
Datenbanksysteme II:
Modern Hardware

Stefan Sprenger
November 23, 2016

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Content of this Lecture

2

• Introduction to Modern Hardware
• CPUs, Cache Hierarchy
• Branch Prediction
• SIMD
• NUMA

• Cache-Sensitive Skip List
• Skip Lists
• Our Contributions
• Evaluation

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Content of this Lecture

3

• Introduction to Modern Hardware
• CPUs, Cache Hierarchy
• Branch Prediction
• SIMD
• NUMA

• Cache-Sensitive Skip List
• Skip Lists
• Our Contributions
• Evaluation

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

What is Modern Hardware?

4

• CPUs feature multiple cache levels
• many-core CPUs: massive parallelism
• main memory is large and cheap enough to hold

entire databases
• elimination of the buffer pool
• performance bottleneck moves up from

disk/memory to memory/cpu caches
• new goal: minimize cache misses
• what about durability?

• specialized co-processors: GPUs, FPGAs

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Main Memory

5

• today, systems can feature up to 12 TB of RAM
• prices ($/GB) are dropping fast (2015: $4.37/GB RAM)

Data Source: http://www.statisticbrain.com/average-historic-price-of-ram/

Average historic price of RAM

Co
st

 ($
 p

er
 G

ig
ab

yt
e)

1

100

10000

1000000

1980 1985 1990 1995 2000 2005 2010 2013 2015 2015

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Cache Hierarchy

6

CPU registers

L1 Cache

L2 Cache

L3 Cache

Main Memory

Hard Drive Disk

Latency Cost

low

high

expensive

cheap

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Multi/Many-Core CPUs

7

Core 1 Core 2 Core 3 Core 4

L1 Cache

L2 Cache

L1 Cache

L2 Cache

L1 Cache

L2 Cache

L1 Cache

L2 Cache

L3 Cache

CPU

Intel’s Haswell architecture supports up to 18 cores per CPU.

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Reading data (from main memory)

8

CPU MMU
TLB

Virtual address Physical address

CPU Cache

Main Memory

Expensive: TLB miss, CPU Cache misses

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Cache Lines

9

• block in main memory
• basic unit for transfers from main memory to caches
• usually 64 bytes, e.g., 1 CL can hold 16 32-bit integers
• cache line utilization = portion of the transferred

cache line that is actually used
• the successive cache line is usually prefetched, which

is beneficial for sequential reads

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Branch Prediction

10

• modern CPUs conduct pipelined execution
• for conditional branches, branches are predicted
• if the prediction was wrong, pipeline starts over with

the correct branch, which is slow
• misprediction delays cost around 10-20 CPU cycles

(depends on pipeline size)

for (int i = 0; i < n; i++)
 if (rand() % 2 == 0)
 do_something();

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Good practices (performance-wise)

11

• read whole cache line
• access contiguous memory locations
• decreases risk of cache & TLB misses

• avoid pointer chasing
• reduce conditional code
• use memory space efficiently

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Example: Scanning a 2-dim array

12

Which variant is faster? Both have O(n2) complexity.

Variant 1:

int sum = 0;
for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 sum += array[i][j] ;

Variant 2:

int sum = 0;
for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 sum += array[j][i] ;

Answer: Variant 1: 0.33s Variant 2: 2.09s (for n=10k)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Example: Conditional Count

13

Variant 1 (with branch):

int count = 0;
for (int i = 0; i < n; i++)
 if (books_genre[i] == 3)
 count ++;

Variant 2 (branch-free):

int count = 0;
for (int i = 0; i < n; i++)
 count += (books_genre[i] == 3);

SELECT COUNT(*) FROM books WHERE genre = 3;

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Single Instruction Multiple Data (SIMD)

14

• execute one instruction on multiple data elements

• extra-wide registers that hold multiple data elements

• degree of parallelism (DOP) is determined by SIMD
register size S and data element size K: DOP = S/K

• e.g., 256-bit SIMD register
and 32-bit integers as
operands allow 8 additions
in parallel

Source: https://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.html

https://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.html

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

SIMD with Intrinsics

15

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

• executing a SIMD instruction using Intrinsics
• 1.) load data into SIMD register
• 2.) execute SIMD instruction
• 3.) read result from SIMD register

128-bit SIMD register

32-bit Integer32-bit Integer32-bit Integer32-bit Integer

SIMD segment 0 SIMD segment 1 SIMD segment 2 SIMD segment 3

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Non-Uniform Memory Access (NUMA)

16

Source: http://frankdenneman.nl/2011/01/05/amd-magny-cours-and-esx/

• divide CPUs/cores into
NUMA nodes

• each NUMA node is
assigned to a certain
memory partition
(“local memory”)

• access to local memory
is faster than access to
remote memory

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Content of this Lecture

17

• Introduction to Modern Hardware
• CPUs, Cache Hierarchy
• Branch Prediction
• SIMD
• NUMA

• Cache-Sensitive Skip List
• Skip Lists
• Our Contributions
• Evaluation

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Skip Lists: Structure

18

H
E
A
D

1 2 3 4 5 6

T
A
I
L

7

2 4 6

4

Data List

W. Pugh: “Skip lists: a probabilistic alternative to balanced trees” (1990)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Skip Lists: Fast Lanes

19

H
E
A
D

1 2 3 4 5 6

T
A
I
L

7

2 4 6

4
Fast LanesLevel 2

Level 1

Fast lane i contains elements of fast lane i-1 with probability p.
In this case, p = 1/2.

Data List

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Skip Lists: Searching

20

H
E
A
D

1 2 3 4 5 6

T
A
I
L

7

2 4 6

4

search(5)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Skip Lists: Inserting

21

1. search corresponding position in data list that may
hold the inserted key

2. insert key into data list
3. starting at the lowest fast lane, test for each fast lane

if new key should be inserted into the fast lane;
if p=1/2, this decision can be done by “flipping a coin”

4. abort as soon as the first coin flip “fails”, i.e., the key
is not inserted in the current fast lane

Compared to B-trees, skip lists don’t require node splitting :-)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Skip Lists: Range Queries

22

H
E
A
D

1 2 3 4 5 6

T
A
I
L

7

2 4 6

4

search(4,7)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Skip Lists

23

• probabilistic data structure
• logarithmic search access/insertions
• keys are stored in sorted order in linked list (“data list”)
• hierarchy of subsequences that skip over elements of

lower levels (“fast lanes”)
• simpler implementation than B-trees (no node splits)

W. Pugh: “Skip lists: a probabilistic alternative to balanced trees” (1990)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Why do we use Skip Lists as base?

24

• originally built for main memory
• not aligned to disk blocks as in the case of B+-tree

nodes
• provide lookups and range queries
• (fast lane) keys are accessed sequentially
• structure of Skip Lists may be very beneficial w.r.t.

“modern hardware”, most implementations are not

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Deterministic Skip List

25

• deterministic variant of the probabilistic skip list
• number of elements each fast lane skips over is fixed
• fast lane i skips over 1/p elements of fast lane i-1
• provides a predictable memory layout
• implementation of insertions may be a bit more complex

because you must always ensure that the fixed structure
of the skip list is not violated

J.I. Munro et al.: “Deterministic skip lists” (1992)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Skip Lists vs. B+-trees

26

The deterministic variant of a skip list can easily
be transformed into a B+-tree.

H
E
A
D

1 2 3 4 5

T
A
I
L

1 3 5

3

1 3 5

3

1 2 3 4

Deterministic Skip List B+-tree

5

M. G. Amoureux and B. G. Nickerson: “On the equivalence of B-trees and deterministic skip lists” (1996)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Issues of the conventional Skip List

27

H
E
A
D

1 2 3 4 5 6

T
A
I
L

7

2 4 6

4

• heavy pointer chasing
• poor cache line utilisation
• ineffective prefetching
• no SIMD support

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Cache-Sensitive Skip List (CSSL)

28

• based on the concepts behind skip lists
• improved memory layout to be more CPU-friendly
• sequential access of fast lane elements
• improved cache line utilization
• prefetching works better
• less cache & TLB misses

• exploits SIMD instructions for searching
• implementation avoids branches if possible

Stefan Sprenger, Steffen Zeuch, Ulf Leser:
“Cache-Sensitive Skip List: Efficient Range Queries on modern CPUs”,
ADMS/IMDM @ VLDB, New Delhi, India, September 2016

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

CSSL is based on Skip Lists

29

H
E
A
D

1 2 3 4 5 6

T
A
I
L

7

2 4 6

4

Data List

We use the deterministic variant due to its predictable memory layout.

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Linearized Fast Lanes

30

2 4 6

4

1 2 3 4 5 6 7

4Level 2

2 4 6Level 1

Linearized
Fast Lane Array

Data List
All fast lanes are stored in one dense array
that is tailored to cache lines.

H
E
A
D

T
A
I
L

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

CSSL indexing 1..64 (p=1/2)

31

7
27

1 2 3 4 5 6 7

1 5 9 13 17 21 25 29Level 2

1 3 5 9 11 13 15Level 1 17 19 …

8 …

24 25 26 28 29 30 31 32 33

Data List

33 37 …

1 9 17 25 33 41 49 57Level 3

0 1 2 3 4 5 6 7

118 9 10 12 13 14 15 16 17

Linearized Fast Lane Array

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Cache Line Alignment

32

7
27

1 2 3 4 5 6 7

1 5 9 13 17 21 25 29Level 2

1 3 5 9 11 13 15Level 1 17 19 …

8 …

24 25 26 28 29 30 31 32 33

Data List

33 37 …

1 9 17 25 33 41 49 57Level 3

0 1 2 3 4 5 6 7

118 9 10 12 13 14 15 16 17

Linearized Fast Lane Array

Stefan Sprenger - Cache-Sensitive Skip List: Efficient Range Queries on modern CPUs

7

Searching with SIMD

33

1 2 3 4 5 6 7

1 5 9 13 17 21 25 29Level 2

1 3 5 9 11 13 15Level 1 17 19 …

8 …

Data List

33 37 …

1 9 17 25 33 41 49 57Level 3

0 1 2 3 4 5 6 7

118 9 10 12 13 14 15 16 17

searchRange(7,15)1

1 5

5 7

7

9 11 13 15

…8

SIMD

2724 25 26 28 29 30 31 32 33

Stefan Sprenger - Cache-Sensitive Skip List: Efficient Range Queries on modern CPUs

Branch-free evaluation of SIMD results

34

 bitmask = _mm256_movemask_ps(result);

00000001 -> match at first position
00000011 -> match at second position

13

13

13

13

13

13

13

13

9

13

15

19

24

27

32

42

>=

yes

yes

no

no

no

no

no

no

search key

Stefan Sprenger - Cache-Sensitive Skip List: Efficient Range Queries on modern CPUs

Branch-free evaluation of SIMD results

35

pos = __builtin_popcount(bitmask);if (bitmask == 0x1) {
 pos = 1;
} else if (bitmask == 0x3) {
 pos = 2;
} else if (bitmask == 0x7) {
 pos = 3;
} .…

popcount returns number of set bits
and is implemented branch-free
(GCC Intrinsic)

branch-freebranches

 bitmask = _mm256_movemask_ps(result);

00000001 -> match at first position
00000011 -> match at second position

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Evaluation

36

• range queries on 16M and 256M keys
• range queries on real-world data
• lookups on 16M keys
• mixed key/range workload
• space consumption

All experiments are conducted single-threaded on a
Intel Xeon E5-2620 CPU (2 GHz) and 32 GB RAM.

Stefan Sprenger - Cache-Sensitive Skip List: Efficient Range Queries on modern CPUs

Competitors

• Cache-Sensitive Skip List (CSSL)
• CSSL2: p=1/2
• CSSL5: p=1/5

• adaptive radix tree (ART)
• Cache-Sensitive B+-tree (CSB+)
• binary search on a static array (BS)
• B+-tree (B+)

37

Stefan Sprenger - Cache-Sensitive Skip List: Efficient Range Queries on modern CPUs

Range Queries on 16M Integer Keys

38

Th
ro

ug
hp

ut
 (O

ps
/S

ec
on

d)

[l
og

 s
ca

le
]

1E+00

1E+02

1E+04

1E+06

range size: 10% of n

CSSL2 CSSL5 ART CSB+ B+ BS

Dense Sparse

Dense: every integer in 1,..,16M
Sparse: 16M random integers

Stefan Sprenger - Cache-Sensitive Skip List: Efficient Range Queries on modern CPUs

Performance Counters per Range Query

39

CSSL2 CSSL5 ART CSB+ B+ BS

L3 Cache Hits 373 139 14k 364 1.8k 325

L3 Cache Misses 165 23 28k 5.7k 7.4M 278

TLB Misses 5 3 19k 958 369k 10

Branch
Mispredictions 16 13 16k 4.6k 832 13

Stefan Sprenger - Cache-Sensitive Skip List: Efficient Range Queries on modern CPUs

Lookups on 16M Integer Keys

40

Th
ro

ug
hp

ut
 (O

ps
/S

ec
on

d)

[l
og

 s
ca

le
]

1E+00

1E+02

1E+04

1E+06

CSSL2 CSSL5 ART CSB+ B+ BS

Dense Sparse

Stefan Sprenger - Cache-Sensitive Skip List: Efficient Range Queries on modern CPUs

Mixed key-range Workload (50%-50%)

41

Th
ro

ug
hp

ut
 (O

ps
/S

ec
on

d)

[l
og

 s
ca

le
]

1E+00

1E+02

1E+04

1E+06

CSSL2 CSSL5 ART CSB+ B+ BS

Dense Sparse

1M queries (500k lookups, 500k range queries) on 16M integer keys.

Stefan Sprenger - Cache-Sensitive Skip List: Efficient Range Queries on modern CPUs

Evaluation Results

• CSSL provides very efficient range query
implementation by tuning to the architecture of
modern CPUs

• Impacts of our optimization are reflected in CPU
performance counters

• Even for mixed workloads, CSSL benefits from
efficient range queries

42

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Summary

43

• introduction to Modern Hardware
• optimizing for main-memory and modern CPUs
• vectorized SIMD instructions
• Skip Lists as alternative to B-trees
• Cache-Sensitive Skip List, our main-memory

variant of Skip Lists
• evaluation results

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Questions?

44

• Introduction to Modern Hardware
• CPUs, Cache Hierarchy
• Branch Prediction
• SIMD
• NUMA

• Cache-Sensitive Skip List
• Skip Lists
• Our Contributions
• Evaluation

