Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
 - kdb Trees
 - R Trees
Multidimensional Indexing

- Access methods so far support access on attribute(s) for
 - **Point query:** Attribute = const (Hashing and B+ Tree)
 - **Range query:** const₁ ≤ Attribute ≤ const₂ (B+ Tree)

- **What about more complex queries?**
 - Point query on more than one attribute
 - Combined through AND (intersection) or OR (union)
 - Range query on more than one attribute
 - Queries for objects with size
 - “Sale” is a point in a multidimensional space
 - Time, location, product, …
 - Geometric objects have size: rectangle, cubes, polygons, …
 - Similarity queries: Most similar object, closest object, …
Example: Geometric Objects

- Geographic information systems (GIS) store rectangles
 \[\text{RECT} \ (X_1, Y_1, X_2, Y_2); \ x_1 < x_2, \ y_1 < y_2 \]

- Typical GIS queries
 - **Box query**: All rectangles contained in query box \((a_1, b_1)-(a_2, b_2)\)

 \[
 \text{SELECT * FROM RECT} \\
 \text{WHERE } a_1 \leq x_1 \text{ and } b_1 \leq y_1 \text{ and} \\
 a_2 \geq x_2 \text{ and } b_2 \geq y_2
 \]

 - Results in a range query
 - **Partial match query**: Rectangles containing points with \(X=3\)

 \[
 \text{SELECT * FROM RECT} \\
 \text{WHERE } X_1 \leq 3 \text{ and } X_2 \geq 3
 \]

 - All rectangles with non-empty intersection with rectangle \(Q\)

- Also other shapes: Lines, polygons, 3D, …
Example: 2D objects

- Objects are **points in a 2D space**
- Queries
 - Exact: All objects with coordinates \((X_1, Y_1)\)
 - Box: Find all points in a given rectangle
 - Partial: All points with \(X\) (\(Y\) coordinate between ...)
Option 1: Composite Index

CREATE INDEX
ON tab(x,y)

- Exact queries: Efficiently supported
- Box queries: Efficiently supported
- Partial match query
 - All points with X coordinate between …: Efficiently supported
 - All points with Y coordinate between …: Not efficiently supported
Composite Index

• Usage
 - Prefix of attribute list in index must be present in query
 - The longer the prefix, the more efficient the evaluation

• Alternatives
 - Also build index tab(Y, X) – all permutations
 • Combinatorial explosion for more than two attributes
 - Use independent indexes on each attribute
Option 2: Independent Indexes

- **Exact query**: Not really efficient
 - Compute TID lists for each attribute
 - Intersect
- **Box query**: Not really efficient (compute ranges, intersect)
- **Partial match query on one attribute**: Efficiently supported

```
CREATE INDEX
ON tab(x)

CREATE INDEX
ON tab(y)
```
Example – Independent versus Composite Index

• Data
 - 3 dimensions of range 1,...,100
 - 1.000.000 points, randomly distributed
 - Index blocks holding 50 keys or records

• Assume three independent indexes

• Range query: Points with $40 \leq x \leq 50$, $40 \leq y \leq 50$, $40 \leq z \leq 50$
 - Each of the three B+-indexes has height 4
 - Using x-index, we generate TID-list $|X| \sim 100.000$
 - Using y-index, we generate TID-list $|Y| \sim 100.000$
 - Using z-index, we generate TID-list $|Z| \sim 100.000$
 - For each index, we have $4+100.000/50=2004$ IO
 - Hopefully, we can keep the three lists in main memory
 - Intersection yields app. 1.000 points, together 6012 IO
Intuition

Source: T. Grust, 2010
Composite Index

Index on X

Indexes on Y

Indexes on Z

Indexes on Z

...
Using composite index \((X,Y,Z)\)

- **Key length increases** – assume \(k=30\) (or 10 / more dims)
- **Index is higher**: Height \(\sim 5\) (6)
 - Worst case – index blocks only 50% filled
- We descend in 5 IO to leaves, read 10 points (1 IO), ascend to Y-axis (2 IO – but cached), descend to leaves (2 IO), read 10 points (1 IO) …
- We do this 10*10 times
- **Altogether**
 - \(k=30\) => app. 3+100*(2+1) \(\sim 303\) IO
 - Compared to 6012 for independent indexes!
 - \(k=10\) => app. 4+100*(3+1) \(\sim 404\) IO
- **But**: More random IO
Conclusion

• We want composite indexes: Less IO
 - Benefit grows for highly selective queries
 - Bit: If selectivity is low, scanning of relation might be faster than any index (sequential versus random IO)

• For partial match queries, we would need to index all attribute combinations – not feasible

• Solution: Use multidimensional index structures (MDIS)
 - Should have no priority of pre-defined dimensions
 - Should adapt to different and changing data distribution
 - Essentially, we want nearby points being nearby on disk
 • In an ideal world, we would need only 1000/30~33 IO
 - Area of intensive research for decades
Multidimensional Indexes

- Specialized MDI S for objects with or without extend
- Critical issues
 - Balancing upon insert/delete: Worst case search complexity
 - Size: Amount of occupied space versus number of stored objects
 - Locality: Neighbors in space are stored nearby on disk (memory)
 - Necessary for range / partial match queries
 - Necessary for nearest neighbor queries
 - The nearest, all within distance k
Caveats

• Things get complicated if data is not uniformly distributed
 - Dependent attributes (age – weight, income, height, …)
 - Clustering of points
 - Also called skew – strong deviation from assumed distribution

• Curse of dimensionality: MDI S degrade for many dims
 - Trees difficult to balance, bad space usage, excessive management cost, expensive insertions/deletions, …

• Alternative (partially): Bitmap indexes
 - Very small memory footprint, only for discrete attribute values, range queries become large disjunctions

• In commercial DBMS, high dim data is supported for
 - Geometric objects: GIS extensions, spatial extender
 - Multimedia data (images, songs, …)
Geographic Information Systems
Multimedia Databases

- Map object into feature vector
 - Here: Tumor images; shapes derived from math. morphology
- Compute **nearest neighborhood queries in feature space**
 - Common approach: Filter away most objects as fast as possible
 - For instance by using shapes at different levels of granularity
 - Often, a final check of remaining candidates results is necessary
Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
 - kdb Trees
 - R Trees
Partitioned Hashing

- Let $a_1, a_2, ..., a_d$ be the attributes to be indexed
- Define a hash function h_i for each a_i generating a bitstring
- **Definition**
 - Let $h_i(a_i)$ map each a_i into a bitstring of length b_i
 - Let $b = \sum b_i$ (length of global hash key in bits)
 - The global hash function $h(v_1, v_2, ..., v_d) \rightarrow [0, ..., 2^b-1]$ is defined as $h(v_1, v_2, ..., v_d) = h_1(v_1) \oplus h_2(v_2) \oplus ... \oplus h_k(v_d)$
- We need $B = 2^b$ buckets
 - Static address space – dynamic structures later
Example

- Data: \((3,6), (6,7), (1,1), (3,1), (5,6), (4,3), (5,0), (6,1), (0,4), (7,2)\)
- Let \(h_1, h_2\) be \((b_1=b_2=1)\)
 \[
 h_i(v_i) = \begin{cases}
 0 & \text{if } 0 \leq v_i \leq 3 \\
 1 & \text{otherwise}
 \end{cases}
 \]
- Four buckets with addresses 00, 01, 10, 11

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(1,1)</td>
<td>(3,1)</td>
<td>(3,6)</td>
</tr>
<tr>
<td>1</td>
<td>(4,3)</td>
<td>(5,0)</td>
<td>(6,1)</td>
</tr>
<tr>
<td></td>
<td>(7,2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Queries with Partitioned Hashing

- **Exact point queries**: Direct access to bucket
 - All points in bucket are candidates; check identity to query

- **Partial match queries**
 - Only parts of the global hash key are determined
 - Use those as filter; scan all buckets passing the filter
 - Let c be the number of unspecified bits
 - Then 2^c buckets must be searched
 - These are certainly not ordered on disk—random IO

- **Range queries**
 - Not efficiently supported, if hash function doesn’t preserve order
 - Not order preserving: modulo; order preserving: division
 - Enumerate all in-between values, blocks will be anywhere
Order Preserving Hash Function

• Example
 - Suppose d=3, each dim with range 1..1024 (10 bits)
 - Use three highest bits as hash keys in each dimension
 • Order preserv[ing]; equal to division by 64 (right-shift 7 times)
 - Global hash key: 9 bit, hence $2^9=512$ buckets
 - Partial range query: points with $200<y<300$ and $z<600$
 • $h_y(200)=0011001000$, $h_y(300)=0100101100$, $h_z(600)=1001011000$
 • Scan buckets with
 - X-coordinate: ?
 - Y-coordinate: between 001 and 010 (001, 010)
 - Z-coordinate: less than 100… (000, 001, 010, 011, 100)
 • We need to scan $8 \times 2 \times 5(z) = 80$ buckets

• Vulnerable to not-uniformly distributed data
 - Few buckets are extremely full, others empty

Without oph:
Enumerate all values in DB and compute hashkeys
Partitioned Hashing: Conclusions

- No balancing, no adaptation to skew
 - Long overflow buckets or large directories (see ext/lin hashing)
- Size: Static size of index, no adaptation
 - Problem if buckets overflow
 - Can be combined with extensible/linear hashing
 - Directory in extensible hashing can grow quite large
- Locality: Neighboring points in space not nearby in index
 - Usually, hash functions are not order preserving to achieve more uniform spread
 - Bad support for (partial) range queries or nearest neighbor queries
Content of this Lecture

• Introduction to multidimensional indexing
• Partitioned Hashing
 • Grid Files
 • kdb Trees
 • R Trees
Grid File

• Classical multidimensional index structure
 – Conceptually simple
 – Can be seen as extensible version of partitioned hashing
 – Good for uniformly distributed data, **bad for skewed data**
 – Numerous variations, we only look at the basic method

• Design goals
 – Support exact, partial match, and neighbor queries
 – **Guarantee “two IO”** access to each point
 • Under certain assumptions
 – **Adapt dynamically** to the number of points
Principle

• Partition each dimension into disjoint intervals (scales)
 – EXCESS: Uniform scales; less adaptive, no scale management
• Intersection of all intervals defines grid cells
 – d-dimensional hypercubes
• Grid cells are addressed from the grid directory (GD)
Principle

- Partition each dimension into disjoint intervals (scales)
- Intersection of all intervals defines grid cells
- Grid cells are addressed from the grid directory (GD)
- Cells are grouped in regions; region = bucket = block
 - When multi-cell region overflows – split into cells
 - When single-cell region overflows – new scale, change GD
- Buckets hold coordinates + TID
Exact Point Search

• Assumption: GD in main memory
 – Size: $|S_1|*|S_2|*...|S_d|$, when S_i is the set of scales for dimension I
 – Cannot work for really high dimensional data

• 1. Compute grid cell
 – Look-up coordinates in scales to obtain GD coordinates
 – Cell in GD contains bucket address on disk
 – Bucket contains all data points in this grid cell (maybe more)

• 2. Load bucket and find point(s): 1st IO
 – As usual, we do not look at how to search inside bucket

• 3. Access record following TID: 2nd IO
Other Queries

• Range query
 - Compute all matching scales
 - Access all corresponding cells in GD
 - Load and search all buckets (random IO)

• Partial match query
 - Compute partial GD coordinates
 - All GD cells with these coordinates may contain points (random IO)
Nearest Neighbor Queries

- Find bucket containing query point
- Search points in this region and choose closest
 - Can we finish if closest point was found?
Nearest Neighbor Queries

- Find bucket containing query point
- Check points in this region
 - Can we finish with the closest point in this region?
 - Usually not
 - Check distances to all borders
 - If point found is closer than any border, we are done
 - Otherwise, we need to search neighboring regions
 - Do it iteratively and always adapt radius to current closest point
 - Very fast if neighbor is in same region
 - I.e.: dense buckets and point not at border
Inserting Points

• Search grid cell; if bucket has space: Insert point
• Otherwise (overflow): Split
 – Assume we have to split a single-cell region
 – Choose a dimension and new scale within region interval
 – Split all affected GD cells – cuts through all dimensions
 • Consider n dimensions and Si scales in dimension i
 • Split in dim i affects d_1 * ... * d_{i-1} * d_{i+1} * ... * d_n cells in GD
 • Example: d=3, S_i=4; |GD|=4^3=64; any split affects 4^2 cells
 – Split overflowed bucket along new scale (new region)
 – Do not split other (un-overflown) buckets containing the new scale
 • Only copy pointer from GD to bucket
 – Choice of dimension and interval is difficult
 • Optimally, we would like to split as many rather full blocks as possible
 • We also want to consider our future expectation
Example

- Imagine one block holds 3 points
 - [Usually scales are unevenly spaced]
- New point causes **overflow**
- Vertical split
 - Splits 2 (3,4)-point blocks
 - Leaves one 3-point block
- Horizontal split
 - Splits 2 (3,4)-point blocks
 - Leaves one 3-point block
- Note: Most splits will happen only in the future
 - Creating more or less problems
Inserting Points in Multi-Cell Regions

- Overflow in a multi-cell region
- Idea: Split region into smaller regions (or cells)
 - Possible split dimensions/axes: Existing scales not yet used for split in this region
 - No local adaptation – decisions from the past have to be obeyed
- Several strategies
 - Chose scale which best distributes the points
 - Requires considering them all
 - Won’t pay off in case of uniformly distributed data
 - Circulate through dimensions and chose median scale
Assume $k=6$
Grid File Example 2

A

1

7

B

6

2

9

A	B
1 | 3 | 5 | 7 | 8 | 10 |
2 | 4 | 6 | 9 | 11 | 12 |
Grid File Example 3

\[\begin{array}{ccc}
A & B & C \\
1 & 6 & 3 \\
14 & 2 & 10 \\
13 & 9 & 11 \\
8 & 12 & 15 \\
7 & 4 & 10 \\
\end{array} \]

\[\begin{array}{cccccc}
A & B & C & D & E & F \\
1 & 7 & 8 & 13 & 14 & 15 \\
2 & 4 & 6 & 9 & 11 & 12 \\
3 & 5 & 10 & & & \\
\end{array} \]
Grid File Example 4

Diagram

The diagram illustrates a grid file with four sections labeled A, B, C, and D. Each section contains various numbers indicated by dots. The grid is divided into a 2x2 grid, with each quadrant representing a different section.

Table

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>D</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table represents the distribution of numbers across the grid file:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>13</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>15</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

This setup allows for efficient querying and access to data stored within the grid file.
One Future

We now must perform this split; creates one almost empty and one full bucket; next split will happen soon
Grid File Example 5

\[
\begin{array}{cccccc}
 & A & H & D & F & B \\
 y_4 & & & & & \\
 y_3 & & & & & \\
 y_2 & & & & & \\
 y_1 & & & & & \\
 x_1 & x_2 & x_3 & x_4 & & \\
\end{array}
\]

\[
\begin{array}{cccccc}
 A & H & D & F & B \\
 A & I & D & F & B \\
 A & I & G & F & B \\
 E & E & G & F & B \\
 C & C & C & C & B \\
\end{array}
\]
Deleting Points

- Search point and delete
- If block become “almost empty”, try to merge
 - A merge is the removal of a split – chose scale to “unmake”
 - Should build larger convex regions
 - This can become very difficult
 - Potentially, more than two regions need to be merged to keep convexity
 - Eventually, also scales may be removed
 - Shrinkage of GD
 - Example: Where can we merge?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>H</th>
<th>D</th>
<th>F</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>I</td>
<td>D</td>
<td>F</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>I</td>
<td>G</td>
<td>F</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>F</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>
Convex Regions

- Non-convex regions: Range and neighborhood queries have to scan increasingly many buckets

<table>
<thead>
<tr>
<th>A</th>
<th>H</th>
<th>D</th>
<th>F</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>I</td>
<td>D</td>
<td>F</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>I</td>
<td>G</td>
<td>F</td>
<td>B</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>F</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>I</th>
<th>D</th>
<th>F</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>I</td>
<td>D</td>
<td>F</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>I</td>
<td>G</td>
<td>F</td>
<td>B</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>F</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>A</th>
<th>D</th>
<th>F</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>I</td>
<td>D</td>
<td>F</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>I</td>
<td>G</td>
<td>F</td>
<td>B</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>F</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>
What’s in a Bucket?

• The tuples
 - Not compatible with other database structures (indexes, etc.)
 - Long tuples result in few records per data blocks
 - Frequent splits, fast growing GD

• Only TIDs
 - Many records per data block, few splits, small directory
 - But queries need to check (load) all tuples referenced in a block to check real coordinates

• TIDs and coordinates
 - Medium number of records per block, moderate growth of GD
 - No access to tuples necessary for checking coordinates
Original 2-IO Guarantee

- Assume GD on disk and buckets containing entire tuples
 - One more IO for loading pointer to bucket
 - One less IO for accessing payload
- But
 - Modern machines have large memories: GD in memory
 - For many dimensions, Grid files are anyway the wrong MDIS
 - More TIDs per bucket creates overall smaller data structure
 - Payload management (growing values etc.) independent of MDIS
Some Observations

- Grid files always split at hyperplanes parallel to the dimension axes
 - This is not always optimal
 - Use other bounding shapes: circles, polygons, etc.
 - More complex forms might not disjointly fill the space any more
 - Allow overlaps (see R trees)
- There is no guaranteed block-fill degree – degeneration
- Choosing a new scale is a local decision with global consequences
 - No local adaptation: GD grows very fast
 - Need not be realized immediately, but restricts later choices in other regions
 - Bad adaptation to skewed data