• MBBs of all parent nodes must be adapted
• Block split might induce node splits in higher levels

of the tree (not here)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 46

Where to Split

• Finding the best splitting strategy has seen ample research
• Option 1: Avoid overlaps

– Compute split such that overlap is minimal (or even avoided)
– Minimizes necessity to descend to different children during search
– May create larger regions – more futile searches in “empty” regions

• Option 2: Minimize space coverage
– Compute split such that total volume of all MBBs is minimal
– Increases changes to descend on multiple paths during search
– But: Unsuccessful searches can stop earlier

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 47

Split Strategies

• Complexity
– Consider a block with n objects
– There are 2n-2 possibilities to partition this block into two
– In multi-dimensional spaces, there is no simple sorting
– Use heuristics instead of optimal solution

• Original Strategies (Minimizing Overlap)
– Linear: Pick two objects farthest away. Greedily associate each

other object to the region whose space is increased the least
– Quadratic: Pick two pairs such that the two regions minimally

overlap and are maximally large. Greedily associate each other
object to the region whose space is increased the least

– Exponential: Check all bipartitions and chose the one with minimal
overlap

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 48

Deletions in the R Tree

• As usual: In case of underflow (<m% fill degree), the
block is removed

• R Trees typically do not move objects to neighbor leafs
– MBBs would have to be adopted
– But relationship of MBBs may be quite arbitrary
– May create very large overlaps, very large spaces covered
– One could find optimal moves, but …

• Trick: Delete by Reinsertion
– Re-Insert every objects that remained in the underflown block
– Guarantees of the insert strategies will hold
– No particular delete strategy required – focus on good insertions
– But costly: A single delete may incur hundreds of inserts

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 49

R+ Tree

• Two effects leading to inefficiency during search
– Overlapping MBBs lead to multiple search paths
– A few large objects enforce large MBBs covering much dead space

• R+ Tree
– Objects overlapping with two regions are stored in both (clipping)
– MBBs in a node never overlap

• Much faster search, but
– Search must perform duplicate removal as last steps
– Insertion / deletion may have to walk multiple paths, incurring

multiple adaptations
– Worse space consumption due to redundancy,
– Insertion may require down- and upward adaption

• Like kdb Trees

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 50

Content of this Lecture

• Introduction
• Partitioned Hashing
• Grid Files
• kdb Trees
• R Trees
• Conclusions
• Example: Nearest neighbor image search

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 51

Multidimensional Data Structures Wrap-Up

• Many more MDIS: X tree, VA-file, hb-tree, UB tree, …
– Store objects more than once; other than rectangular shapes; map

coordinates into integers; …

• All MDIS degrade with increasing number of dimensions
(d>10) or very unusual skew
– For neighborhood and range queries
– Hierarchical MDIS degenerate to an expensive linear scan

• Trick: Find lower-dimensional representations with provable
lower bounds on distance to prune space
– Requires distance function-specific lower bounding techniques

• Alternative: Approximate MDIS (LSH, randomized kd Trees)
– Find almost all neighbors, with/out given probability

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 52

Curse of Dimensionality – Consider a growing d

• Consider a typical rectangular partitioning methods
• Some obvious problems

– Points need more coordinates – fan-out decreases
– Decreasing fan out – deeper trees
– Just comparing two points becomes linearly more expensive
– Intersecting two objects becomes more expensive
– These operations are performed all the time when searching and

inserting / deleting objects

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 53

Curse of Dimensionality – Consider a growing d

• Some less obvious mathematical facts
– Weber, R., Scheck, H. and Blott, S. (1998). "A Quantitative Analysis and

Performance Study for Similarity-Search Methods in High-Dimensional
Spaces". VLDB

• If space is covered, #partitions grows exponentially
– But usually there are not “exponentially many” points
– Most partitions will be almost empty

• Average distances grows steadily
• Consider a 1-NN query

– 1-NN queries search a hypersphere, but partitions are hypercubes
– The larger d, the smaller the fraction of space a hypersphere of

radius 0.5 fills within a hypercube of edge length 1
– The larger d, the more partitions one has to search to find

neighboring points – the space is empty, everything is far away

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 54

Content of this Lecture

• Introduction
• Partitioned Hashing
• Grid Files
• kdb Trees
• R Trees
• Conclusions
• Example: Nearest neighbor object search

– Material partly from A Müller, 2003
– Korn, Sidiropoulos, Faloutsos, Siegel, Protopapas (1996): Fast

Nearest Neighbor Search in Medical Image Databases, VLDB.
– Seidl, Kriegel (1998): Optimal Multi-Step k-Nearest Neighbor

Search, SIGMOD.

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 55

Similar Objects in Images

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 56

2D Object Similarity Search

• Similarity search: Fast algorithm to find all similar / the
most similar objects in a database of objects

• Brute force: Compare against all objects
• Consider a visual-based distance function

– Shape, size, rotation, borders, …
– Non trivial to express this as a vector distance function
– How could we use a MDIS?

• Trick: Fast, iterative filtering of candidates

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 57

Distance Function

• Requirements

– Should be insensitive to rotation
– Should consider overall shape (macro-scale) as well as structure of

the surface (micro-scale)

• One option: Mathematical morphology
– Idea: Use brushes to fill / surround the objects
– Opening: Area covered when filling object with brush
– Closing: Area covered when surrounding object with brush
– Using brushes with different thickness gives different areas and

thus different approximations

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 58

Examples

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 59

Distance Function

• Overlay objects o1 and o2

– Align centers of mass
– Rotate until maximal overlap

• Assume we use n different brushes B1, … Bn

• For each brush Bi, compute
– O1i/C1i: Area under opening / closing of o1 with Bi

– O2i/C2i: Area under opening / closing of o2 with Bi

• Define
disti(o1,o2)=max((O1i∩O2i)/(O1i∪O2i), (C1i∩C2i)/(C1i∪C2i)))

• Define dist(o1,o2) = max(dist1(o1,o2), …. distn(o1,o2))

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 60

Scalability

• Very precise method (compared to human intuition)
– Adaptable by varying n / thickness of brushes

• Highly complex -> very slow
– Multiple computations of spatial overlaps between irregular shapes
– Cannot be used to search against thousands of objects

• Idea
– Find a distance function d’ such that d’(o1,o2)~dist(o1, o2) but

d’(o1,o2)≤dist(o1, o2)
• d’ should approximate dist as good as possible but never overshoot

– If we have a max distance t: If d’(o1, o2)>t, then dist(o1, o2)>t
– Idea: Use d’ for pruning

• Only helps if d’(o1, o2) is (a) fast and (b) approximates dist well

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 61

Spectrum Function

• Consider values O11, O21,
… On1 (and C11, …)

• Compute spectrum:
Vector with differences
O11-O21, O21-O31, …

• Euclidian distance
between two spectra is a
lower bound for true
distance function dist

F1

Spectrum = [...; 0.5; 0.8; 1.5; 5]T

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 62

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50

D
is

ta
nz

k

Näherung Exakt

Intuition: 5NN Search

• Find the 5-furthest according to approximate distance d‘
• Compute maximum m of real distances
• Filter all objects with d’>m

Filter

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 63

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50

D
is

ta
nz

k

Näherung Exakt

Optimal: Iterative Refinement

• Consider filtered objects in order of d’
• Whenever m gets smaller, prune again

Filter
Filter Filter

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 64

Algorithm

• Spectra can be pre-computed and indexed
• Use nearest neighbor search in multidimensional index
• Optimization: Use iterative procedure

– Start with large value t
– Find first objects within range t using fast approx search
– Compute real distance and use as new t
– Iteratively prunes search space

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 65

Effect

Full database scan

Iterative pruning ~14h

	Foliennummer 1
	Content of this Lecture
	kd Tree
	General Idea
	Blocks and Points
	The Brick Wall
	Local Adaptation
	Search Operations
	Search Operations
	Nearest Neighbor
	The Brick Wall
	kd-Tree Insertion
	Deletion
	Static kd Trees
	Content of this Lecture
	kd Trees on Secondary (Block) Storage – Naive Solution
	Better IO: Fill Inner Blocks
	kdb trees
	Another View
	Example – Composite Index
	Visualization
	Example: Partial Box Query
	With Balanced kdb Tree
	Space Covered
	Foliennummer 25
	Box Query Continued
	Example - Partial Box Query with kdb Tree
	It‘s the Workload, st …
	Balancing upon Insertions
	Conclusion
	Content of this Lecture
	R-Trees
	General Idea
	Motivation: Objects that are not points
	R Tree versus kd Tree
	Concepts
	Searching
	Inserting an Object
	Continuation
	Example (from Donald Kossmann)
	One State
	Example: Searching
	Example: Insertion, Search Phase
	Example: Insertion, Split Phase
	Example: Insertion, Adaptation Phase
	Where to Split
	Split Strategies
	Deletions in the R Tree
	R+ Tree
	Content of this Lecture
	Multidimensional Data Structures Wrap-Up
	Curse of Dimensionality – Consider a growing d
	Curse of Dimensionality – Consider a growing d
	Content of this Lecture
	Similar Objects in Images
	2D Object Similarity Search
	Distance Function
	Examples
	Distance Function
	Scalability
	Spectrum Function
	Intuition: 5NN Search
	Optimal: Iterative Refinement
	Algorithm
	Effect

