

Datenbanksysteme II: Multidimensional Index Structures 2

Ulf Leser

Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
- kdb Trees
 - kd Tree
 - kdb Tree
- R Trees
- Example: Nearest neighbor image search

kd Tree

Grid file disadvantages

- All hyperregions of the d-dimensional space are eventually split at the same scales (dimension/position)
- First cell that overflows determines split
- This choice is global and never undone

kd Trees

- Bentley: Multidimensional Binary Search Trees Used for Associative Searching. CACM, 1975.
- Multidimensional variation of binary search trees
- Hierarchical splitting of space into regions
- Regions in different subtrees may use different split positions
- Better adaptation to local clustering of data
- Note: kd Tree originally is a main memory data structure

General Idea

Binary, rooted tree

 Inner nodes define splits (dimension / value)

 Dimensions need not be statically assigned to levels of the tree

Leaves: Points+TIDs

 Each leaf represents ddimensional convex hypercube with m border planes (m≤2d)

Blocks and Points

- Keep everything in memory
 - Leaves are singular points
- Keep tree in memory and blocks on disk
 - Leaves contain many points
- Store everything on disk
 - k-DB Tree: Special layout for tree
- On modern hardware
 - Block size level 1/2/3 cache
 - Random mem access in inner tree
 - But larger leaves create smaller trees
 - Parallel search? SIMD? Tree layout?

The Brick Wall

Local Adaptation

Search Operations

- Exact point search
 - _ ?
- Partial match query
 - _ ?
- Range query
 - _ ?
- Nearest Neighborhood
 - **-** ?

Search Operations

- Exact point search
 - In each inner node, decide upon direction based on split condition
 - Search inside leaf
- Partial match query
 - If dimension of condition in inner node is part of the query proceed as for exact match
 - Otherwise, follow all children (multiple search paths)
- Range query
 - Follow all children matching the range conditions (multiple paths)

Nearest Neighbor

- Search point
- Upon descending, build a priority queue of all directions not taken
 - Compute minimal distance between point and hyper-region not followed
 - Keep sorted by this minimal distance
- Once at a leaf, visit hyperregions in order of distance to query point
 - Jump to split point and follow closest path
 - Regions not visited are put into priority queue
 - Iterate until point found such that provably no closer point exists

The Brick Wall

kd-Tree Insertion

- Search leaf block; if space available done
- Otherwise, chose split (dimension + position) for this block
 - This is a local decision, valid for subtree of this node
 - Option: Use each dimension in turn and split region into two equally sized subspaces (very robust)
 - Option: Consider current points in leaf and split in two sets of approximately equal size
 - Finding "optimal" split points is expensive for high dimensional data (point set needs to be sorted in each dimension) – use heuristics
 - Wrong decisions in early splits may lead to tree degradation
 - But we don't know which points will be inserted in future
 - Use knowledge on attribute value distributions

Deletion

- Search leaf block and delete point
- If block becomes (almost) empty
 - Leave it bad fill degree
 - Merge with neighbor leaf (if existing)
 - Two leaves and one parent node are replaces by one leaf
 - Not very clever if neighbor almost full
 - Balance with neighbor leaf (if existing)
 - Change split condition in parent such that children have equal size
 - Not very clever if neighbor almost empty
 - Balance with neighborhood
 - Also considering maximal depth of leaves
- kd trees have no guaranteed balance (~ depth)
- There is no guaranteed fill degree in blocks

Static kd Trees

- Assume the set of points to be indexed is static and known
- Worst-case optimal kd Trees
 - Rotate through dimensions
 - Typically in order of variance wide spread dimensions first
 - Sort remaining points and choose median as split point
 - Guarantees tree depth of O(log(n)) for point queries
 - But clustering of points not considered bad similarity queries
 - Nearby points are not nearby in the tree
- K-means trees
 - Iterative k-means clustering of points
 - K: Tree width (fanout)
 - Faster similarity queries, tree depth not guaranteed
- n-Ary kd-Trees for exploiting SIMD instructions

Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
- kdb Trees
 - kd Tree
 - kdb Tree
- R Trees
- Example: Nearest neighbor image search

kd Trees on Secondary (Block) Storage - Naive Solution

- Store each inner node in one block
 - Inner blocks are essentially empty
 - As trees may degrade, every search requires many IO
 - Since tree is not balanced, worst case approaches O(n)IO

Better IO: Fill Inner Blocks

- Option 1: Build k-ary trees
 - Inner node splits a dimension at many scales
 - When leaf overflows, insert new split into parent
 - When leaf underflows, merge and remove split from parent
 - Still not balanced, no guaranteed fill degree

kdb trees

- Option 2: Map many inner nodes to a single blocks
 - Robinson: The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes. SIGMOD 1981.
 - Inner nodes have two children (mostly in the same block)
 - Each block holds many inner nodes
 - Inner blocks have many children
 - Roots of kd trees in other blocks
 - Can be balanced (later)
 - No guaranteed fill degree
- Operations
 - Searching: As with kd trees, but has guaranteed tree depth
 - Insertion/Deletion: Keep balance

Another View

Inner blocks define bounding boxes on subtrees

Example – Composite Index

- d=3, n=1E9, block size 4096, |point|=9, |b-ptr|=10
 - We need ~2.2M leaf blocks
- Composite B+ index
 - Inner blocks store 108-215 pointers; assume optimal density
 - We need 3 levels
 - 2nd level has 215 blocks and 46.000 pointers
 - 3rd level has 46K blocks and 10M pointers, 2.2M are needed
 - With uniform distribution, 1st level will mostly split on 1st dimension, 2nd level on 2nd dimension ...
- Box query, 5% selectivity in each dimension
 - We read 5% of 2nd level blocks = 10 IO
 - For each, we read 5% of 3rd level blocks = 107 IO
 - For each, we read 5% of data blocks = 1150 IO
 - Altogether: ~1250 IO

Visualization

Example: Partial Box Query

- Box query on 2nd and 3rd dimensions only, asking for a 5% range in both dimensions
 - We need to scan all 215 2nd level blocks
 - Each 2nd level block contains the 5% range of 1st dimension
 - For each, we read 5% of 3rd level blocks = 2300 blocks
 - For each, we read 5% of data blocks = ~25K data blocks
 - Altogether: 26.000 IO
- Note: 0.05 selectivity in two dimensions means 0.0025 selectivity altogether = 125K points
 - Only 270 blocks if optimally packed

With Balanced kdb Tree

- Balanced kdb tree will have ~22 levels
 - ~455 points in one block (assume optimal packaging)
 - We need to address 1E9/455 ~2²¹ blocks
- Consider 128=2⁷ inner nodes in one kdb-block
 - Rough estimate; we need to store 1 dim indicator, 1 split value, and 2 ptr for each inner node, but most ptr are just offsets into the same block
- kdb tree structure
 - 1st level block holds 128 inner nodes = levels 1-7 of kd tree
 - There are 128 2nd level blocks holding levels 8-14 of kd tree
 - There are ~16000 3rd level blocks, each addressing 128 data blocks

Space Covered

- 1st block splits space in 128 regions
- 2nd level block split space in ~16K regions, each region covering 0,00625% of the entire space
- Query selectivity is $(0.05)^3 = 0.000125\%$ of points and of space (given uniform distribution)
- Thus, we very likely find all results in 1 region of the 1st level and in 1 region of the second level
 - In the worst case, we overlap in all dimensions 8 regions
 - Not true in high dimensional spaces everything becomes a border
 - See later: Curse of Dimensionality

Box Query Continued

- Box query in all three coordinates, 5% selectivity in each dimension
 - We need to load the root block
 - Very likely, we need to look at only one 2nd level block
 - Very likely, we need to look at only one 3rd level block
 - Assume we need to load all therein addressed 128 data blocks
 - Altogether: 1+1+1+128 = 131 IO

Example - Partial Box Query with kdb Tree

- Box query on 2nd and 3rd dimensions only, asking for a 5% range in each dimension
 - In first block (7 levels), we have ~2 splits in each dimension
 - Two times 2 splits, one time three splits
 - Assume we miss the dimension with 3 splits
 - Hence, in ~4 of 7 splits we know where we need to go, in ~3 splits we need to follow both children
 - We need to check only 2³=8 second-level blocks
 - Again number gets higher when query range crosses split points
 - Same argument holds in 2nd level blocks = 8*8 data blocks
 - Same argument holds in 3nd level blocks = 8*8*8 data blocks
 - Altogether: 1+8+64+512 ~580 IO
 - Compare to 3100 for composite index

It's the Workload, st ...

- Advantages depend on expected queries
- Composite indexes are optimal if prefix of composite key is (heavily) constrained by the query
 - Comp-index also "partition" the space
 - Comp-index is similar to a kd-tree where in the first levels, only dimension X is used, then only dimension Y, ...
- MDIS are better if queries address neighboring points in many dimensions (box queries, neighborhood queries)
 - "Better" depends a lot on data and workload distribution
- Scanning is better when selectivity of queries is low

Balancing upon Insertions

- Similar method as for B+ trees
 - Search appropriate leaf
 - If leaf overflows, split
 - Chose dimension and scale; distribute points
 - Propagate to parent node
 - In parent node, a leaf must be replaced by an inner node
 - With two new blocks as children
 - This may make the parent overflow propagate up the tree
- Splitting an inner node
 - Chose a dimension and scale
 - Distribute nodes to the two new blocks
 - Split might have to be propagated downwards
 - "Default" split may lead to very bad fill degree
 - Propagate new pointers to parent

Conclusion

- Beware our simplifying assumptions
 - Uniform distribution
 - Optimal packaging of points at all levels
 - Query ranges contained in hypercubes
- kdb trees have problem with fill degree
 - Many insertions/deletions lead to almost empty leaves
 - Index grows unnecessary large
 - No guarantee for lowest fill degree as in B+ tree
- Nice idea, difficult to implement, rarely used in practice

Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
- kdb Trees
- R Trees
- Conclusions
- Example: Nearest neighbor image search

R-Trees

- Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. SIGMOD 1984.
- Can store geometric objects (with size) as well as points
 - Arbitrary geometric objects are represented by their minimal bounding box (MBB)
- Each object is stored in exactly one region on each level
- Since objects may overlap, regions may overlap
- Only regions containing data objects are represented
 - Allows for fast stop when searching in empty regions
- Tree is kept balanced (like B tree)
- Guaranteed fill degree (like B tree)
- Many variations (see literature)

General Idea

Motivation: Objects that are not points

- We need overlapping regions
 - For instance, if all MBBs overlap
 - No split possible which creates disjoints sets of objects
- Objects crossing a split
 - Store in only one (R-Tree)
 - Search must examine both
 - No redundant data
 - Store in both (R+-Tree)
 - Search may chose any one
 - Redundant data

R Tree versus kd Tree

Concepts

- Inner nodes consist of a set of d-dimensional regions
 - Every region is a (convex) hypercube MBB
- Regions are hierarchically organized
- Each region of an inner node points to a subtree or a leaf
- The region border is the MBB of all objects in this subtree
 - Inner node: MBB of all child regions
 - Leaf blocks: All objects are contained in the respective region
- Regions in one level may overlap
- Regions of a level do not cover the space of its parent completely

Searching

- Point query
 - At each inner node, find all regions containing the point
 - Multi-path: All those subtrees must be searched
- Range query: Find all objects (MBBs) overlapping with a given query range (MBB)
 - In each node, intersect query with all regions
 - More than one region might have non-empty overlap
 - All those subtrees must be searched

Inserting an Object

- In each node, find all candidate regions
 - Any region may overlap the object completely, partly, or not
 - Object may overlap none, one, or many regions partly or completely
 - At least one region with complete overlap
 - Chose one (smallest?) and descend
 - None with complete, but at least one with partial overlap
 - Chose one (largest overlap?) and descend
 - No overlapping region at all
 - Chose one (closest?) and descend
- Eventually, we reach a leaf
 - We insert object in only one leaf

Continuation

- If free space in leaf
 - Insert object and adapt MBB of leaf
 - Recursively adapt MBBs up the tree
 - This usually generates larger overlaps search degrades
- If no free space in leaf
 - Split block in two regions
 - Compute MBBs
 - Adapt parent node: One more child, changed MBBs
 - May affect MBB of higher regions and/or incur overflows at high regions – ascend recursively

Example (from Donald Kossmann)

One State

Example: Searching

Example: Insertion, Search Phase

Example: Insertion, Split Phase

Several splits are possible

Example: Insertion, Adaptation Phase

- MBBs of all parent nodes must be adapted
- Block split might induce node splits in higher levels of the tree (not here)

Where to Split

- Finding the best splitting strategy has seen ample research
- Option 1: Avoid overlaps
 - Compute split such that overlap is minimal (or even avoided)
 - Minimizes necessity to descend to different children during search
 - May create larger regions more futile searches in "empty" regions
- Option 2: Minimize space coverage
 - Compute split such that total volume of all MBBs is minimal
 - Increases changes to descend on multiple paths during search
 - But: Unsuccessful searches can stop earlier

Split Strategies

Complexity

- Consider a block with n objects
- There are 2ⁿ-2 possibilities to partition this block into two
- In multi-dimensional spaces, there is no simple sorting
- Use heuristics instead of optimal solution
- Original Strategies (Minimizing Overlap)
 - Linear: Pick two objects farthest away. Greedily associate each other object to the region whose space is increased the least
 - Quadratic: Pick two pairs such that the two regions minimally overlap and are maximally large. Greedily associate each other object to the region whose space is increased the least
 - Exponential: Check all bipartitions and chose the one with minimal overlap

Deletions in the R Tree

- As usual: In case of underflow (<m% fill degree), the block is removed
- R Trees typically do not move objects to neighbor leafs
 - MBBs would have to be adopted
 - But relationship of MBBs may be quite arbitrary
 - May create very large overlaps, very large spaces covered
 - One could find optimal moves, but ...
- Trick: Delete by Reinsertion
 - Re-Insert every objects that remained in the underflown block
 - Guarantees of the insert strategies will hold
 - No particular delete strategy required focus on good insertions
 - But costly: A single delete may incur hundreds of inserts

R+ Tree

- Two effects leading to inefficiency during search
 - Overlapping MBBs lead to multiple search paths
 - A few large objects enforce large MBBs covering much dead space
- R+ Tree
 - Objects overlapping with two regions are stored in both (clipping)
 - MBBs in a node never overlap
- Much faster search, but
 - Search must perform duplicate removal as last steps
 - Insertion / deletion may have to walk multiple paths, incurring multiple adaptations
 - Worse space consumption due to redundancy,
 - Insertion may require down- and upward adaption
 - Like kdb Trees

Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
- kdb Trees
- R Trees
- Conclusions
- Example: Nearest neighbor image search

Multidimensional Data Structures Wrap-Up

- Many more MDIS: X tree, VA-file, hb-tree, UB tree, ...
 - Store objects more than once; other than rectangular shapes; map coordinates into integers; ...
- All MDIS degrade with increasing number of dimensions (d>10) or very unusual skew
 - For neighborhood and range queries
 - Hierarchical MDIS degenerate to an expensive linear scan
- Trick: Find lower-dimensional representations with provable lower bounds on distance to prune space
 - Requires distance function-specific lower bounding techniques
- Alternative: Approximate MDIS (LSH, randomized kd Trees)
 - Find almost all neighbors, with/out given probability

Curse of Dimensionality - Consider a growing d

- Consider a typical rectangular partitioning methods
- Some obvious problems
 - Points need more coordinates fan-out decreases
 - Decreasing fan out deeper trees
 - Just comparing two points becomes linearly more expensive
 - Intersecting two objects becomes more expensive
 - These operations are performed all the time when searching and inserting / deleting objects

Curse of Dimensionality - Consider a growing d

- Some less obvious mathematical facts
 - Weber, R., Scheck, H. and Blott, S. (1998). "A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces". VLDB
- If space is covered, #partitions grows exponentially
 - But usually there are not "exponentially many" points
 - Most partitions will be almost empty
- Average distances grows steadily
- Consider a 1-NN query
 - 1-NN queries search a hypersphere, but partitions are hypercubes
 - The larger d, the smaller the fraction of space a hypersphere of radius 0.5 fills within a hypercube of edge length 1
 - The larger d, the more partitions one has to search to find neighboring points – the space is empty, everything is far away

Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
- kdb Trees
- R Trees
- Conclusions
- Example: Nearest neighbor object search
 - Material partly from A Müller, 2003
 - Korn, Sidiropoulos, Faloutsos, Siegel, Protopapas (1996): Fast
 Nearest Neighbor Search in Medical Image Databases, VLDB.
 - Seidl, Kriegel (1998): Optimal Multi-Step k-Nearest Neighbor Search, SIGMOD.

Similar Objects in Images

2D Object Similarity Search

- Similarity search: Fast algorithm to find all similar / the most similar objects in a database of objects
- Brute force: Compare against all objects
- Consider a visual-based distance function
 - Shape, size, rotation, borders, ...
 - Non trivial to express this as a vector distance function
 - How could we use a MDIS?
- Trick: Fast, iterative filtering of candidates

Distance Function

- Requirements
 - Should be insensitive to rotation
 - Should consider overall shape (macro-scale) as well as structure of the surface (micro-scale)
- One option: Mathematical morphology
 - Idea: Use brushes to fill / surround the objects
 - Opening: Area covered when filling object with brush
 - Closing: Area covered when surrounding object with brush
 - Using brushes with different thickness gives different areas and thus different approximations

Examples

Distance Function

- Overlay objects o₁ and o₂
 - Align centers of mass
 - Rotate until maximal overlap
- Assume we use n different brushes B₁, ... B_n
- For each brush B_i, compute
 - O_{1i}/C_{1i}: Area under opening / closing of o₁ with B_i
 - O_{2i}/C_{2i}: Area under opening / closing of o₂ with B_i
- Define $dist_i(o_1,o_2) = max((O_{1i} \cap O_{2i})/(O_{1i} \cup O_{2i}), (C_{1i} \cap C_{2i})/(C_{1i} \cup C_{2i}))$
- Define $dist(o_1,o_2) = max(dist_1(o_1,o_2), dist_n(o_1,o_2))$

Scalability

- Very precise method (compared to human intuition)
 - Adaptable by varying n / thickness of brushes
- Highly complex -> very slow
 - Multiple computations of spatial overlaps between irregular shapes
 - Cannot be used to search against thousands of objects
- Idea
 - Find a distance function d' such that $d'(o_1,o_2) \sim dist(o_1, o_2)$ but $d'(o_1,o_2) \leq dist(o_1, o_2)$
 - · d' should approximate dist as good as possible but never overshoot
 - If we have a max distance t: If $d'(o_1, o_2) > t$, then $dist(o_1, o_2) > t$
 - Idea: Use d' for pruning
 - Only helps if d'(o₁, o₂) is (a) fast and (b) approximates dist well

Spectrum Function

- Consider values O₁₁, O₂₁,
 ... O_{n1} (and C₁₁, ...)
- Compute spectrum:
 Vector with differences
 O₁₁-O₂₁, O₂₁-O₃₁, ...
- Euclidian distance between two spectra is a lower bound for true distance function dist

Intuition: 5NN Search

- Find the 5-furthest according to approximate distance d'
- Compute maximum m of real distances
- Filter all objects with d'>m

Optimal: Iterative Refinement

- Consider filtered objects in order of d'
- Whenever m gets smaller, prune again

Algorithm

- Spectra can be pre-computed and indexed
- Use nearest neighbor search in multidimensional index
- Optimization: Use iterative procedure
 - Start with large value t
 - Find first objects within range t using fast approx search
 - Compute real distance and use as new t
 - Iteratively prunes search space

Effect

