

Datenbanksysteme II:
 Multidimensional Index Structures 1

Ulf Leser

Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
- kdb Trees
- R Trees

Multidimensional Indexing

- Access methods so far support access on attribute(s) for
- Point query: Attribute $=$ const (Hashing and B+ Tree)
- Range query: const ${ }_{1} \leq$ Attribute \leq const $_{2} \quad$ ($B+$ Tree)
- What about more complex queries?
- Point query on more than one attribute
- Combined through AND (intersection) or OR (union)
- Range query on more than one attribute
- Queries for objects with size
- "Sale" is a point in a multidimensional space
- Time, location, product, ...
- Geometric objects have size: rectangle, cubes, polygons, ...
- Similarity queries: Most similar object, closest object, ...

Example: Geometric Objects

- Geographic information systems (GIS) store rectangles RECT (X1, Y1, X2, Y2); $\mathrm{X} 1<\mathrm{x} 2, \mathrm{y} 1<\mathrm{y} 2$
- Typical GIS queries
- Box query: All rectangles contained in query box (a1,b1)-(a2,b2) SELECT * FROM RECT WHERE $\mathrm{a} 1 \leq \mathrm{x} 1$ and $\mathrm{b} 1 \leq \mathrm{y} 1$ and $\mathrm{a} 2 \geq \mathrm{x} 2$ and $\mathrm{b} 2 \geq \mathrm{y} 2$
- Results in a range query
- Partial match query: Rectangles containing points with $X=3$ SELECT * FROM RECT WHERE $\mathrm{X} 1 \leq 3$ and $\mathrm{X} 2 \geq 3$
- All rectangles with non-empty intersection with rectangle Q
- Also other shapes: Lines, polygons, 3D, ...

Example: 2D objects

Point	X	Y
P1	2	2
P2	2,5	2
P3	4,5	7
P4	4,7	6,5
P5	8	6
P6	8	9
P7	8,3	3

- Objects are points in a 2D space
- Queries
- Exact: All objects with coordinates (X1, Y1)
- Box: Find all points in a given rectangle
- Partial: All points with $X(Y)$ coordinate between ...

Option 1: Composite Index

CREATE INDEX
ON tab (x, y)

Point	X	Y
P1	2	2
P2	2,5	2
P3	4,5	7
P4	4,7	6,5
P5	8	6
P6	8	9
P7	8,3	3

- Exact queries: Efficiently supported
- Box queries: Efficiently supported
- Partial match query
- All points with X coordinate between ...: Efficiently supported
- All points with Y coordinate between ...: Not efficiently supported

Composite Index

- Usage
- Prefix of attribute list in index must be present in query
- The longer the prefix, the more efficient the evaluation
- Alternatives
- Also build index tab(Y, X) - all permutations
- Combinatorial explosion for more than two attributes
- Use independent indexes on each attribute

Option 2: Independent Indexes

- Exact query: Not really efficient
- Compute TID lists for each attribute
- Intersect
- Box query: Not really efficient (compute ranges, intersect)
- Partial match query on one attribute: Efficiently supported

Example - Independent versus Composite Index

- Data
- 3 dimensions of range $1, \ldots, 100$
- 1.000.000 points, randomly distributed
- Index blocks holding 50 keys or records
- Assume three independent indexes
- Range query: Points with $40 \leq x \leq 50,40 \leq y \leq 50,40 \leq z \leq 50$
- Each of the three B+-indexes has height 4
- Using x-index, we generate TID-list |X|~100.000
- Using y-index, we generate TID-list |Y|~100.000
- Using z-index, we generate TID-list |Z|~100.000
- For each index, we have 4+100.000/50=2004 IO
- Hopefully, we can keep the three lists in main memory
- Intersection yields app. 1.000 points, together 6012 IO

Intuition

Source: T. Grust, 2010

Composite Index

Using composite index (X,Y,Z)

- Key length increases - assume k=30 (or 10 / more dims)
- Index is higher: Height ~ 5 (6)
- Worst case - index blocks only 50\% filled
- We descend in 5 IO to leaves, read 10 points (1 IO), ascend to Y -axis (2 IO - but cached), descend to leaves (2 IO), read 10 points (1 IO) ...
- We do this $10 * 10$ times
- Altogether
- k=30 => app. $3+100 *(2+1) \sim 303$ IO
- Compared to 6012 for independent indexes!
- k=10 => app. $4+100 *(3+1) \sim 404$ IO
- But: More random IO

Conclusion

- We want composite indexes: Less IO
- Benefit grows for highly selective queries
- Bit: If selectivity is low, scanning of relation might be faster than any index (sequential versus random IO)
- For partial match queries, we would need to index all attribute combinations - not feasible
- Solution: Use multidimensional index structures (MDIS)
- Should have no priority of pre-defined dimensions
- Should adapt to different and changing data distribution
- Essentially, we want nearby points being nearby on disk
- In an ideal world, we would need only 1000/30~33 IO
- Area of intensive research for decades

Multidimensional Indexes

- Specialized MDIS for objects with or without extend
- Critical issues
- Balancing upon insert/delete: Worst case search complexity
- Size: Amount of occupied space versus number of stored objects
- Locality: Neighbors in space are stored nearby on disk (memory)
- Necessary for range / partial match queries
- Necessary for nearest neighbor queries
- The nearest, all within distance k

Caveats

- Things get complicated if data is not uniformly distributed
- Dependent attributes (age - weight, income, height, ...)
- Clustering of points
- Also called skew - strong deviation from assumed distribution
- Curse of dimensionality: MDIS degrade for many dims
- Trees difficult to balance, bad space usage, excessive management cost, expensive insertions/deletions, ...
- Alternative (partially): Bitmap indexes
- Very small memory footprint, only for discrete attribute values, range queries become large disjunctions
- In commercial DBMS, high dim data is supported for
- Geometric objects: GIS extensions, spatial extender
- Multimedia data (images, songs, ...)

Geographic Information Systems

Multimedia Databases

- Map object into feature vector
- Here: Tumor images; shapes derived from math. morphology
- Compute nearest neighborhood queries in feature space
- Common approach: Filter away most objects as fast as possible
- For instance by using shapes at different levels of granularity
- Often, a final check of remaining candidates results is necessary

Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
- kdb Trees
- R Trees

Partitioned Hashing

- Let $a_{1}, a_{2}, \ldots, a_{d}$ be the attributes to be indexed
- Define a hash function h_{i} for each a_{i} generating a bitstring
- Definition
- Let $h_{i}\left(a_{i}\right)$ map each a_{i} into a bitstring of length b_{i}
- Let $b=\sum b_{i}$ (length of global hash key in bits)
- The global hash function $h\left(v_{1}, v_{2}, \ldots, v_{d}\right) \rightarrow\left[0, \ldots, 2^{b}-1\right]$ is defined as $h\left(v_{1}, v_{2}, \ldots, v_{d}\right)=h_{1}\left(v_{1}\right) \oplus h_{2}\left(v_{2}\right) \oplus \ldots \oplus h_{k}\left(v_{d}\right)$
- We need $B=2^{b}$ buckets
- Static address space - dynamic structures later

Example

- Data: $(3,6),(6,7),(1,1),(3,1),(5,6),(4,3),(5,0),(6,1),(0,4),(7,2)$
- Let h_{1}, h_{2} be $\left(b_{1}=b_{2}=1\right)$

$$
h_{i}\left(v_{i}\right)=\begin{array}{ll}
0 & \text { if } 0 \leq v_{i} \leq 3 \\
1 & \text { otherwise }
\end{array}
$$

- Four buckets with addresses 00, 01, 10, 11

Queries with Partitioned Hashing

- Exact point queries: Direct access to bucket
- All points in bucket are candidates; check identity to query
- Partial match queries
- Only parts of the global hash key are determined
- Use those as filter; scan all buckets passing the filter
- Let c be the number of unspecified bits
- Then 2^{c} buckets must be searched
- These are certainly not ordered on disk- random IO
- Range queries
- Not efficiently supported, if hash function doesn't preserve order
- Not order preserving: modulo; order preserving: division
- Enumerate all in-between values, blocks will be anywhere

Order Preserving Hash Function

- Example
- Suppose d=3, each dim with range 1.. 1024 (10 bits)
- Use three highest bits as hash keys in each dimension
- Order preserving; equal to division by 64 (right-shift 7 times)
- Global hash key: 9 bit, hence $2^{9}=512$ buckets
- Partial range query: points with $200<y<300$ and $z<600$
- $\mathrm{h}_{\mathrm{y}}(200)=0011001000, \mathrm{~h}_{\mathrm{y}}(300)=0100101100, \mathrm{~h}_{\mathrm{z}}(600)=1001011000$
- Scan buckets with
- X-coordinate: ?
- Y-coordinate: between 001 and $010(001,010)$
- Z-coordinate: less than 100... (000, 001, 010, 011,100)

Without oph: Enumerate all values in DB and compute hashkeys

- We need to scan $8(x) * 2(y) * 5(z)=80$ buckets
- Vulnerable to not-uniformly distributed data
- Few buckets are extremely full, others empty

Partitioned Hashing: Conclusions

- No balancing, no adaptation to skew
- Long overflow buckets or large directories (see ext/lin hashing)
- Size: Static size of index, no adaptation
- Problem if buckets overflow
- Can be combined with extensible/linear hashing
- Directory in extensible hashing can grow quite large
- Locality: Neighboring points in space not nearby in index
- Usually, hash functions are not order preserving to achieve more uniform spread
- Bad support for (partial) range queries or nearest neighbor queries

Content of this Lecture

- Introduction to multidimensional indexing
- Partitioned Hashing
- Grid Files
- kdb Trees
- R Trees

Grid File

- Classical multidimensional index structure
- Nievergelt, J., Hinterberger, H. and Sevcik, K. C. (1984). "The Grid File: An Adaptable, Symmetric Multikey File Structure." ACM TODS
- Conceptually simple
- Can be seen as extensible version of partitioned hashing
- Good for uniformly distributed data, bad for skewed data
- Numerous variations, we only look at the basic method
- Design goals
- Support exact, partial match, and neighbor queries
- Guarantee "two IO" access to each point
- Under certain assumptions
- Adapt dynamically to the number of points

Principle

- Partition each dimension into disjoint intervals (scales)
- EXCESS: Uniform scales; less adaptive, no scale management
- Intersection of all intervals defines grid cells
- d-dimensional hypercubes
- Grid cells are addressed from the grid directory (GD)

Principle

- Partition each dimension into disjoint intervals (scales)
- Intersection of all intervals defines grid cells
- Grid cells are addressed from the grid directory (GD)
- Cells are grouped in regions; region = bucket = block
- When multi-cell region overflows - split into cells
- When single-cell region overflows - new scale, change GD
- Buckets hold coordinates + TID

Exact Point Search

- Assumption: GD in main memory
- Size: $\left|S_{1}\right|^{*}\left|S_{2}\right|^{*} . .\left|S_{d}\right|$, when S_{i} is the set of scales for dimension I
- Cannot work for really high dimensional data
- 1. Compute grid cell
- Look-up coordinates in scales to obtain GD coordinates
- Cell in GD contains bucket address on disk
- Bucket contains all data points in this grid cell (maybe more)
- 2. Load bucket and find point(s): $1^{\text {st }}$ IO
- As usual, we do not look at how to search inside bucket
- 3. Access record following TID: $2^{\text {nd }}$ IO

Other Queries

- Range query
- Compute all matching scales
- Access all corresponding cells in GD
- Load and search all buckets (random IO)
- Partial match query
- Compute partial GD coordinates
- All GD cells with these coordinates may contain points (random IO)

Nearest Neighbor Queries

- Find bucket containing query point
- Search points in this region and choose closest
- Can we finish if closest point was found?

Nearest Neighbor Queries

- Find bucket containing query point
- Check points in this region
- Can we finish with the closest point in this region?
- Usually not
- Check distances to all borders
- If point found is closer than any border, we are done
- Otherwise, we need to search neighboring regions
- Do it iteratively and always adapt radius to current closest point
- Very fast if neighbor is in same region

- I.e.: dense buckets and point not at border

Inserting Points

- Search grid cell; if bucket has space: Insert point
- Otherwise (overflow): Split
- Assume we have to split a single-cell region
- Choose a dimension and new scale within region interval
- Split all affected GD cells - cuts through all dimensions
- Consider n dimensions and S_{i} scales in dimension i
- Split in dim i affects $\mathrm{d}_{1}{ }^{*} . .{ }^{*} \mathrm{~d}_{\mathrm{i}-1} * \mathrm{~d}_{\mathrm{i}+1} * . . . \mathrm{d}_{\mathrm{n}}$ cells in GD
- Example: $d=3, S_{i}=4 ;|G D|=4^{3}=64$; any split affects 4^{2} cells
- Split overflown bucket along new scale (new region)
- Do not split other (un-overflown) buckets containing the new scale
- Only copy pointer from GD to bucket
- Choice of dimension and interval is difficult
- Optimally, we would like to split as many rather full blocks as possible
- We also want to consider our future expectation

Example

- Imagine one block holds 3 points
- [Usually scales are unevenly spaced]
- New point causes overflow
- Vertical split
- Splits $2(3,4)$-point blocks
- Leaves one 3-point block
- Horizontal split
- Splits $2(3,4)$-point blocks
- Leaves one 3-point block
- Note: Most splits will happen only in the future
- Creating more or less problems

Inserting Points in Multi-Cell Regions

- Overflow in a multi-cell region
- Idea: Split region into smaller regions (or cells)
- Possible split dimensions/axes: Existing scales not yet used for split in this region
- No local adaptation - decisions from the past have to be obeyed
- Several strategies
- Chose scale which best distributes the points
- Requires considering them all
- Won't pay off in case of uniformly distributed data
- Circulate through dimensions and chose median scale

Grid File Example 1 [J. Gehrke]

Assume k=6

Grid File Example 2

Grid File Example 3

A	1	7	8	13	14	15
B	2	4	6	9	11	12
C	3	5	10			

Grid File Example 4

One Future

We now must perform this split; creates one almost empty and one full bucket; next split will happen soon

Grid File Example 5

A	H	D	F	B
A	I	D	F	B
A	I	G	F	B
E	E	G	F	B
C	C	C	C	B

Deleting Points

- Search point and delete
- If block become "almost empty", try to merge
- A merge is the removal of a split - chose scale to "unmake"
- Should build larger convex regions
- This can become very difficult
- Potentially, more than two regions need to be merged to keep convexity
- Eventually, also scales may be removed
- Shrinkage of GD
- Example: Where can we merge?

A	H	D	F	B
A	I	D	F	B
A	I	G	F	B
E	E	G	F	B
C	C	C	C	B

Convex Regions

A	H	D	F	B
A	I	D	F	B
A	I	G	F	B
E	E	G	F	B
C	C	C	C	B

A		B	F	B
A		D	F	B
A	I	G	F	B
E	E	G	F	B
C	C	C	C	B

- Non-convex regions: Range and neighborhood queries have to scan increasingly many buckets

A	A	F	B	
A			F	B
A	I	G	F	B
E	E	G	F	B
C	C	C	C	B

What's in a Bucket?

- The tuples
- Not compatible with other database structures (indexes, etc.)
- Long tuples result in few records per data blocks
- Frequent splits, fast growing GD
- Only TIDs
- Many records per data block, few splits, small directory
- But queries need to check (load) all tuples referenced in a block to check real coordinates
- TIDs and coordinates
- Medium number of records per block, moderate growth of GD
- No access to tuples necessary for checking coordinates

Original 2-IO Guarantee

- Assume GD on disk and buckets containing entire tuples
- One more IO for loading pointer to bucket
- One less IO for accessing payload
- But
- Modern machines have large memories: GD in memory
- For many dimensions, Grid files are anyway the wrong MDIS
- More TIDs per bucket creates overall smaller data structure
- Payload management (growing values etc.) independent of MDIS

Some Observations

- Grid files always split at hyperplanes parallel to the dimension axes
- This is not always optimal
- Use other bounding shapes: circles, polygons, etc.
- More complex- forms might not disjointly fill the space any more
- Allow overlaps (see R trees)
- There is no guaranteed block-fill degree - degeneration
- Choosing a new scale is a local decision with global consequences
- No local adaptation: GD grows very fast
- Need not be realized immediately, but restricts later choices in other regions
- Bad adaptation to skewed data

