
Ulf Leser

Datenbanksysteme II:
Overview and General Architecture

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 2

Table of Content

• Storage Hierarchy
• 5-Layer Architecture
• Overview: Layer-by-Layer

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 3

2010: Price versus speed

Really expensive Reg ister 1-10 ns/byte

Very expensive Cache 10-60 ns/ cache
line

~ 200 € / GB Main Memory 100-300 ns/ block

 ~ 1 € / GB Disk 10-20 ms/ block

 < 1€/GB Tape sec – min
Difference

~104

Difference
~105

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 4

2010: Storage Hierarchy

Really expensive Register 1-4 byte

Very expensive Cache 1-4 MB

~ 200 € / GB Main Memory 1-16 GB

 ~ 1 € / GB Disk 512GB – 1TB
discs

 < 1€/GB Tape “Infinite”
tape robots

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 5

2016: Storage Hierarchy

Really expensive Register 1 – 32 byte

Very expensive Cache 1-16 MB

~ 7 € / GB Main Memory 16-256 GB

 ~ 0,04 € / GB Disk 1-16 TB

Tape “Infinite”
tape robots

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 6

Costs Drop Faster than you Think

Source: http://analystfundamentals.com/?p=88

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 7

New Players

Really expensive Reg-
ister

1-10ns /
byte

Very expensive Cache 10-100ns /
cache line

~ 7 € / GB Main Memory 60-300ns /
block

~ 1 € / GB Solid-State Disks (SSD) 1 ms /
block

~ 0,04 € / GB Disk 10-20 ms /
block

Tape sec – min

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 8

New Players

Really expensive Reg-
ister

1-10ns /
byte

Very expensive Cache 10-100ns /
cache line

~ 15 € / GB Main Memory 60-300ns /
block

~ 1 € / GB Solid-State Disks (SSD) 1 ms /
block

~ 0,04 € / GB Disk 10-20 ms /
block

Tape sec – min

Source: http://www.tomshardware.com/news/ssd-hdd-solid-state-drive-hard-disk-drive-prices,14336.html

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 9

Characteristics

Quelle: http://blog.laptopmag.com/faster-than-an-ssd-how-to-turn-extra-memory-into-a-ram-disk

read != write

random access != sequential

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 10

Storage Area Networks (SAN)

• Dedicated subsystem providing storage (and only storage)
• Virtualization of resources
• Facilitates management, storage assignment, backup etc.

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 11

Prize of Main Memory

• 2014: 1TB DRAM ~ 5000€
• 2016: Laptops with 16GB,

desktops with 32GB,
servers with 128GB

• Guess: 99% of all
commercial databases are
smaller than 100GB

$0

$300

$600

$900

$1.200

2000 2005 2010 2013 2015A
ve

ra
ge

 C
os

t
P

er

G
B

Year

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 12

New: Multi-Core with NUMA

• Modern CPUs can easily have 4-8 cores, each 2 threads
• 4 CPUs in one server is standard
• Add hyper-threading
• 128 hardware threads
• Future: Servers with

1000+ threads (exascale)
– Network on a chip:

Caching, routing, …

Quelle: http://ixbtlabs.com/articles2/cpu/rmma-numa2.html

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 13

Consequences

• Dealing with memory hierarchy is core concern of DBMS

– Speed of access
– Durability of changes

• This lecture will mostly focus on disk versus RAM
• Similar problems for cache-RAM, disk-SSD, …
• Differences exist

– Block sizes
– Heterogeneous pattern: Read/write, random-access/sequential
– Durability
– Error rates, long-evity
– …
– Very active area of research

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 14

Table of Content

• Storage Hierarchy
• 5-Layer Architecture
• Overview: Layer-by-Layer

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 15

Overview

• Databases are complex software artifacts
• Need to be sliced into layers
• Hardware-induced layers: Memory hierarchy
• Abstraction-induced layers: Tuple – array – byte stream

– Conceptual – logical - physical
– Separation of concern
– Information hiding

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 16

Five Layer Architecture

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Schema, SQL

Disks, blocks

Records, transactions

Virtual blocks, arrays, locks

Blocks (pages)

Conceptual

Logical

Physical

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 17

Tasks

Query optimization
Access control
Integrity constraints

Physical record manager
Index manager
Lock manager
Log / Recovery

Sort
Transaction processing

Cursor management

Block management
Caching

External memory

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 18

Operations

SQL: select ... from ... Where
Grant access to ...
Create index on ...

RECORDs in pages
access paths, indexes

OPEN – FETCH –CLOSE
STORE Record

READ page
WRITE page

Disc driver
MOVE head ...

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 19

Interfaces

Set-based

Record-Based

Internal Record-based

Data Model

Logical Access

Data Structures

System interface

File interface

Device interface

Buffer Manager

Operating System

Set-based access using declarative language

Record-based access using logical access path

Record-based access using physical data structures

Byte access in virtual address space

Block access (software RAID)

Disc controller (Caching, Prefetching, Hardware RAID)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 20

Note: Idealized Representation

• Layers may be merged

– E.g. logical and internal record-based layers

• Not all functionality can be assigned to exactly one layer
– E.g. recovery, optimization

• Layers sometimes must access non-neighboring layers
– Prefetching needs to know the query

• Layer 4 to Layer 1/2

– Optimizer needs to know about physical data layout
• Layer 1 to layer 4/5

– Breaks information hiding principle

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 21

Table of Content

• Storage Hierarchy
• 5-Layer Architecture
• Overview: Layer-by-Layer

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 22

Bottom-Up

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 23

Classical Discs

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 24

• Redundancy: Fail-safety and access speed
– Increased read performance, write perf. not affected (parallel write)
– Disc crash (one) can be tolerated
– Be careful about dependent components (controller, power, …)

• Drawbacks
– Which value is correct in case of divergence in the two copies?
– Space consumption doubles

A

C

B

D

A

C

B

D

RAID 1: Mirroring

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 25

Bottom-Up

Records, Blocks,
Files

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 26

Access Methods: Sequential Unsorted Files

1522 Bond ...

123 Mason ...

...

1754 Miller ...

• Access to records by record/tuple identifier (RID or TID)

• Operations
– INSERT(Record): Move to end of file and add, O(1)
– SEEK(TID): Sequential scan, O(n)

• FIRST (File): O(1)
• NEXT(File): O(1)
• EOF (File): O(1)

– DELETE(TID): Seek TID; flag as deleted, O(n)
– REPLACE(TID, Record): Seek TID; write record, O(n)

• What happens if records have variable size?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 27

Access Methods: Sequential sorted Files

123 Mason ...

1522 Bond ...

...

1754 Miller ...
• Operations

– SEEK(TID): Bin search, O(log(n))
• But a lot of random access
• Might be slower than scanning the file

– INSERT(Record): seek(TID), move subsequent records by one
• This is terribly expensive – O(n) reads and writes

– …

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 28

• Operations
– SEEK(TID): Using order in TIDs; O(log(n))

• Only if tree is balanced; only if tree is ordered by the right value

– INSERT(TID): Seek TID and insert; possibly restructuring
– …

Root

Internal Node

Leaves

Indexed Files

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 29

Storage in Oracle

• Data files are assigned to

tablespaces
– May consist of multiple files
– All data from one object (table,

index) are in one tablespace
– Backup, quotas, access, …

• Extents: Continuous
sequences of blocks on disc

• Space is allocated in extents
(min, next, max, …)

• Segments logically group all extents of an object

Database

Tablespace

Segment

Extent

OracleBlock OS Block

Data file

Logical
Physical

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 30

Managing space in Oracle

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 31

Bottom-Up

Virtual – physical blocks,
access paths

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 32

Bottom-Up

Virtual – physical blocks,
access paths

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 33

Caching = Buffer Management

Buffer Manager

Main Memory
Buffer (Cache) Disc

P0 P1 P2

Page XYZ

• Which blocks should be cached – for how long?
• Caching data blocks? Index blocks?
• Competition: Intermediate data, data buffers, sort buffer, …

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 34

• Absolute addressing: TID = <PageId, Offset, ID>

• Absolute addressing + search: TID = <PageId,ID>

From Buffers to Records

ID, X, Y, …
Page Id

Offset

Page Id -- Search --

ID, X, Y, …

• Pro: Fast access
• Con: Records cannot

be moved

• Pro: Records can be
moved within page

• Con: Slower access

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 35

Free Space, TX, and Concurrent Processes

• Oracle procedure for

finding free space
• Free space managed at

the level of segments
– Logical database objects

• Explanation
– TFL: transaction free list
– PFL: process free list
– MFL: master free list
– HWM: High water mark

Database

Tablespace

Segment

Extent

OracleBlock

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 36

Records - Blocks

• Records can be placed arbitrarily within blocks

– TID need to encode the position (block …)
– Pro: Flexibility; moving records is comparably simple
– Con: Finding a record by value requires scanning the entire file

• Record values can determine the block in which they are
stored
– Underspecified: Which value?
– Pro: Finding a record by the distinguished value is faster
– Con: Space management becomes much more difficult

• Almost empty blocks, expensive re-organizations, …

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 37

Hash-based Files

• Hash file consists of
– Set of m buckets (one or more blocks)
– A hash function h(K) = {0 ,...m-1 } on a set K of keys;
– A hash table (bucket directory) with pointers to buckets

• Pro: Easier to handle than sorted file, faster than raw file
• Contra: Unpredictable performance, one attribute rules

Hash
table

Buckets with overflow pages

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 38

Multidimensional Shapes: R-Trees

Quelle: Geppert, Data Warehousing, VL SoSe 2002

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 39

Bottom-Up

Query optimization
Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 40

The ANSI/SPARC Three Layer-Model

View View View

Logical model: Tables,
attributes, constraints, …

Physical model: Data
structures, indexes, …

Conceptual
Schema

Internal
Schema

Data Model

Logical Access

Data Structures

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 41

Query Execution

Query rewriting, view expansion

Query execution plan generation
and optimization: Access paths,
join order, …

Execution of operators,
pipelining

View View View

Conceptual
Schema

Internal
Schema

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 42

Query Processing

• Declarative query
SELECT Name, Address, Checking, Balance
FROM customer C, account A
WHERE Name = “Bond” and C.Account# = A.Account#

• Translated in procedural Query Execution Plan (QEP)
FOR EACH c in CUSTOMER DO
 IF c.Name = “Bond” THEN
 FOR EACH a IN ACCOUNT DO
 IF a.Account# = c.Account# THEN

 Output (“Bond”, c.Address, a.Checking, a.Balance)

• Semantically equivalent: Always compute the same result,
irrespectively of the DB content

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 43

One Query – Many QEPs

FOR EACH c in CUSTOMER DO
 IF c.Name = “Bond” THEN
 FOR EACH a IN ACCOUNT DO
 IF a.Acco# = c.Acco# THEN Output (“Bond”, c.Address, a.Checking, a.Balance)

FOR EACH a in ACCOUNT DO
 FOR EACH c IN CUSTOMER DO
 IF a.Acco# = c.Acco# THEN
 IF c.Name = “BOND” THEN Output (“Bond”, c.Address, a.Checking, a. Balance)

FOR EACH c in CUSTOMER WITH Name=“Bond” BY INDEX DO
 FOR EACH a IN ACCOUNT DO
 IF a.Acco# = c.Acco# THEN Output (“Bond”, c.Address, a.Checking, a. Balance)

FOR EACH c in CUSTOMER WITH Name=“Bond” BY INDEX DO
 FOR EACH a IN ACCOUNT with a.Acco#=c.Acco# BY INDEX DO
 Output (“Bond”, c.Address, a.Checking, a. Balance)

…

SELECT Name, Address, Checking, Balance
FROM customer C, account A
WHERE Name = “Bond” and C.Acco# = A.Acco#

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 44

Query optimization

• Task: Find the (hopefully) fastest QEP
• Two interdependent levels: Best plan, best impl.

– Different QEPs by algebraic rewriting
• P1: σName=Bond(Account ⋈ Customer)
• P2: Account ⋈ σName=Bond(Customer)

– Different QEPs by different operator implementations
• P1’: Access by scan, hash-join
• P1’’: Access by index, nested-loop-join

• Plan space: Enumerate and evaluate (some? all?) QEPs
• Optimization goal: Minimize size of intermediate results

– Might miss optimality in terms of runtime
• Expansive subplan with sorted result
• Cheap subplan with unsorted result

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 45

Rule-Based Optimizer

• Use rules-of-thumbs

– Push selections as far as possible
– Push projections as far as possible
– Use indexes whenever possible
– Always prefer sort-merge join
– Order joins: Tables with more selections first
– …

• Does not use information about current size of relations
and indexes or distribution of values

• Does not use expected effects of operators in the query
(selectivity)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 46

Cost-Based Optimizer

• Use statistics on current state of relations
– Size, value distribution, fragmentation, cluster factors, …

FOR EACH a in ACCOUNT DO
 FOR EACH c IN CUSTOMER DO
 IF a.Account# = c.Account# THEN
 IF c.Name = “BOND” THEN …

– Let selectivity of σName=Bond be 1%, |Customer|=10.000,

|Account|=12.000, Customer:Account is 1:N
– Performs …

• Join: 10.000 * 12.000 = 120M comparisons
• Produces ~12.000 intermediate result tuples
• Filters down to ~120 results

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 47

Cost-Based Optimizer

• Use statistics on current state of relations
– Size, value distribution, fragmentation, cluster factors, …

FOR EACH c in CUSTOMER WITH Name=“Bond” BY INDEX DO
 FOR EACH a IN ACCOUNT DO
 IF a.Account# = c.Account# THEN

 Output (“Bond”, c.Address, a.Checking, a. Balance)

– Same setting
– Performs

• Reads some index blocks to find 100 customers
– But these are read using random access

• Join: 100*12.000= 1.2M comparisons
• Produces 120 results

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 48

Join methods

• Suppose the previous query would contain no selection
• Can‘t we do better than “Join: 120M comparisons”
• Join methods

– Nested loop join: O(m*n) key comparisons
– Sort-merge join

• First sort relations in O(n*log(n)+m*log(m))
• Merge results in O(m+n)
• Sometimes better, sometimes worse

– Hash join, index-join, grace-join, zig-zag join, …
• Note: Complexity here measures number of comparisons

– This is a “main-memory” viewpoint
– Must not be used for IO tasks

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 49

Data Dictionary

• Query execution needs metadata: Data dictionary

– Semantic parsing of query: Which relations exist?
– Which indexes exists?
– Cardinality estimates of relations?
– Size of buffer for in-memory sorting?
– ...

Table_name Att_name Att_type size Avg_size

Customer Name Varchar2 100 24

Customer account# Int 8 8

Customer ...

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 50

Access Control

• Read and write access on objects
• Read and write access on system operations

– Create user, kill session, export database, …

• GRANT, REVOKE Operations
• Example:

 GRANT ALL PRIVILIGES ON ACCOUNT TO Freytag WITH
GRANT OPTION

• No complete protection
– Granularity of access rights usually relation/attribute – not tuple

• Use views, label-based access control

– Access to data without DBMS (at OS level)
– Complement with file protection, encryption of data

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 51

Bottom-Up

Transactions,
serializability, recovery

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 52

Transactions (TX)

• Transaction: “Logical unit of work”
Begin_Transaction

UPDATE ACCOUNT
SET Savings = Savings + 1M
SET Checking = Checking - 1M

WHERE Account# = 007;
INSERT JOURNAL <007, NNN, “Transfer”, ...>

End_Transaction

• ACID properties
– Atomic execution
– Consistent DB state after commits
– Isolation: No influence on result by concurrent TX
– Durability: After commit, changes are reflected in the database

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 53

5,000

6,000

7,000

Read account value

Deposit $ 2,000 Deposit $ 1,000

Add $1,000

Write back

5,000

6,000

Read account value

Add $ 2,000

Write back

5,000

7,000

Lost Update Problem

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 54

Synchronization and schedules

?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 55

Synchronization and locks

• When is a schedules „fine“?
– When it is serializable
– I.e., when it is equivalent to a serial schedule
– Proof serializability of schedules

• Strategy: Blocking everything is dreadful
• Strategy: Checking after execution is wasteful
• Synchronization protocols

– Guarantee to produce only serializable schedules
– Require certain well-behavior of transactions

• Two phase locking, multi-version synchronization, timestamp
synchronization, …

• Be careful with deadlocks

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 56

Recovery – Broad Principle

• Store data redundantly: Save old values
• Different formats for different access characteristics

Transactions

Concurrency Control
Manager

Secondary
Storage

Log

DB

Recovery-Mgr.

Buffer-Mgr.

MM-Log

MM-DB

S-Log

S-DB

Main Memory (MM).

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 57

So many managers ...

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 58

Oracle processes

• LMS Lock manager (only clustered dbs)
• RECO Recovery of distributed transactions
• PMON Control and restart of all processes
• SMON Recovery at start-up after failure
• CKPT Checkpointing
• ARC0 Archiving of Redo-Log data
• DBW Writing of database blocks
• LGW Writing of Redo-Log blocks
• D Dispatcher für multithreaded servers

	Foliennummer 1
	Table of Content
	2010: Price versus speed
	2010: Storage Hierarchy
	2016: Storage Hierarchy
	Costs Drop Faster than you Think
	New Players
	New Players
	Characteristics
	Storage Area Networks (SAN)
	Prize of Main Memory
	New: Multi-Core with NUMA
	Consequences
	Table of Content
	Overview
	Five Layer Architecture
	Tasks
	Operations
	Interfaces
	Note: Idealized Representation
	Table of Content
	Bottom-Up
	Classical Discs
	RAID 1: Mirroring
	Bottom-Up
	Access Methods: Sequential Unsorted Files
	Access Methods: Sequential sorted Files
	Indexed Files
	Storage in Oracle
	Managing space in Oracle
	Bottom-Up
	Bottom-Up
	Caching = Buffer Management
	From Buffers to Records
	Free Space, TX, and Concurrent Processes
	Records - Blocks
	Hash-based Files
	Multidimensional Shapes: R-Trees
	Bottom-Up
	The ANSI/SPARC Three Layer-Model
	Query Execution
	Query Processing
	One Query – Many QEPs
	Query optimization
	Rule-Based Optimizer
	Cost-Based Optimizer
	Cost-Based Optimizer
	Join methods
	Data Dictionary
	Access Control
	Bottom-Up
	Transactions (TX)
	Lost Update Problem
	Synchronization and schedules
	Synchronization and locks
	Recovery – Broad Principle
	So many managers ...
	Oracle processes

