
Ulf Leser

Datenbanksysteme II:
Caching and File Structures

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 2

Content of this Lecture

• Caching
– Overview
– Accessing data
– Cache replacement strategies
– Prefetching

• File structure
• Index Files

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 3

Caching = Buffer Management

Buffer Manager

Main Memory Buffer
Block on

Disc

Block request

P0 P1 P2 …

.. … … …

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 4

IO Buffering

• RDBMS requests block Y from disk buffer manager
• Buffer manager checks if …

– Y in cache: Grant access

– Y not in cache

• No free space in buffer?
– Choose block Z in buffer
– If Z has been changed – write Z to disc
– Mark Z as free and proceed

• Free space available?
– Load Y into free space
– Grant access

Cache fetch policy

Address rewriting

Cache replacement
policy

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 5

Storage Hierarchy

CPU register

SIMD register

L1 cache line

L3 block access

Main memory cache

Disk controller cache

Disk

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 6

General Method

• Level X requests block Y from level X+1
• Buffer manager of X+1 checks if …

– Y in cache: Grant access

– Y not in cache

• No space available?
– Choose block Z in buffer
– If Z has been changed – write Z to disc
– Mark Z as free and proceed

• Space available?
– Load Y into free space
– Write into free space
– Grant access

Cache fetch policy

Address rewriting

Cache replacement
policy

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 7

Finding a Block

• We need to check if block Y is in buffer
– Y is logical block ID in a virtual address space

• Possibilities
– Memory blocks store their logical block ID

• Find Y: Search all blocks (slow, no global data structures)

– Mapping table “logical block ID” – “physical block address”
• List data structure for all BlockIDs in buffer

– Sorted array, linked list, sorted linked list, hashing, …

• Find Y: Fast, but requires synchronized access

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 8

Access with a TID

• By delegation: x:=getData(TID,10)
• By hardwired pointer: adr := getAddr(TID); x:=adr[10]

• Pinned tuples: References to location in main memory exist

– Direct access possible
– Record must not be moved

• Would require adaptation of all references

– Block must not be replaced without destroying existing pointers

• Unpinned tuples: No references to location exist
– Every access requires one indirection
– Tuple may be moved
– Block may be written

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 9

Content of this Lecture

• Caching
– Overview
– Accessing data
– Cache replacement strategies
– Prefetching

• File structure
• Index Files

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 10

Caching Strategies – Going Wrong

• Imagine a nested loop join
– Outer relation A has 10 blocks, inner relation B has 6 blocks

• Buffer size 6 blocks
• Assume Caching with FIFO (first in – first out)

– Cache is filled with A1 and B1, B2, B3, B4, B5
– Loading B6 replaces A1
– For next inner loop, A1 must be loaded again, replacing B1
– For loading A2, B2 is replaced, B1 replaces B3, …
– Altogether: 70 reads

• FIFO is a typical OS caching strategies
• DB needs to be able to control cache behavior

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 11

Caching Strategies – Better Strategy

• Imagine a nested loop join
– Outer relation A has 10 blocks, inner relation B has 6 blocks

• Buffer size 6 blocks
• Proceed as follows

– Cache is filled with A1 and B1, B2, B3, B4, B5
– Loading B6 replaces B5
– For next outer loop, A2 replaces A1
– Inner loop: B1-B4+B6 without replacement
– B6 replaces B5
– …
– Altogether: 1+6+9+9 = 25 block reads

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 12

Caching Aspects

• What to manage?
• How much to load?

– Optimal strategy ensures block is in buffer before request
– “Block-at-a-Time” versus “Read ahead”

• What to replace?
– Cache replacement strategies

• Good caches requires information flow from DB layer to
buffer manager
– Example: Reading complete relation (read ahead)
– Example: Executing a “Nested Loop Join” (fix outer-loop blocks)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 13

Granularity of Cached Units

• Blocks (default): OS blocks or database blocks
• Records: Not used because “sub-IO” cost
• Chunks

– Group blocks into larger “chunks”
– Less administration cost at buffer manager (buffer lists)
– IO on chunks can exploit sequentially placed blocks on disk
– Good for very large operations (large table joins or sorts)
– [Disk controller automatically imitates chunking]

• Tables
– Fix all blocks of heavily used tables
– E.g.: System catalog, Oracles CACHE parameter

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 14

Pre-fetching

• Load blocks not yet needed but probably soon
• Examples

– If block from relation is requested, also load next blocks
• Possible full table scan?

– If object is accessed, also load referenced objects
• Not implemented in RDBMS, but successful in OODBMS

• Disc pre-fetching – if sector is requested, read entire track
• Pre-fetching requires replacement of multiple blocks
• Using sequential and asynchronous (non-blocking) IO, pre-

fetching costs little and can save a lot of time

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 15

General Replacement Strategies

• Properties of blocks
– Age(s)

• Time since block was loaded
• Last time accessed

– Living references
– Demand: Number of accesses

over (recent) time

• Trade-offs
– Young blocks have few refs, but are involved in current operations
– Old blocks have many refers, but might get out-of-use right now

• Practice
– Query / Operator-specific strategies (explicit pinning)
– Use / weight multiple properties

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 16

Lessons

• Many general caching strategies have been (and are still)
developed

• Simple strategies are surprisingly good
– LRU or even random
– Commercial databases: Mostly LRU

• With fixing of blocks and special tricks for large operations

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 17

Implementing LRU with a LRU queue

• When block is requested

– Critical operation:
Search blockID in queue

– Very often performed

– Implemented with two lists
• Queue sorted by least access
• Maintain pointers on first and last position
• Hashmap: BlockIDs to queue positions (quasi-constant time)

• Access block: Delete and push on top of queue
• Evict block: Remove from bottom of queue
• Load block: Add at top of queue

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 19

Other Cache Issues

• Be aware: Your data is not written immediately
– Cache manager needs to check if writing before replacement is

necessary (dirty flag)

– With caching, data stays on volatile device much longer than
without

– Special care required – recovery strategies

• Cache consistency in distributed systems
– If more than one system caches, data may become stale
– Requires some form of synchronization

• Cache consistency in multi-TX systems
– If more than one TX changes data, multiple versions of a block

may exist
– Requires some form of synchronization

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 20

Semantic Caching: Cache query result

• Example
– Q1: “Select name from person where age>45”
– Q2: “Select * from person where age>18”
– Q1 can be answered using result tuples from Q2

• Powerful but complicated technique
– Can a query be answered using results of one or more other q’s?
– Query containment, “answering queries using views”

• Very complicated for write operations
– Cached result blocks are not IO blocks

• Semantic caching not used by any real DB today
– Note: Normal caching sometimes “mimics” semantic caching
– If Q1 executed after Q2, blocks from Q2 are in cache
– But: Computations need to be repeated (e.g. aggregation)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 21

Many Tasks Compete for Main Memory

• SGA: System global area
– Processes communicate through SGA
– Requires locking of main memory structures – latches

• Library cache: buffers SQL prepared statements using LRU
• Java pool: area for java stored procedures
• Each process additionally gets its PGA (process global area)
• Each area is limited and can become a bottleneck

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 22

Content of this Lecture

• Caching
• File structure

– Heap files
– Sorted files

• Index Files

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 23

5 Layer Architecture

We are here

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 24

Files and Storage Structures

• We have

– Records are stored in blocks
– Blocks are managed/cached by the buffer manager
– Access records by TID through cache manager with adr-translation

• But DBs usually search records with certain properties
– SELECT * FROM COSTUMER

WHERE Name = “Bond”
– SELECT * FROM ACCOUNT

WHERE Account# < 1000

• This is not “access by TID”
• There must be more clever ways than scanning

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 25

Sequential (Heap) File

• Records are stored sequentially in the order of inserts

• Insert always add to end of file
• “Holes” occur if records are deleted
• Minimal number of blocks : b = ⌈n / R⌉

– With n = number of records, R = number of records per block

• Better to keep some space free for growing records
– Fraction depends on expected read/write ratio

End of
File

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 26

Operations on Heap Files

• In the following: We assume highly selective searches
– Only a few records qualify

• Search with value
– b/2 block IO in case of successful searching a PK (on average)
– b block IO in case of failure or searching non-unique values

• Insert record without duplicate checking
– Remember: relational model is per-se duplicate–free
– Simple case: read last block, add, write last block: 2 IO
– Free list management makes things more complicated

• Insert record with duplicate checking / delete record
– b/2: for successful search and no insert (on average)
– b+1: in case of search without success and insert

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 27

Deleting Records

• First issue: File fragmentation
– Move records in block to gather larger chunks of free space
– In case of underflow: Remove blocks

• And change block translation table

• Second issue: Dangling pointers
– In case of deletes, existing references (indexes) need to considered
– Option 1: Update references

• Requires to keep a list of all active references per record
• One record deletion results in multiple physical deletions

– Option 2: Use tombstones
• Only mark record as deleted (e.g. null in block-dir)
• References are updated only when used
• Very fast at deletion time, some effort later

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 28

Sorted Files

• Sort records in file according to some attribute
– Faster searching when this attribute is search key
– More complex management – order must be preserved

• Operations and associated costs
– Search (using binsearch on blocks)

• log(b) IO; searching in block is free (as always)
– Note: That’s mostly random IO!

– Change / delete record based on value
• First search in log(b)
• Write changes / mark space as free

– Insert record
• First search correct position in log(b)
• Then do what?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 29

Inserting in a Sorted File

• General: Reserve free space in every new blocks

– Don’t fill blocks to 100% when allocated first time
– Chances increase that later insertions can be handled in the block

• Option 1: Use space available in block
– 1 additional IO for writing

• Option 2: Check neighbors
– See X blocks down and X blocks up in the file (usually X=1)
– When space is found, in-between records need to be moved

• Add change block translation table

– Cost: depends on how far we need/want to look

• Option 3: ?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 30

Overflow Blocks

• Option 3: Generate overflow blocks
– Create a new, “orthogonal” overflow block and insert record
– When blocks are connected by pointers

• Sorted table scan still possible as blocks are chained in correct order
• New block will not be in sequential physical order

– When block is added at end of file
• Sequential-IO table scan still possible, but not in order of attribute
• Requires that continuous space is reserved for growing tables

– Oracles “Extent”

Block A-C Block D-K Block S-Z Block L-R Block2 A-C

Insertion Overflow block

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 31

Disadvantages

• Some cost of keeping order (INSERT requires log(b)
search first, management of overflow blocks, …)

• Only one search key
– Searching on other attributes requires linear scans
– See multi-dimensional indexes

• Search time grows logarithmically with b
– For 10.000.000 blocks, we need ~23 IO

• Can we do better?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 32

Idea 1: Interpolated search; Build Histograms

• Partition key value range into buckets
• Count number of keys in each bucket
• Searching: Start at estimated position of search key

– Example: Search “Hampel”, [A-C]=7500, [D-F]=6200, [G-I]=3300
– Estimated position: 7500+6200+(3300/3)*2 + …
– Continue with local search around estimated position

• Advantages
– Very little IO if data is uniformly distributed – exact estimates
– Small space consumption when few buckets are used

• But: the more buckets (higher granularity), the better the estimates

• Disadvantages
– Histograms (statistics) need to be maintained (see later)

• Updates and synchronized: Potential bottleneck for update operations on
multiple records in the same bucket

– Choosing optimal bucket number and range is difficult

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 33

Content of this Lecture

• Caching
• File structure

– Heap files
– Sorted files

• Index Files

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 34

Idea 2: Decrease b: Essential Info in less Blocks

• Use additional file (index) storing only keys and TIDs
• Searching: (Bin-)search index, then access data by TID
• Advantages

– Data file need not be sorted any more
• Faster inserts in data file, but additional cost for updating index

– I:nteger keys: Fixed-length index entries; strings: Use fixed-length prefix

• But no fast sorted scans anymore (e.g. for sort-merge join)

– Faster search due to smaller records and less blocks: bindex < brecords

– Several indexes can be build for several attributes
• More flexibility, more update cost

• Disadvantages
– More files to manage, lock, recover, …
– Advantage shrinks if many tuples are selected (e.g. range queries)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 35

Further Decrease b: Index Sequential Files

• Data file has records sorted on key
• Index stores (first key, pointer) pairs for each data block
• Index record (ki, ptr): For all k in ptr↑: ki ≤ k ≤ ki+1
• Sparse index: Only put first key per block in index

Index file

Block bi Block bi+1

Data files

… (ki , bi) (ki+1 , bi+1) …

R R R … R R R …

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 36

Searching in Index-Sequential Files

• Search key in index using binsearch, then access by TID
• Advantages

– Index has only few keys: bindex << brecords

• Assume 10.000.000 records of size 200, |blockID|=10,
|search key|=20, block size=4096

• Number of blocks b= 10.000.000*200/4096 = 500.000
• Access if kept sorted: log(500.000) ~ 19 IO
• Index-seq file: log(500.000*(10+20)/4096) ~ 12 IO +1 for data

– Chances that index fits (mostly) into main memory

• Disadvantages
– Only possible for one attribute (data file must be sorted)
– More administration (compared to heap file)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 37

Index-Sequential Files: Other Operations

• Insert record r with key k

– Search for block bi with ki ≤ k ≤ ki+1

– Free space in block? Insert r; done
– Else, either check neighbors

• Index needs to be updated, as block’s first keys change

– … or create overflow blocks
• Option 1: New block not represented in index; index not updated

– More IO when searching data, as overflow blocks need to be followed

• Option 2: Index is updated (more IO at time of insertion)
– We need to insert into the index – leave free space in index blocks!

• Ideas for improving search further?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 38

Sorted File

20
10

40
30

60
50

80
70

100
90

Sparse
2nd level

10
30
50
70

90
110
130
150

170
190
210
230

10
90
170
250

330
410
490
570

Sparse
1st level

Multi-Level Index Files

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 39

Hierarchical Index-Sequential files

• Build a sparse, second-level index on the first-level index
– First level may be spare or dense
– All but the first level must be sparse; why?

• Advantages
– Access time reduces further

• Assume 10.000.000 records of size 200, |blockID|=10,
|search key|=20, block size=4096, b = 500.000

• Index-seq file: log(500.000*(10+20)/4096) = 12+1 block IO
• With second level: log(3662*(10+20)/4096) = 5+2 blocks IO
• With three levels: log(28*(10+20)/4096) = 1+3

– Higher levels are very small – cache permanently

• With more than one level, inserting becomes tricky
– Either degradation (overflows) or costly reorganizations
– Alternative: B-trees (later)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 40

Index Files and Duplicates

• What happens if search key is not unique in relation?
• Index file may

– Store duplicates: one pointer for each record
– Ignore duplicates: one pointer for each distinct value

• Smaller index file
• Requires sorted data file
• “Semi-sparse” index

• Index degradation
– If only few distinct values exist, every search selects many TID

• E.g. index on Boolean attributes – index has only two different entries

– Semi-sparse index leads to less IO
– But selects blocks in random IO – scan might be cheaper

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 41

Secondary Index Files

• Primary ind.: Index on attribute on which data file is sorted
• Secondary index: Index on any other attribute

– Cannot exploit order in data file
– Must be dense at first level

• Improvement:
Use intermediate
buckets
– Buckets hold TIDs

sorted by index key
– Buckets don’t store

key values
– Advantageous

for low cardinality attributes

10
20

40
20

40
10

40
10

40
30

10
20
30
40

50
60
...

buckets

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 42

Buckets for Secondary Index Files

• Index stores keys and ptr to buckets; buckets store TIDs
• Good if many TIDs with same attribute value exist
• That’s essentially a persistent hash partitioning
• Compute joins and AND’s by intersecting TID-lists

Dept. index EMP Floor index

Toy 2nd

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 43

Example

• Query: “All employees in TOY dept. located on 2nd floor”
– Use floor index to find TID-list L1

– Use department index to load TID-list L2

– Compute L= L1 ∩ L2

– Load employee data only for TIDs in L

• Advantage increases with more conditions (STAR join)

Dept. index EMP Floor index

Toy 2nd

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 44

Indexes in Oracle

• Per default: Secondary B* tree indexes
• Data files usually are heap files

– Exception: Index-organized tables (IOT)
– Recommended only for “read-only” tables

• No primary indexes
– Do not confuse with primary key – there is always an index on a

primary key (why?)

• Cluster index – cluster two tables and index common key
– Example: Cluster department and employee on common depNum
– Tuples with same depNum will go into same data block
– Cluster index: Create index on depNum (~ persistent join)
– Oracle has no clustered indexes – use index-organized tables

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 45

Multiple Sorts

• Use primary index (index-organized file) on sorted file
• Build secondary index including all attributes of the table in

desired second order
– Example: employee (ID, name, dep#, income)
– Create IOT employee (ID, name, dep#, income)

• Sorted by ID

– Create index on employee (name, ID, dep#, income)
• Sorted by name

• Maintained by database
– Doubled space consumption
– Faster queries
– Increased cost for UPDATE, DELETE, INSERT

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 46

Excursion: Indexing Text

• Information retrieval

– Searching documents with words
– Typically, each document is represented as “bag of words”
– Queries search for documents containing a set of words

• Naïve relational database way fails
– Indexed varchar2(64KB) attribute containing text
– Doesn’t allow for WORD queries
– We cannot store each word in an extra column

• Alternatives?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 47

Inverted Lists

• Build a secondary, bucketed index on the words
• Find documents by intersecting buckets

– Enables AND, NOT or OR

...the cat is fat ...

...was raining cats
and dogs...

...Fido the
dog ...

Inverted lists

cat

dog

Documents

	Foliennummer 1
	Content of this Lecture
	Caching = Buffer Management
	IO Buffering
	Storage Hierarchy
	General Method
	Finding a Block
	Access with a TID
	Content of this Lecture
	Caching Strategies – Going Wrong
	Caching Strategies – Better Strategy
	Caching Aspects
	Granularity of Cached Units
	Pre-fetching
	General Replacement Strategies
	Lessons
	Implementing LRU with a LRU queue
	Other Cache Issues
	Semantic Caching: Cache query result
	Many Tasks Compete for Main Memory
	Content of this Lecture
	5 Layer Architecture
	Files and Storage Structures
	Sequential (Heap) File
	Operations on Heap Files
	Deleting Records
	Sorted Files
	Inserting in a Sorted File
	Overflow Blocks
	Disadvantages
	Idea 1: Interpolated search; Build Histograms
	Content of this Lecture
	Idea 2: Decrease b: Essential Info in less Blocks
	Further Decrease b: Index Sequential Files
	Searching in Index-Sequential Files
	Index-Sequential Files: Other Operations
	Multi-Level Index Files
	Hierarchical Index-Sequential files
	Index Files and Duplicates
	Secondary Index Files
	Buckets for Secondary Index Files
	Example
	Indexes in Oracle
	Multiple Sorts
	Excursion: Indexing Text
	Inverted Lists

