Datenbanksysteme |I1I:
Caching and File Structures

UIf Leser

Content of this Lecture

e Caching
— Overview
— Accessing data
— Cache replacement strategies
— Prefetching

e File structure
e |ndex Files

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Caching = Buffer Management

ﬁBlock request

Buffer Manager

PO

P1

P2

Main Memory Buffer

Block on
Disc

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

1O Buffering

e RDBMS requests block Y from disk buffer manager

e Buffer manager checks if ...
Address rewriting
— Y not in cache

» No free space in buffer? Cache replacement
— Choose block Z in buffer policy

— If Z has been changed — write Z to disc
Cache fetch policy

— Y in cache: Grant access

e Free space available?
— Load Y into free space
— Grant access

— Mark Z as free and proceed
UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 4

Storage Hierarchy

A

PU registe
SIMD register
L1 cache line
L3 block access
Main memory cache
Disk controller cache

Disk

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

General Method

e Level X requests block Y from level X+1

e Buffer manager of X+1 checks if ...
Address rewriting
— Y not in cache

* No space available? Cache replacement
— Choose block Z in buffer policy

— If Z has been changed — write Z to disc
— Mark Z as free and proceed
e Space available?
— Load Y into free space
— Write into free space
— Grant access

— Y in cache: Grant access

Cache fetch policy

b

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Finding a Block

 \We need to check if block Y is in buffer
— Y is logical block ID in a virtual address space
e Possibilities
— Memory blocks store their logical block ID
e Find Y: Search all blocks (slow, no global data structures)

— Mapping table “logical block ID” — “physical block address”

e List data structure for all BlockIDs in buffer
— Sorted array, linked list, sorted linked list, hashing, ...

e Find Y: Fast, but requires synchronized access

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Access with a TID

e By delegation: x:=getData(TID,10)
e By hardwired pointer: adr := getAddr(TID); x:=adr[10]

e Pinned tuples: References to location in main memory exist
— Direct access possible

— Record must not be moved
 Would require adaptation of all references

— Block must not be replaced without destroying existing pointers
e Unpinned tuples: No references to location exist
— Every access requires one indirection

— Tuple may be moved
— Block may be written

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 8

Content of this Lecture

e Caching
— Overview
— Accessing data
— Cache replacement strategies
— Prefetching

e File structure
e |ndex Files

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Caching Strategies — Going Wrong

e Imagine a nested loop join
— Quter relation A has 10 blocks, inner relation B has 6 blocks

e Buffer size 6 blocks

e Assume Caching with FIFO (first in — first out)
— Cache is filled with A1 and B1, B2, B3, B4, B5
— Loading B6 replaces Al
— For next inner loop, A1 must be loaded again, replacing B1
— For loading A2, B2 is replaced, B1 replaces B3, ...
— Altogether: 70 reads

e FIFO is a typical OS caching strategies
e DB needs to be able to control cache behavior

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

10

Caching Strategies — Better Strategy

e Imagine a nested loop join
— Quter relation A has 10 blocks, inner relation B has 6 blocks

e Buffer size 6 blocks

e Proceed as follows
— Cache is filled with A1 and B1, B2, B3, B4, B5
— Loading B6 replaces B5
— For next outer loop, A2 replaces Al
— Inner loop: B1-B4+B6 without replacement
— B6 replaces B5

— Altogether: 1+6+9+9 = 25 block reads

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

11

Caching Aspects

e What to manage?

e How much to load?
— Optimal strategy ensures block is in buffer before request
— “Block-at-a-Time” versus “Read ahead”
e What to replace?
— Cache replacement strategies
e Good caches requires information flow from DB layer to
buffer manager

— Example: Reading complete relation (read ahead)
— Example: Executing a “Nested Loop Join” (fix outer-loop blocks)

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 12

Granularity of Cached Units

e Blocks (default): OS blocks or database blocks
e Records: Not used because “sub-10" cost
e Chunks

— Group blocks into larger “chunks”

— Less administration cost at buffer manager (buffer lists)

— 10 on chunks can exploit sequentially placed blocks on disk
— Good for very large operations (large table joins or sorts)
— [Disk controller automatically imitates chunking]

e Tables
— Fix all blocks of heavily used tables
— E.g.: System catalog, Oracles CACHE parameter

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

13

Pre-fetching

e Load blocks not yet needed but probably soon

e Examples

— If block from relation is requested, also load next blocks
e Possible full table scan?

— If object is accessed, also load referenced objects
e Not implemented in RDBMS, but successful in OODBMS

e Disc pre-fetching — if sector Is requested, read entire track
e Pre-fetching requires replacement of multiple blocks

e Using sequential and asynchronous (non-blocking) 10, pre-
fetching costs little and can save a lot of time

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 14

General Replacement Strategies

e Properties of blocks
— Age(s)
e Time since block was loaded
e Last time accessed
— Living references
— Demand: Number of accesses
over (recent) time

e Trade-offs

Verfahren

| Prinzip |

FIFO

dlteste Seite ersetzt

LFU (least fre-
quently used)

Seite mit genngster Hau-
figkeit ersetzen

LRU (least recently
used)

Seite ersetzen, die am
langsten nicht referen-
ziert wurde (System
R)

DGCLOCK (dyn.
generalized clock)

Frotokollierung der Erset-
zungshaufigkeiten wichiti-
ger Seiten

LRD (least refe-
rence density)

Ersetzung der Seite mit
geringster Referenzdichte

— Young blocks have few refs, but are involved in current operations
— Old blocks have many refers, but might get out-of-use right now

e Practice

— Query / Operator-specific strategies (explicit pinning)

— Use / weight multiple properties

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

15

Lessons

e Many general caching strategies have been (and are still)
developed

e Simple strategies are surprisingly good
— LRU or even random

— Commercial databases: Mostly LRU
e With fixing of blocks and special tricks for large operations

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 16

Implementing LRU with a LRU queue

e When block is requested

— Critical operation:
Search blockID in queue = e =
— Very often performed ; 2

— Implemented with two lists ~
e Queue sorted by least access
e Maintain pointers on first and last position
e Hashmap: BlockIDs to queue positions (quasi-constant time)

e Access block: Delete and push on top of queue
e Evict block: Remove from bottom of queue
e Load block: Add at top of queue

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 17

Other Cache Issues

e Be aware: Your data is not written immediately

— Cache manager needs to check if writing before replacement is
necessary (dirty flag)

— With caching, data stays on volatile device much longer than
without

— Special care required — recovery strategies
e Cache consistency In distributed systems

— If more than one system caches, data may become stale
— Requires some form of synchronization

e Cache consistency in multi-TX systems
— If more than one TX changes data, multiple versions of a block
may exist
— Requires some form of synchronization

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

19

Semantic Caching: Cache query result

e Example
— Q1: “Select name from person where age>45"
— Q2: “Select * from person where age>18"
— Q1 can be answered using result tuples from Q2

e Powerful but complicated technique
— Can a query be answered using results of one or more other g's?
— Query containment, “answering queries using views”

e Very complicated for write operations
— Cached result blocks are not 10 blocks

e Semantic caching not used by any real DB today
— Note: Normal caching sometimes “mimics” semantic caching
— If Q1 executed after Q2, blocks from Q2 are in cache
— But: Computations need to be repeated (e.g. aggregation)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 20

Many Tasks Compete for Main Memory

Linux/UNIXANIndows Machine
Instance

(Data and Index Blocks)

(SOL, PLUSOL)

SGA: System global area
— Processes communicate through SGA
— Requires locking of main memory structures — latches

Library cache: buffers SQL prepared statements using LRU
Java pool: area for java stored procedures

Each process additionally gets its PGA (process global area)
Each area is limited and can become a bottleneck

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

21

Content of this Lecture

e Caching

e File structure
— Heap files
— Sorted files

e |ndex Files

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

22

5 Layer Architecture

Data Model

A

A 4

Logical Access

A

A

We are here Data Structures

A

\ 4

Buffer Management

\ 4

Operating System

|

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

23

Files and Storage Structures

 We have
— Records are stored in blocks
— Blocks are managed/cached by the buffer manager
— Access records by TID through cache manager with adr-translation

e But DBs usually search records with certain properties

- SELECT * FROM COSTUMER
WHERE Name = "Bond"

- SELECT * FROM ACCOUNT
WHERE Account# < 1000

e This is not “access by TID”
e There must be more clever ways than scanning

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 24

Sequential (Heap) File

e Records are stored sequentially in the order of inserts

== |

End of
File

e Insert always add to end of file
e “Holes” occur If records are deleted

e Minimal number of blocks : b = [n / R]
— With n = number of records, R = number of records per block

e Better to keep some space free for growing records
— Fraction depends on expected read/write ratio

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

25

Operations on Heap Files

e In the following: We assume highly selective searches
— Only a few records qualify

e Search with value
— b/2 block 10 in case of successful searching a PK (on average)
— b block 10 in case of failure or searching non-unique values

e Insert record without duplicate checking
— Remember: relational model is per-se duplicate—free
— Simple case: read last block, add, write last block: 2 10
— Free list management makes things more complicated
e Insert record with duplicate checking / delete record

— b/2: for successful search and no insert (on average)
— b+1: in case of search without success and insert

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 26

Deleting Records

e First issue: File fragmentation
— Move records in block to gather larger chunks of free space

— In case of underflow: Remove blocks
e And change block translation table

e Second issue: Dangling pointers
— In case of deletes, existing references (indexes) need to considered

— Option 1: Update references
» Requires to keep a list of all active references per record
e One record deletion results in multiple physical deletions

— Option 2: Use tombstones

ATH
e Only mark record as deleted (e.g. null in block-dir) Ry
e References are updated only when used e
e Very fast at deletion time, some effort later “

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 27

Sorted Files

e Sort records in file according to some attribute
— Faster searching when this attribute is search key
— More complex management — order must be preserved

e Operations and associated costs

— Search (using binsearch on blocks)
e log(b) 10; searching in block is free (as always)
— Note: That's mostly random 10!
— Change / delete record based on value
e First search in log(b)
e Write changes / mark space as free
— Insert record
e First search correct position in log(b)
e Then do what?

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

28

Inserting in a Sorted File

e General: Reserve free space In every new blocks
— Don't fill blocks to 100% when allocated first time
— Chances increase that later insertions can be handled in the block

e Option 1: Use space available in block
— 1 additional 10 for writing

e Option 2: Check neighbors
— See X blocks down and X blocks up in the file (usually X=1)

— When space is found, in-between records need to be moved
e Add change block translation table

— Cost: depends on how far we need/want to look

e Option 3: ?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 29

Overflow Blocks

e Option 3: Generate overflow blocks
— Create a new, “orthogonal” overflow block and insert record

— When blocks are connected by pointers
e Sorted table scan still possible as blocks are chained in correct order
e New block will not be in sequential physical order

— When block is added at end of file
e Sequential-10 table scan still possible, but not in order of attribute

e Requires that continuous space is reserved for growing tables
— Oracles “Extent”

l Insertion Overflow block

Block A-C ﬂ Block D-K || Block L-R || Block S-Z ﬂ Block2 A-C

\\//

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 30

Disadvantages

e Some cost of keeping order (INSERT requires log(b)
search first, management of overflow blocks, ...)

e Only one search key
— Searching on other attributes requires linear scans
— See multi-dimensional indexes

e Search time grows logarithmically with b
— For 10.000.000 blocks, we need ~23 10

e Can we do better?

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

31

Idea 1: Interpolated search; Build Histograms

Partition key value range into buckets
Count number of keys in each bucket

Searching: Start at estimated position of search key

— Example: Search “Hampel”, [A-C]=7500, [D-F]=6200, [G-1]=3300
— Estimated position: 7500+6200+(3300/3)*2 + ...

— Continue with local search around estimated position

Advantages
— Very little 10 if data is uniformly distributed — exact estimates
— Small space consumption when few buckets are used
e But: the more buckets (higher granularity), the better the estimates
Disadvantages

— Histograms (statistics) need to be maintained (see later)

e Updates and synchronized: Potential bottleneck for update operations on
multiple records in the same bucket

— Choosing optimal bucket number and range is difficult

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 32

Content of this Lecture

e Caching

e File structure
— Heap files
— Sorted files

e |ndex Files

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

33

Idea 2: Decrease b: Essential Info in less Blocks

e Use additional file (index) storing only keys and TIDs
e Searching: (Bin-)search index, then access data by TID

e Advantages

— Data file need not be sorted any more

e Faster inserts in data file, but additional cost for updating index
— l:nteger keys: Fixed-length index entries; strings: Use fixed-length prefix

e But no fast sorted scans anymore (e.g. for sort-merge join)
— Faster search due to smaller records and less blocks: b, 4.,
— Several indexes can be build for several attributes
e More flexibility, more update cost
e Disadvantages
— More files to manage, lock, recover, ...
— Advantage shrinks if many tuples are selected (e.g. range gueries)

<b

records

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 34

Further Decrease b: Index Sequential Files

e Data file has records sorted on key

e Index stores (first key, pointer) pairs for each data block
e Index record (k, ptr): For all k in ptrT: k <k <k,

e Sparse index: Only put first key per block in index

Index file [Tk, 0.0 -]
Data files [r]| /| #]. | el el AT]
Block b, Block b,

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 35

Searching in Index-Sequential Files

e Search key In index using binsearch, then access by TID

e Advantages

— Index has only few keys: D gex << Drecords

e Assume 10.000.000 records of size 200, |blockiD|=10,
|search key|=20, block size=4096

e Number of blocks b= 10.000.000*200/4096 = 500.000
e Access if kept sorted: log(500.000) ~ 19 10
e Index-seq file: log(500.000*(10+20)/4096) ~ 12 10 +1 for data

— Chances that index fits (mostly) into main memory
e Disadvantages

— Only possible for one attribute (data file must be sorted)
— More administration (compared to heap file)

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

36

Index-Sequential Files: Other Operations

e Insert record r with key k
— Search for block b; with k <k <ki,,
— Free space in block? Insert r; done
— Else, either check neighbors
e Index needs to be updated, as block’s first keys change

— ... or create overflow blocks

e Option 1: New block not represented in index; index not updated
— More 10 when searching data, as overflow blocks need to be followed
e Option 2: Index is updated (more 10 at time of insertion)
— We need to insert into the index — leave free space in index blocks!

e |deas for improving search further?

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

37

Multi-Level Index Files

Sparse Sparse

2nd level 1st level Sorted File

% iE: 126

90 30| —

250] \ 70 20

330 \ 90

. 110 . 50

A0 130 60

490 \\ 56

570 \\ \ 70
1700 80
190, . 90
210 100
230 \

\

UIf Leser: Implementation of Database Systems, Winter Semests\zo 6/>0\17\

Hierarchical Index-Sequential files

e Build a sparse, second-level index on the first-level index

— First level may be spare or dense
— All but the first level must be sparse; why?

e Advantages

— Access time reduces further

e Assume 10.000.000 records of size 200, |blockiD|=10,
|search key|=20, block size=4096, b = 500.000

» Index-seq file: log(500.000*(10+20)/4096) = 12+1 block 10
e With second level: log(3662*(10+20)/4096) = 5+2 blocks 10
e With three levels: log(28*(10+20)/4096) = 1+3

— Higher levels are very small — cache permanently

e With more than one level, inserting becomes tricky
— Either degradation (overflows) or costly reorganizations
— Alternative: B-trees (later)

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

39

Index Files and Duplicates

 What happens if search key is not unique in relation?

e Index file may
— Store duplicates: one pointer for each record

— Ignore duplicates: one pointer for each distinct value
e Smaller index file
e Requires sorted data file
e “Semi-sparse” index

e Index degradation

— If only few distinct values exist, every search selects many TID
e E.g. index on Boolean attributes — index has only two different entries

— Semi-sparse index leads to less 10
— But selects blocks in random 10 — scan might be cheaper

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 40

Secondary Index Files

e Primary ind.: Index on attribute on which data file is sorted

e Secondary index: Index on any other attribute
— Cannot exploit order in data file
— Must be dense at first level

Improvement »bUCkets
® Vv : v N
Use intermediate [10 /% N (10
buckets o j?: - -
— Buckets hold TIDs 40| — 40
sorted by index key [gg \ 10
— Buckets don't store |60 \ 40
key values 10
— Advantageous \\ 40
for low cardinality attributes jg

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 41

Buckets for Secondary Index Files

e Index stores keys and ptr to buckets; buckets store TIDs
e Good if many TIDs with same attribute value exist

e That's essentially a persistent hash partitioning

e Compute joins and AND’s by intersecting TID-lists

Dept. index EMP Floor index

T // \\an
L,

Toy | 7 S

\\
\

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Example

e Query: “All employees in TOY dept. located on 2nd floor”

— Use floor index to find TID-list L,

— Use department index to load TID-list L,
— Compute L=L; nL,

— Load employee data only for TIDs in L

e Advantage increases with more conditions (STAR join)

Dept. index EMP

/

Toy // ‘? ? -
\

/

Floor index

'\

2nd

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

43

Indexes in Oracle

e Per default: Secondary B* tree indexes

e Data files usually are heap files
— Exception: Index-organized tables (10T)
— Recommended only for “read-only” tables

e No primary indexes

— Do not confuse with primary key — there is always an index on a
primary key (why?)

e Cluster index — cluster two tables and index common key
— Example: Cluster department and employee on common depNum
— Tuples with same depNum will go into same data block
— Cluster index: Create index on depNum (—~ persistent join)
— Oracle has no clustered indexes — use index-organized tables

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 44

Multiple Sorts

e Use primary index (index-organized file) on sorted file

e Build secondary index including all attributes of the table In
desired second order
— Example: employee (ID, name, dep#, income)
— Create 10T employee (ID, name, dep#, income)
e Sorted by ID
— Create index on employee (name, ID, dep#, income)
e Sorted by name
e Maintained by database
— Doubled space consumption
— Faster queries
— Increased cost for UPDATE, DELETE, INSERT

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 45

Excursion: Indexing Text

e [nformation retrieval
— Searching documents with words
— Typically, each document is represented as “bag of words”
— Queries search for documents containing a set of words

e Naive relational database way fails
— Indexed varchar2(64KB) attribute containing text
— Doesn’t allow for WORD queries
— We cannot store each word in an extra column

e Alternatives?

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

46

Inverted Lists

e Build a secondary, bucketed index on the words

e Find documents by intersecting buckets
— Enables AND, NOT or OR

Documents
cat B
— | ...the cat is fat ...
dog | - \\
\ ...was raining cats
I and dogs...
Inverted lists [Fido the
dog ...

UIf Leser: Implementation of Database Systems, \————Jemester 2016/2017

	Foliennummer 1
	Content of this Lecture
	Caching = Buffer Management
	IO Buffering
	Storage Hierarchy
	General Method
	Finding a Block
	Access with a TID
	Content of this Lecture
	Caching Strategies – Going Wrong
	Caching Strategies – Better Strategy
	Caching Aspects
	Granularity of Cached Units
	Pre-fetching
	General Replacement Strategies
	Lessons
	Implementing LRU with a LRU queue
	Other Cache Issues
	Semantic Caching: Cache query result
	Many Tasks Compete for Main Memory
	Content of this Lecture
	5 Layer Architecture
	Files and Storage Structures
	Sequential (Heap) File
	Operations on Heap Files
	Deleting Records
	Sorted Files
	Inserting in a Sorted File
	Overflow Blocks
	Disadvantages
	Idea 1: Interpolated search; Build Histograms
	Content of this Lecture
	Idea 2: Decrease b: Essential Info in less Blocks
	Further Decrease b: Index Sequential Files
	Searching in Index-Sequential Files
	Index-Sequential Files: Other Operations
	Multi-Level Index Files
	Hierarchical Index-Sequential files
	Index Files and Duplicates
	Secondary Index Files
	Buckets for Secondary Index Files
	Example
	Indexes in Oracle
	Multiple Sorts
	Excursion: Indexing Text
	Inverted Lists

