
Ulf Leser

Datenbanksysteme II:
Complexity, Records & Blocks

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 2

Content of this Lecture

• IO complexity model
• Records and pages
• Referencing tuples
• BLOBs and free space lists
• Example: Oracle block structure

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 3

Again

Really expensive Reg-
ister

Very expensive Cache

~ 15 € / GB Main Memory

 ~ 0,04 € / GB Disk

Tape

Difference
~104

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 4

Consequences

• Depending on the mode of data access, algorithms need to
be designed and analyzed differently

• RAM model of computation
– Access to data costs nothing (O(1))
– Only operations on the data count – comparison, arithmetic, etc.

• IO model of computation
– Operations cost nothing (as long as it is linear …)
– Only access to data counts – reading & writing blocks

• Beware: Sometimes both need to be considered
– E.g. operations with non-linear complexity

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 5

RAM analysis of Merge-Sort

• Basis: Two sorted lists of size n can be merged in O(n)

• Merge-Sort:
– If list is of size 1, return (sublist is sorted)
– Else, divide list in two lists of equal size
– Call MERGE-SORT for each sublist
– Merge the sorted list

• Complexity
– O(n*log(n)) when measuring number of key comparisons

1 3 1

2 5 2

4 6 3

7 10 4

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 6

IO Analysis of Merge-Sort

• Basis: Two sorted lists on disc consisting of n blocks each
can be merged in O(n) IO operations
– Read first blocks of each list (2 IO)
– Merge both sorted blocks into one output block (0 IO)
– If end of one input block is reached, read next block (1 IO)
– If output block is full, write to disc (1 IO)
– In total, each block is read and written once – 4*n IO

• Let’s apply the recursive algorithm

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 7

Recursive merge-sort

U

U

U

U

U

U

U

U

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

16 IO 16 IO 16 IO 16 IO

• Total IO: 2*n*(log(n)+1)
– n: Number of blocks

• How much main memory do we need?
– Just three blocks

• Can we do better?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 8

Example cont‘d

• Idea: Load more than one block into main memory
– Unsorted file with n blocks, main-memory M of size |M|=b blocks
– Read b blocks from file, sort in-memory, write

• 2b IO; sorting is free; needs in-place sorting algorithm

– Repeat until file is read entirely; generates x=n/b sorted files (runs)
• Total IO: Each block is read and written once: 2n IO

• Merge x runs in one step by opening all x files at once
– Each block is again read and written: 2n IO

• Total: 4n IO

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 9

Blocked Multi-Way Merge-Sort

U

U

U

U

U

U

U

U

S

S

S

16 IO 16 IO

• b=4: 32 block IO
• b=3: ?
• b=8: ?

b=4
• Trick: Many concurrent reads

– We do not measure time here, so
parallel IO is not essential for
analysis

– But parallel reads are realistic with
appropriate controllers, discs, …

• Concurrent reads help to “get
away” from the logarithmic
number of rounds
– We remove the assumption that only

two blocks can be accessed at once

• Result: Linear IO
• But still O(n*log(n)) comparisons

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 10

Limits

• If b<n, total IO is 4n
• But there is a limit (we are cheating)

– During merge phase
– Assume b=1: We would have to read 8 blocks, but b=1!
– Problem 1: We need to have many files open at a time

• Example: 1M, b=2
• Generates 500K runs of size 2 each
• We probably cannot open 500K files at once

– Problem 2: We need to hold x+1 blocks in main memory
• We will not be able to load 500K blocks in memory in case b=2
• We could load a block, take first record, load next block …

• Solutions?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 11

Mega-Runs

• Solution for problem 2

– Forget the one block we need for writing (makes math easier)
– Thus, we can sort b*b blocks using our method

• Read and sort b blocks, each time generating one of b runs

– Partition file in partitions of b2 blocks
– Sort each partition, generating a mega-run
– Open all mega-runs in parallel and merge
– If there are more than b mega-runs, apply recursively

• How much data can we sort now?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 12

Analysis

• Without mega-runs
– One run sorts b blocks; we can read b files in parallel
– Hence, we can sort b2 blocks
– Suppose

• Block size=4096, record size=200: ~20 records per block
• Main memory: 512 MB, ~400MB free: ~100.000 blocks (b=100.000)
• Sorts 100.0002*20 = 200.000.000.000 records

• With mega runs
– In one mega-run (=partition), we sort b2 blocks
– Using 1 level of mega runs, we can sort b partitions of size b2

– Sorts 100.0003*20 = 2E16 records = 4000 petabyte

• Small server: MM=4GB; b=1000000 => Sorts 4E6 PB
– With how much IO?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 13

Sequential IO

• We forgot differences between random / sequential access
– Limitation: These are not captured by our IO model

• How can we maximize sequential IO?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 14

Block Sequences

• Don’t read/write blocks one-at-a-time
• Work on sequences of consecutive blocks

– Merge two sorted lists by every time reading b/3 blocks of each file
• Two third for reading, one third for writing
• Only read another b/3 blocks when first exhausted

– We might have already written one sequence in the meantime

• Write b/3 blocks in one sequential write

– Merge x runs by every time reading b/(x+1) blocks of each run

• Anything else to optimize?
– What does the machine do when waiting for (slow) IO?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 15

Asynchronous Read/Write

• Use non-blocking, asynchronous IO
• Divide each third in two partitions
• Work with one partition; when done, issue IO request and

continue with other partition while IO is happening to refill
first partition

• Takes into account that main memory operations are not
really free

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 16

Ignoring IO cost is a bad idea

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 17

Content of this Lecture

• IO complexity model
• Records and pages
• Referencing tuples
• BLOBs and free space lists
• Example: Oracle block structure

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 18

5 Layer Architecture

We are here

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 19

Storing relational data

• Fundamental elements:

Records (or tuples) consisting of typed attributes (or fields)
• We need to

– Quench records on pages
– Find attribute values of a given tuple
– Find a record in a page
– Find a page (next lecture)

• Central: Stable record references

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 20

Data and Indexes

“Data File”

Index File

Records

Index File Index File

Index File

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 21

Quenching Records

r1 r2 r4 r3 r3

r1 r2
lost storage

• Tuple = Record; fixed or variable length
• Mapping of records to pages

– “Spanned Record”

– “Unspanned Record”

• Evaluation
– Requires two (or more) IO operations
– Transaction management on block level much more difficult
– Offers better space utilization

• Summary: Avoid spanning records
– But how to handle oversize records?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 22

Adressing Fields of a Records

• Assume records with k fields and n byte

• V1: Fixed length records
• Variable length records

– V2: Mark end of fields
• Space: n+k; requires special

end symbol; access by scan

– V3: Store lengths of fields
• Space: n+k*|len|; requires

fixed |len|; access by hops

– V4: Use record dictionary
• Space: n+k*|ptr|; requires

fixed |ptr|; direct access

20 bytes 10 bytes 4 bytes

20 bytes 10 bytes 4 bytes

20 bytes 10 bytes 4 bytes

20 bytes 10 bytes 4 bytes

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 23

Variable Length Records

• Practical hint: Don’t be afraid of variable length records

• More freedom in data modeling
• Enables much better space utilization
• Additional work is manageable

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 24

Storing NULL‘s

• NULL has special semantics
– Assume z=NULL; then, the following is not the same in SQL

• if (z) then XXX else YYY;
• If (z) then XXX; if (not z) then YYY;

– Not at all the same: z=“” and z=NULL
• Purposefully no value given versus … (unclear)

• The many meanings of NULL
– Not known, not defined, no value at the moment, …

• NULLs as field values
– Fixed length, with end marks, length indicator

• Use special symbol (otherwise unused)
• Always make sure to be able to discern “” from NULL

– Record dictionary: set pointer to NULL

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 25

Content of this Lecture

• IO complexity model
• Records and pages
• Referencing tuples
• BLOBs and free space lists
• Example: Oracle block structure

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 26

Referencing Tuples

• At system level, tuples need to be addressable

– E.g. references from indexes, transaction contexts, …
– TID should be unique and immutable

• Uniqueness for unique identification
• Immutable for keeping references alive

• Still, physical location should be changeable
– For growing tuples, for improving free space management,

during block reorganization, …
– Moves can be within or across pages

• Requires some form of decoupling of TID from physical
location (semi-physical referencing)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 27

TID Concept

• Tuples are identified by tuple ID (TID)

– Must encoded: Block + location in block
– Different options – next slides

• When requesting a tuple by its TID
– Determine block
– See if block is in buffer
– Yes – return physical block address
– No

• If necessary, free space for block in buffer first
• Load block; translate blockID in physical address

– Virtualized memory

– All performed by the cache manager (next lecture)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 28

Addressing a Record in a Page

• Option 1: TID = <BlockID, Offset>

• Option 2: TID = <BlockID, tupID>, then search

BlockID
Offset

tupID|…
BlockID -- Search --

• Good: direct access
• Bad: no moves possible

• Good: Moving within block
• Bad: Requires a block scan;

tupID must be managed

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 29

Using a Block Directory

• Block directory (tuple table):
– TID = <BlockID, DirOffset>

• Method of choice
– TID remains stable when tuples move within blocks
– No scan, only 2 indirections

• Requires management of block directory within each
block (requires space; must be locked; …)

• How to move across blocks (without updating pointers)?

BlockID

Block directory

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 30

Delegation

• Replace tuple with TID’: Another TID, used only internally
• Upon further moves, only adapt pointer (TID’)

– No chaining of references
– Accessing tuple requires at most two block IO

• Might incur degeneration
– Too many 2-block-accesses
– Incentive for periodic re-organizations

TID‘
BlockID

 Block directory

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 31

TIDs versus Foreign Keys

• Foreign key is a logical value at the data model layer, TID
is a semi-physical value at in internal layer

• FKs are looked-up in an index, TID are translated into
physical addresses

• Foreign key is visible to developers, TID (usually) not
– Do not use TIDs as foreign keys – will change during query

processing

• Foreign key is an integrity constraint, not a pointer
– May join foreign key with any other value in the database as well

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 32

Content of this Lecture

• IO complexity model
• Records and pages
• Referencing tuples
• BLOBs and free space lists
• Example: Oracle block structure

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 33

Storing BLOBs

• BLOB/ CLOB : Binary / Character large Objects

– Images, video, music, PDF, …

• May have gigabyte in size (depending on DBMS)
• Do not fit into a block, page, segment, …
• BLOBs typically are stored in separate data structures

– Ever read a BLOB through JDBC?
– Access much harder than for ordinary attributes

• May be managed by file system or by DBMS (tablespaces)
• If managed by file system: File may be deleted, other

access credentials, …

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 34

Storing BLOBs

• Allows sequential reads
– If blocks are really sequential

on disk

• Difficult to seek specific
positions inside BLOB

• No limitation in size

BlockID

 Block directory

BLOB-Start or
BLOB-Directory

• No sequential read (video)
– Use block chaining on top

• Good for accessing specific
positions within BLOB
– Large XML files

• Size limited through dir size

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 35

INSERT – Finding Free Space

• What happens if a record is deleted?
– Mark record as deleted in block directory
– Compress block or leave “hole” in block
– In either case, free space is left

• INSERT a record
– Possibility 1: Always into last block

• No space reuse (apart from updates)
• Requires periodic reorganizations to ensure sufficient space utilization

– Possibility 2: Try to find free space inside blocks
• Must be large enough (simple for fixed-size tuples)
• Many possible strategies: Next free space? Best fitting space? Space in

block with is most underutilized?
• Requires management of free space list per logical storage unit

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 36

Life is complex

• Oracle procedure for

finding free space
• Free space is

administered at the level
of segments
– Logical database objects

• Explanation
– TFL: transaction free list
– PFL: process free list
– MFL: master free list
– HWM: High water mark

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 37

Content of this Lecture

• IO complexity model
• Records and pages
• Referencing tuples
• BLOBs and free space lists
• Example: Oracle block structure

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 38

Oracle Block Structure

• DBA: Data Block
Header: block address
(global and relative
in tablespace)

• Block type: data,
index, redo, ...

• Table directory: tables in this block (for clustered data)
• Row directory: offset of tuples in block
• ITL: Interested transaction list – locks on rows in block

– There is no „lock manager“ in Oracle
– ITL grows and shrinks – “ITL wait”, INITTRANS, MAXTRANS
– Locks are not cleaned upon TX end – next TX checks TX-ID

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 39

Creating a table

CREATE TABLE "SCOTT"."EMP"
 (EMPNO NUMBER(4,0), …)

PCTFREE 10
PCTUSED 40
INITRANS 1
MAXTRANS 255
NOCOMPRESS
LOGGING
STORAGE(INITIAL 65536

 NEXT 1048576
 MINEXTENTS 1
 MAXEXTENTS …
 PCTINCREASE 0)

TABLESPACE SYSTEM

• PCTFREE: Not filled by inserts
(reserved for updates) – avoids
row chaining

• PCTUSED: Low mark before block
is put into free list

• INITTRANS: Initial space reserved
for TX-locks in each block

• MAXTRANS: Max space reserved
for TX-locks

• NOCOMPRESS
• LOGGING: generates REDO or not
• INITIAL: Size of 1st extent
• NEXT: Size of next extent
• MINEXT: Number of extents

allocated immediately (each size
INITIAL, but total space not
continuous)

• MAXEXT: Max. number of extents
• PCTINCREASE: Increase of NEXT

size

	Foliennummer 1
	Content of this Lecture
	Again
	Consequences
	RAM analysis of Merge-Sort
	IO Analysis of Merge-Sort
	Recursive merge-sort
	Example cont‘d
	Blocked Multi-Way Merge-Sort
	Limits
	Mega-Runs
	Analysis
	Sequential IO
	Block Sequences
	Asynchronous Read/Write
	Ignoring IO cost is a bad idea
	Content of this Lecture
	5 Layer Architecture
	Storing relational data
	Data and Indexes
	Quenching Records
	Adressing Fields of a Records
	Variable Length Records
	Storing NULL‘s
	Content of this Lecture
	Referencing Tuples
	TID Concept
	Addressing a Record in a Page
	Using a Block Directory
	Delegation
	TIDs versus Foreign Keys
	Content of this Lecture
	Storing BLOBs
	Storing BLOBs
	INSERT – Finding Free Space
	Life is complex
	Content of this Lecture
	Oracle Block Structure
	Creating a table

