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What is Modern Hardware?
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• CPUs feature multiple cache levels 
• many-core CPUs: massive parallelism 
• main memory is large and cheap enough to hold 

entire databases 
• elimination of the buffer pool 
• performance bottleneck moves up from              

disk/memory to memory/cpu caches 
• new goal: minimize cache misses 
• what about durability? 

• specialized co-processors: GPUs, FPGAs
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Main Memory
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• today, systems can feature up to 12 TB of RAM 
• prices ($/GB) are dropping fast (2015: $4.37/GB RAM)

Data Source: http://www.statisticbrain.com/average-historic-price-of-ram/
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Cache Hierarchy
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Multi/Many-Core CPUs
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Intel’s Haswell architecture supports up to 18 cores per CPU.
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Reading data (from main memory)
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CPU MMU
TLB

Virtual address Physical address

CPU Cache

Main Memory

Expensive: TLB miss, CPU Cache misses



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Cache Lines
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• block in main memory 
• basic unit for transfers from main memory to caches 
• usually 64 bytes, e.g., 1 CL can hold 16 32-bit integers 
• cache line utilization = portion of the transferred 

cache line that is actually used 
• the successive cache line is usually prefetched, which 

is beneficial for sequential reads
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Branch Prediction
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• modern CPUs conduct pipelined execution 
• for conditional branches, branches are predicted 
• if the prediction was wrong, pipeline starts over with 

the correct branch, which is slow 
• misprediction delays cost around 10-20 CPU cycles 

(depends on pipeline size)

for (int i = 0; i < n; i++) 
   if (rand() % 2 == 0) 
      do_something();
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Good practices (performance-wise)
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• read whole cache line 
• access contiguous memory locations 
• decreases risk of cache & TLB misses 

• avoid pointer chasing 
• reduce conditional code 
• use memory space efficiently
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Example: Scanning a 2-dim array
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Which variant is faster? Both have O(n2) complexity.

Variant 1: 

int sum = 0; 
for (int i = 0; i < n; i++) 
  for (int j = 0; j < n; j++) 
    sum += array[i][j] ;

Variant 2: 

int sum = 0; 
for (int i = 0; i < n; i++) 
  for (int j = 0; j < n; j++) 
    sum += array[j][i] ;

Answer: Variant 1: 0.33s  Variant 2: 2.09s (for n=10k)
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Example: Conditional Count
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Variant 1 (with branch): 

int count = 0; 
for (int i = 0; i < n; i++) 
  if (books_genre[i] == 3) 
     count ++;

Variant 2 (branch-free): 

int count = 0; 
for (int i = 0; i < n; i++) 
  count += (books_genre[i] == 3);

SELECT COUNT(*) FROM books WHERE genre = 3;
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Single Instruction Multiple Data (SIMD)
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• execute one instruction on multiple data elements 

• extra-wide registers that hold multiple data elements 

• degree of parallelism (DOP) is determined by SIMD 
register size S and data element size K: DOP = S/K 

• e.g., 256-bit SIMD register                                         
and 32-bit integers as                                          
operands allow 8 additions                                           
in parallel

Source: https://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.html

https://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.html
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SIMD with Intrinsics
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https://software.intel.com/sites/landingpage/IntrinsicsGuide/

• executing a SIMD instruction using Intrinsics 
• 1.) load data into SIMD register 
• 2.) execute SIMD instruction 
• 3.) read result from SIMD register

128-bit SIMD register

32-bit Integer32-bit Integer32-bit Integer32-bit Integer

SIMD segment 0 SIMD segment 1 SIMD segment 2 SIMD segment 3
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Non-Uniform Memory Access (NUMA)
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Source: http://frankdenneman.nl/2011/01/05/amd-magny-cours-and-esx/

• divide CPUs/cores into 
NUMA nodes 

• each NUMA node is 
assigned to a certain 
memory partition 
(“local memory”) 

• access to local memory 
is faster than access to 
remote memory
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Skip Lists: Structure
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W. Pugh: “Skip lists: a probabilistic alternative to balanced trees” (1990)
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Skip Lists: Fast Lanes
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Skip Lists: Searching
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Skip Lists: Inserting
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1. search corresponding position in data list that may               
hold the inserted key 

2. insert key into data list 
3. starting at the lowest fast lane, test for each fast lane                  

if new key should be inserted into the fast lane;                           
if p=1/2, this decision can be done by “flipping a coin” 

4. abort as soon as the first coin flip “fails”, i.e., the key                 
is not inserted in the current fast lane

Compared to B-trees, skip lists don’t require node splitting :-)
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Skip Lists: Range Queries
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Skip Lists
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• probabilistic data structure 
• logarithmic search access/insertions 
• keys are stored in sorted order in linked list (“data list”) 
• hierarchy of subsequences that skip over elements of        

lower levels (“fast lanes”) 
• simpler implementation than B-trees (no node splits)

W. Pugh: “Skip lists: a probabilistic alternative to balanced trees” (1990)
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Why do we use Skip Lists as base?
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• originally built for main memory 
• not aligned to disk blocks as in the case of B+-tree 

nodes 
• provide lookups and range queries 
• (fast lane) keys are accessed sequentially 
• structure of Skip Lists may be very beneficial w.r.t. 

“modern hardware”, most implementations are not
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Deterministic Skip List
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• deterministic variant of the probabilistic skip list 
• number of elements each fast lane skips over is fixed 
• fast lane i skips over 1/p elements of fast lane i-1 
• provides a predictable memory layout 
• implementation of insertions may be a bit more complex 

because you must always ensure that the fixed structure         
of the skip list is not violated

J.I. Munro et al.: “Deterministic skip lists” (1992)
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Skip Lists vs. B+-trees
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The deterministic variant of a skip list can easily                                  
be transformed into a B+-tree.
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5

M. G. Amoureux and B. G. Nickerson: “On the equivalence of B-trees and deterministic skip lists” (1996)
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Issues of the conventional Skip List
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• heavy pointer chasing 
• poor cache line utilisation 
• ineffective prefetching 
• no SIMD support
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Cache-Sensitive Skip List (CSSL)
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• based on the concepts behind skip lists 
• improved memory layout to be more CPU-friendly 
• sequential access of fast lane elements 
• improved cache line utilization 
• prefetching works better 
• less cache & TLB misses 

• exploits SIMD instructions for searching 
• implementation avoids branches if possible

Stefan Sprenger, Steffen Zeuch, Ulf Leser:  
“Cache-Sensitive Skip List: Efficient Range Queries on modern CPUs”, 
ADMS/IMDM @ VLDB, New Delhi, India, September 2016
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CSSL is based on Skip Lists
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We use the deterministic variant due to its predictable memory layout.
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Linearized Fast Lanes
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CSSL indexing 1..64 (p=1/2)
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Cache Line Alignment
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Searching with SIMD
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Branch-free evaluation of SIMD results
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 bitmask = _mm256_movemask_ps(result);

00000001 -> match at first position 
00000011 -> match at second position 
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Branch-free evaluation of SIMD results

35

pos = __builtin_popcount(bitmask);if (bitmask == 0x1) { 
    pos = 1; 
} else if (bitmask == 0x3) { 
    pos = 2; 
} else if (bitmask == 0x7) { 
    pos = 3; 
} .…

popcount returns number of set bits 
and is implemented branch-free 
(GCC Intrinsic)

branch-freebranches

 bitmask = _mm256_movemask_ps(result);

00000001 -> match at first position 
00000011 -> match at second position 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Evaluation
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• range queries on 16M and 256M keys 
• range queries on real-world data 
• lookups on 16M keys 
• mixed key/range workload 
• space consumption

All experiments are conducted single-threaded on a 
Intel Xeon E5-2620 CPU (2 GHz) and 32 GB RAM.
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Competitors

• Cache-Sensitive Skip List (CSSL) 
• CSSL2: p=1/2 
• CSSL5: p=1/5 

• adaptive radix tree (ART) 
• Cache-Sensitive B+-tree (CSB+) 
• binary search on a static array (BS) 
• B+-tree (B+)

37
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Range Queries on 16M Integer Keys
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Performance Counters per Range Query
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CSSL2 CSSL5 ART CSB+ B+ BS

L3 Cache Hits 373 139 14k 364 1.8k 325

L3 Cache Misses 165 23 28k 5.7k 7.4M 278

TLB Misses 5 3 19k 958 369k 10

Branch 
Mispredictions 16 13 16k 4.6k 832 13
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Lookups on 16M Integer Keys
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Mixed key-range Workload (50%-50%)
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1M queries (500k lookups, 500k range queries) on 16M integer keys.
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Evaluation Results

• CSSL provides very efficient range query 
implementation by tuning to the architecture of 
modern CPUs 

• Impacts of our optimization are reflected in CPU 
performance counters 

• Even for mixed workloads, CSSL benefits from 
efficient range queries

42
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Summary
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• introduction to Modern Hardware 
• optimizing for main-memory and modern CPUs 
• vectorized SIMD instructions 
• Skip Lists as alternative to B-trees 
• Cache-Sensitive Skip List, our main-memory 

variant of Skip Lists 
• evaluation results
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Questions?
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• Introduction to Modern Hardware 
• CPUs, Cache Hierarchy 
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• NUMA 

• Cache-Sensitive Skip List 
• Skip Lists 
• Our Contributions 
• Evaluation


