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2010: Price versus speed 

Really expensive Reg ister 1-10 ns/byte 

Very expensive Cache 10-60 ns/ cache 
line 

~ 200 € / GB Main Memory 100-300 ns/ block 

 ~ 1 € / GB Disk 10-20  ms/ block 

 < 1€/GB Tape sec – min 
Difference  

~104 

Difference  
~105 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 4 

2010: Storage Hierarchy 

Really expensive Register 1-4 byte 

Very expensive Cache 1-4 MB 

~ 200 € / GB Main Memory 1-16 GB 

 ~ 1 € / GB Disk 512GB – 1TB  
discs 

 < 1€/GB Tape “Infinite” 
tape robots 
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2016: Storage Hierarchy 

Really expensive Register 1 – 32 byte 

Very expensive Cache 1-16 MB 

~ 7 € / GB Main Memory 16-256 GB 

 ~ 0,04 € / GB Disk 1-16 TB 

Tape “Infinite” 
tape robots 
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Costs Drop Faster than you Think 

Source: http://analystfundamentals.com/?p=88 
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New Players 

Really expensive Reg- 
ister 

1-10ns /  
byte 

Very expensive Cache 10-100ns /  
cache line 

~ 7 € / GB Main Memory 60-300ns /  
block 

~ 1 € / GB Solid-State Disks (SSD) 1 ms / 
block 

~ 0,04 € / GB  Disk 10-20 ms /  
block 

Tape sec – min 
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New Players 

Really expensive Reg- 
ister 

1-10ns /  
byte 

Very expensive Cache 10-100ns /  
cache line 

~ 15 € / GB Main Memory 60-300ns /  
block 

~ 1 € / GB Solid-State Disks (SSD) 1 ms / 
block 

~ 0,04 € / GB  Disk 10-20 ms /  
block 

Tape sec – min 

Source: http://www.tomshardware.com/news/ssd-hdd-solid-state-drive-hard-disk-drive-prices,14336.html 
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Characteristics 

Quelle: http://blog.laptopmag.com/faster-than-an-ssd-how-to-turn-extra-memory-into-a-ram-disk 

read != write 

random access != sequential 
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Storage Area Networks (SAN) 

• Dedicated subsystem providing storage (and only storage) 
• Virtualization of resources 
• Facilitates management, storage assignment, backup etc. 
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Prize of Main Memory 

 
 

• 2014: 1TB DRAM ~ 5000€ 
• 2016: Laptops with 16GB, 

desktops with 32GB, 
servers with 128GB 

• Guess: 99% of all 
commercial databases are 
smaller than 100GB 
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New: Multi-Core with NUMA 

 
• Modern CPUs can easily have 4-8 cores, each 2 threads 
• 4 CPUs in one server is standard 
• Add hyper-threading 
• 128 hardware threads 
• Future: Servers with  

1000+ threads (exascale) 
– Network on a chip:  

Caching, routing, … 

Quelle: http://ixbtlabs.com/articles2/cpu/rmma-numa2.html 
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Consequences 

 
• Dealing with memory hierarchy is core concern of DBMS 

– Speed of access 
– Durability of changes 

• This lecture will mostly focus on disk versus RAM 
• Similar problems for cache-RAM, disk-SSD, … 
• Differences exist 

– Block sizes 
– Heterogeneous pattern: Read/write, random-access/sequential 
– Durability 
– Error rates, long-evity 
– … 
– Very active area of research 
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Overview 

 
 
 

• Databases are complex software artifacts 
• Need to be sliced into layers   
• Hardware-induced layers: Memory hierarchy 
• Abstraction-induced layers: Tuple – array – byte stream 

– Conceptual – logical - physical 
– Separation of concern 
– Information hiding 
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Five Layer Architecture 

Data Model 

Logical Access 

Data Structures 

Buffer Management 

Operating System 

Schema, SQL 

Disks, blocks 

Records, transactions 

Virtual blocks, arrays, locks 

Blocks (pages) 

Conceptual 

Logical 

Physical 
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Tasks 

Query optimization 
Access control  
Integrity constraints 

Physical record manager  
Index manager  
Lock manager 
Log / Recovery 

Sort 
Transaction processing 

Cursor management 

Block management 
Caching 

External memory 

Data Model 

Logical Access 

Data Structures 

Buffer Management 

Operating System 
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Operations 

SQL: select ... from ... Where 
Grant access to ...  
Create index on ... 

RECORDs in pages  
access paths, indexes 

OPEN – FETCH –CLOSE  
STORE Record 

READ page 
WRITE page 

Disc driver 
MOVE head ... 

Data Model 

Logical Access 

Data Structures 

Buffer Management 

Operating System 
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Interfaces 

Set-based 

Record-Based 

Internal Record-based 

Data Model 

Logical Access 

Data Structures 

System interface 

File interface 

Device interface 

Buffer Manager 

Operating System 

Set-based access using declarative language 

Record-based access using logical access path 

Record-based access using physical data structures 

Byte access in virtual address space  

Block access (software RAID) 

Disc controller (Caching, Prefetching, Hardware RAID) 
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Note: Idealized Representation 

 
• Layers may be merged 

– E.g. logical and internal record-based layers 

• Not all functionality can be assigned to exactly one layer 
– E.g. recovery, optimization 

• Layers sometimes must access non-neighboring layers 
– Prefetching needs to know the query 

• Layer 4 to Layer 1/2 

– Optimizer needs to know about physical data layout 
• Layer 1 to layer 4/5 

– Breaks information hiding principle 
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Bottom-Up 

Data Model 

Logical Access 

Data Structures 

Buffer Management 

Operating System 
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Classical Discs 
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• Redundancy: Fail-safety and access speed  
– Increased read performance, write perf. not affected (parallel write) 
– Disc crash (one) can be tolerated 
– Be careful about dependent components (controller, power, …) 

• Drawbacks 
– Which value is correct in case of divergence in the two copies?  
– Space consumption doubles 

A 

C 

B 

D 

A 

C 

B 

D 

RAID 1: Mirroring 
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Bottom-Up 

Records, Blocks,  
Files 

Data Model 

Logical Access 

Data Structures 

Buffer Management 

Operating System 
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Access Methods: Sequential Unsorted Files 

1522 Bond ... 

123 Mason ... 

... ... ... 

1754 Miller ... 

• Access to records by record/tuple identifier (RID or TID) 
 
 
 

• Operations 
– INSERT( Record):  Move to end of file and add, O(1) 
– SEEK( TID):   Sequential scan, O(n) 

• FIRST ( File):   O(1) 
• NEXT( File):    O(1) 
• EOF ( File):   O(1) 

– DELETE( TID):   Seek TID; flag as deleted, O(n) 
– REPLACE( TID, Record): Seek TID; write record, O(n) 

• What happens if records have variable size? 
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Access Methods: Sequential sorted Files 

123  Mason ... 

1522 Bond ... 

... ... ... 

1754 Miller ...  
• Operations 

– SEEK( TID):   Bin search, O(log(n))  
• But a lot of random access  
• Might be slower than scanning the file 

– INSERT( Record):  seek(TID), move subsequent records by one 
• This is terribly expensive  – O(n) reads and writes 

– … 
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• Operations 
– SEEK( TID): Using order in TIDs; O(log(n)) 

• Only if tree is balanced; only if tree is ordered by the right value 

– INSERT( TID): Seek TID and insert; possibly restructuring 
– … 

Root 

Internal Node 

Leaves 

Indexed Files 
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Storage in Oracle 

 
• Data files are assigned to  

tablespaces 
– May consist of multiple files 
– All data from one object (table,  

index) are in one tablespace 
– Backup, quotas, access, … 

• Extents: Continuous  
sequences of blocks on disc 

• Space is allocated in extents  
(min, next, max, …) 

• Segments logically group all extents of an object 

Database 

Tablespace 

Segment 

Extent 

OracleBlock OS Block 

Data file 

Logical 
Physical 
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Managing space in Oracle  
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Bottom-Up 

Virtual – physical blocks, 
access paths 

Data Model 

Logical Access 

Data Structures 

Buffer Management 

Operating System 
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Bottom-Up 

Virtual – physical blocks, 
access paths 

Data Model 

Logical Access 

Data Structures 

Buffer Management 

Operating System 
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Caching = Buffer Management 

Buffer Manager 

Main Memory 
Buffer (Cache) Disc 

P0 P1 P2 

Page XYZ 

• Which blocks should be cached – for how long? 
• Caching data blocks? Index blocks?  
• Competition: Intermediate data, data buffers, sort buffer, … 
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• Absolute addressing: TID = <PageId, Offset, ID> 
 
 
 
 
 

• Absolute addressing + search:  TID = <PageId,ID> 

From Buffers to Records 

ID, X, Y, … 
Page Id 

Offset 

Page Id -- Search -- 

ID, X, Y, … 

• Pro: Fast access 
• Con: Records cannot 

be moved 

• Pro: Records can be 
moved within page 

• Con: Slower access 
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Free Space, TX, and Concurrent Processes 

 
• Oracle procedure for 

finding free space 
• Free space managed at 

the level of segments 
– Logical database objects 

• Explanation 
– TFL: transaction free list 
– PFL: process free list 
– MFL: master free list 
– HWM: High water mark 

Database 

Tablespace 

Segment 

Extent 

OracleBlock 
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Records - Blocks 

 
• Records can be placed arbitrarily within blocks 

– TID need to encode the position (block …) 
– Pro: Flexibility; moving records is comparably simple 
– Con: Finding a record by value requires scanning the entire file 

• Record values can determine the block in which they are 
stored 
– Underspecified: Which value? 
– Pro: Finding a record by the distinguished value is faster 
– Con: Space management becomes much more difficult  

• Almost empty blocks, expensive re-organizations, … 
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Hash-based Files 

• Hash file consists of 
– Set of m buckets  (one or more blocks) 
– A hash function h(K)  = {0 ,...m-1 }  on a set K of keys; 
– A hash table (bucket directory) with pointers to buckets 

• Pro: Easier to handle than sorted file, faster than raw file 
• Contra: Unpredictable performance, one attribute rules 

Hash 
table 

Buckets with overflow pages 
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Multidimensional Shapes: R-Trees 

Quelle: Geppert, Data Warehousing, VL SoSe 2002 
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Bottom-Up 

Query optimization 
Data Model 

Logical Access 

Data Structures 

Buffer Management 

Operating System 
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The ANSI/SPARC Three Layer-Model 

View View View 

Logical model: Tables, 
attributes, constraints, … 

Physical model: Data 
structures, indexes, … 

Conceptual 
Schema 

Internal  
Schema 

Data Model 

Logical Access 

Data Structures 
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Query Execution 

Query rewriting, view expansion 

Query execution plan generation 
and optimization: Access paths, 
join order, … 

Execution of operators, 
pipelining 

View View View 

Conceptual 
Schema 

Internal  
Schema 
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Query Processing 

• Declarative query 
SELECT Name, Address, Checking, Balance 
FROM  customer C, account A 
WHERE Name = “Bond” and C.Account# = A.Account# 

 

• Translated in procedural Query Execution Plan (QEP) 
FOR EACH c in CUSTOMER DO 
 IF c.Name = “Bond” THEN 
        FOR EACH  a IN ACCOUNT DO 
  IF a.Account# = c.Account# THEN 

             Output (“Bond”, c.Address, a.Checking, a.Balance) 
 

• Semantically equivalent: Always compute the same result, 
irrespectively of the DB content 
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One Query – Many QEPs 
 
 
FOR EACH c in CUSTOMER DO 
  IF c.Name = “Bond” THEN 
    FOR EACH  a IN ACCOUNT DO 
      IF a.Acco# = c.Acco# THEN Output (“Bond”, c.Address, a.Checking, a.Balance)  
 
FOR EACH a in ACCOUNT DO 
  FOR EACH  c IN CUSTOMER DO 
    IF a.Acco# = c.Acco# THEN 
      IF c.Name = “BOND” THEN Output (“Bond”, c.Address, a.Checking, a. Balance) 
 
FOR EACH c in CUSTOMER WITH Name=“Bond” BY INDEX DO 
  FOR EACH  a IN ACCOUNT DO 
     IF a.Acco# = c.Acco# THEN Output (“Bond”, c.Address, a.Checking, a. Balance) 
 
FOR EACH c in CUSTOMER WITH Name=“Bond” BY INDEX DO 
  FOR EACH  a IN ACCOUNT with a.Acco#=c.Acco# BY INDEX DO 
     Output (“Bond”, c.Address, a.Checking, a. Balance) 
 
… 
 
 

SELECT     Name, Address, Checking, Balance 
FROM  customer C, account A 
WHERE     Name = “Bond” and C.Acco# = A.Acco# 
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Query optimization 

• Task: Find the (hopefully) fastest QEP 
• Two interdependent levels: Best plan, best impl. 

– Different QEPs by algebraic rewriting 
• P1:  σName=Bond(Account ⋈ Customer) 
• P2:  Account ⋈ σName=Bond(Customer) 

– Different QEPs by different operator implementations 
• P1’:    Access by scan, hash-join 
• P1’’:  Access by index, nested-loop-join  

• Plan space: Enumerate and evaluate (some? all?) QEPs 
• Optimization goal: Minimize size of intermediate results 

– Might miss optimality in terms of runtime 
• Expansive subplan with sorted result  
• Cheap subplan with unsorted result 
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Rule-Based Optimizer 

 
• Use rules-of-thumbs 

– Push selections as far as possible  
– Push projections as far as possible 
– Use indexes whenever possible 
– Always prefer sort-merge join  
– Order joins: Tables with more selections first 
– … 

• Does not use information about current size of relations 
and indexes or distribution of values 

• Does not use expected effects of operators in the query 
(selectivity) 
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Cost-Based Optimizer 

• Use statistics on current state of relations 
– Size, value distribution, fragmentation, cluster factors, … 

 
FOR EACH a in ACCOUNT DO 
 FOR EACH  c IN CUSTOMER DO 
        IF a.Account# = c.Account# THEN 
           IF c.Name = “BOND” THEN … 

 
– Let selectivity of σName=Bond be 1%, |Customer|=10.000, 

|Account|=12.000, Customer:Account is 1:N 
– Performs … 

• Join: 10.000 * 12.000 = 120M comparisons 
• Produces ~12.000 intermediate result tuples 
• Filters down to ~120 results 
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Cost-Based Optimizer 

• Use statistics on current state of relations 
– Size, value distribution, fragmentation, cluster factors, … 

 
FOR EACH c in CUSTOMER WITH Name=“Bond” BY INDEX DO 
   FOR EACH  a IN ACCOUNT DO 
      IF a.Account# = c.Account# THEN 

 Output (“Bond”, c.Address, a.Checking, a. Balance) 

 
– Same setting 
– Performs 

• Reads some index blocks to find 100 customers 
– But these are read using random access 

• Join: 100*12.000= 1.2M comparisons 
• Produces 120 results 
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Join methods 

• Suppose the previous query would contain no selection 
• Can‘t we do better than “Join: 120M comparisons”  
• Join methods 

– Nested loop join: O(m*n) key comparisons 
– Sort-merge join 

• First sort relations in O(n*log(n)+m*log(m)) 
• Merge results in O(m+n) 
• Sometimes better, sometimes worse 

– Hash join, index-join, grace-join, zig-zag join, … 
• Note: Complexity here measures number of comparisons 

– This is a “main-memory” viewpoint 
– Must not be used for IO tasks 
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Data Dictionary 

 
• Query execution needs metadata: Data dictionary 

– Semantic parsing of query: Which relations exist? 
– Which indexes exists? 
– Cardinality estimates of relations? 
– Size of buffer for in-memory sorting? 
– ... 

Table_name Att_name Att_type size Avg_size 

Customer Name Varchar2 100 24 

Customer account# Int 8 8 

Customer ... 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 50 

Access Control 

• Read and write access on objects 
• Read and write access on system operations  

– Create user, kill session, export database, … 

• GRANT, REVOKE Operations 
• Example: 

  GRANT ALL PRIVILIGES ON ACCOUNT TO Freytag WITH 
GRANT OPTION 

• No complete protection 
– Granularity of access rights usually relation/attribute – not tuple 

• Use views, label-based access control 

– Access to data without DBMS (at OS level) 
– Complement with file protection, encryption of data 
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Bottom-Up 

Transactions, 
serializability, recovery 

Data Model 

Logical Access 

Data Structures 

Buffer Management 

Operating System 
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Transactions (TX) 

• Transaction: “Logical unit of work” 
Begin_Transaction 

UPDATE ACCOUNT 
SET Savings = Savings + 1M 
SET Checking = Checking - 1M 

WHERE Account# = 007; 
INSERT JOURNAL <007, NNN, “Transfer”, ...> 

End_Transaction 

• ACID properties 
– Atomic execution 
– Consistent DB state after commits 
– Isolation: No influence on result by concurrent TX 
– Durability: After commit, changes are reflected in the database 
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5,000 

6,000 

7,000 

Read account value 

Deposit $ 2,000 Deposit $ 1,000 

Add $1,000 

Write back 

5,000 

6,000 

Read account value 

Add $ 2,000 

Write back 

5,000 

7,000 

Lost Update Problem 
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Synchronization and schedules 

? 
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Synchronization and locks 

• When is a schedules „fine“? 
– When it is serializable 
– I.e., when it is equivalent to a serial schedule 
– Proof serializability of schedules 

• Strategy: Blocking everything is dreadful 
• Strategy: Checking after execution is wasteful 
• Synchronization protocols 

– Guarantee to produce only serializable schedules 
– Require certain well-behavior of transactions  

• Two phase locking, multi-version synchronization, timestamp 
synchronization, … 

• Be careful with deadlocks 
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Recovery – Broad Principle 

 
• Store data redundantly: Save old values 
• Different formats for different access characteristics 

Transactions 

Concurrency Control 
Manager 

Secondary 
Storage 

Log 

DB 

Recovery-Mgr. 

Buffer-Mgr. 

MM-Log 

MM-DB 

S-Log 

S-DB 

Main Memory (MM). 
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So many managers ... 
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Oracle processes 

 
• LMS  Lock manager (only clustered dbs) 
• RECO Recovery of distributed transactions 
• PMON Control and restart of all processes 
• SMON Recovery at start-up after failure 
• CKPT Checkpointing 
• ARC0 Archiving of Redo-Log data  
• DBW Writing of database blocks 
• LGW Writing of Redo-Log blocks 
• D  Dispatcher für multithreaded servers 
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