Datenbanksysteme |I1I:
Overview and General Architecture

UIf Leser

Table of Content

e Storage Hierarchy
e 5-Layer Architecture
e Overview: Layer-by-Layer

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

2010: Price versus speed

el expensi Register 1-10 ns/byte
Difference
~105
Very expensiv Cache 10—60“nnse/cache
~ Main Memo 0 ns/block
Disk s/block
Difference
< 1€/GB Tape —~104

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 3

2010: Storage Hierarchy

/\
Really expensive egist 1-4 byte
Very expensive Cache 1-4 MB
~ 200 €/ GB Main Memory 1-16 GB
~1€/GB Disk 512%?5;5 118
< 1€/GB Tape t ;I;gﬁrr;igis

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

2016: Storage Hierarchy

/\
Really expensive egist 1 — 32 byte
Very expensive Cache 1-16 MB
~7€/GB Main Memory 16-256 GB
~ 0,04 €/GB Disk 1-16 TB
Tape “Infinite”
P tape robots

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Costs Drop Faster than you Think

Hard Drive Cost per Gigabyte
1980 - 2009

$10,000,000.00

$1,000,000.00

$100,000.00

$10,000.00

$1,000.00

$100.00

$10.00

$1.00

$0.10

$0.01
«‘3@ ,\q‘é’

Source: http://analystfundamentals.com/?p=88

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 6

New Players

Really expensive Reg 1-10ns /
Ister byte
Very expensive Cache \ 1(‘,2-clh(()eolri]r?e/
~7€/GB Main Memory GO_SISSES /
~1€/GB Solid-State Disks (SSD) 1b|r;‘§k/
~ 0,04 €/GB Disk 10-20 ms /
block

/ Tape \ sec — min

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 7

New Players

Really expensive Reg 1-10ns /
Ister byte
Average HDD and SSD prices in USD per gigabyte
Very expensive oo o s 10-100ns /
. cache line
T $56.30/GB
—~15€/GB 60-300ns /
block
—~1€/GB 1 ms/
.. block
- 0,04 € / GB m*lm*lmmmm 2002 2003 2004 2005 2006 2007 2008 2000 2010 2011 20.1;'__"'-— 10-20 mS /
50.054/GB
Data sources: Mkomo.com, Gartner, and Pingdom [December 2011) W PR 0L S O b | OCk
Tape sec — min

Source: http://www.tomshardware.com/news/ssd-hdd-solid-state-drive-hard-disk-drive-prices,14336.html

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 8

Characteristics

random access !=

Hard Drive

sequential

SSD

RAM Disk

Fore e A, it A | o T

' |dd' Thuma Pl Language

L o= (OOOME =)3 (RBEGSSGH)
iy Rezad [MB/s] Write [MB/s]

b 1212.3 1109.3
= 41,69 48.05
W 10.543 10.693
¥ 1.004 10.698

{ :‘h'- Al Thame Haip Lieparn
ol 5 = loDieE - O 4% (101/224GB) 2~
e Read [MB/s] Wirite [MB/s]

s 477.9 235.7
=« 402.7 248.9
4 130.49 164.67
i 200.3 1233.2

L

read !'= write

Wi i Theww Help Language

5 = 1000MB = R 1% [SRAe0Een)
m H=ad [MEB/<] Writi= [ME 5]

= 5766 7760
= 5649 7172
« 657.0 554.8
<5 631.9 544.7

Quelle: http://blog.laptopmag.com/faster-than-an-ssd-how-to-turn-extra-memory-into-a-ram-disk

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Storage Area Networks (SAN)

< RAID . - LANs
l_"r\-\.__\-_:h_:--."'_. q —— -
i LT o e
ML | S

[N T .,:|_--.' T | -

[L

Ny |gH® |

H
N ;

g 0" ' A
Telo |\, Switches / Tvers

B 5
e ML SAN gy i
m—-"" RAIDs

Bridges

:{‘Rernme \ \ . |

——= replication sile =g

g [—— ::lelllllll PT'E: Admin console
~ “Aliisiiggy f =
J E Wil

P
e RAIDs
Server | Tape Backup

Admin Consoke

e Dedicated subsystem providing storage (and only storage)
e \Virtualization of resources
e Facilitates management, storage assignment, backup etc.

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 10

Prize of Main Memory

e 2016: Laptops with 16GB,
desktops with 32GB,
servers with 128GB

e Guess: 999% of all
2000 2005 2010 2013 2015 commercial databases are
year smaller than 100GB

&
(o)}
o
o

-
O]
al
i
7))
@
Om
o O
(@)
®
-
O]
>
<

e 2014: 1TB DRAM ~ 5000€

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

11

New: Multi-Core with NUMA

Modern CPUs can easily have 4-8 cores, each 2 threads

4 CPUs In one server Is standard

Add hyper-threading
128 hardware threads

Future: Servers with
1000+ threads (exascale)

— Network on a chip:
Caching, routing, ...

Memory

]

AMD Opteron
CPU2

HTT Link
H

AMD Opteron
CPUD

i

Memory

Memory

]

HTT Link

AMD Opteron
CPU3

H
qurt 11H

R E—

HTT Link

AMD Opteron
CPU1

i

Memory

Quelle: http://ixbtlabs.com/articles2/cpu/rmma-numa2.html

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

12

Consequences

e Dealing with memory hierarchy is core concern of DBMS
— Speed of access
— Durability of changes

e This lecture will mostly focus on disk versus RAM

e Similar problems for cache-RAM, disk-SSD, ...

e Differences exist
— Block sizes
— Heterogeneous pattern: Read/write, random-access/sequential
— Durability
— Error rates, long-evity

— Very active area of research

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

13

Table of Content

e Storage Hierarchy
e 5-Layer Architecture
e Overview: Layer-by-Layer

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

14

Overview

e Databases are complex software artifacts
e Need to be sliced into layers
e Hardware-induced layers: Memory hierarchy

e Abstraction-induced layers: Tuple — array — byte stream
— Conceptual — logical - physical
— Separation of concern
— Information hiding

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

15

Five Layer Architecture

Conceptual Data Model Schema, SQL
Logical Access Records, transactions
Logical
Data Structures Virtual blocks, arrays, locks
Buffer Management Blocks (pages)
Physical — .
Operating System Disks, blocks

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 16

Tasks

Sort
Transaction processing
Cursor management

Block management
Caching

Data Model

A

A 4

Logical Access

A

A 4

Data Structures

A

\ 4

Query optimization
Access control
Integrity constraints

Buffer Management

Physical record manager
Index manager

Lock manager

Log / Recovery

A

A 4

Operating System

|

External memory

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 17

Operations

Data Model

A

y

OPEN — FETCH —CLOSE o ical‘ ACCESS
STORE Record g _

A 4

Data Structures

A

\ 4

SQL: select ... from ... Where
Grant access to ...
Create index on ...

RECORDs in pages
access paths, indexes

READ page | | g ffer Management
WRITE page f

A 4

Operating System

|

Disc driver
MOVE head ...

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 18

Interfaces

Set-hased

Data

Model

A

Record-Based

y

Logical

Access

Internal Re

A

cord-based

y

Data Structures

4

System

A

nterface

y

Buffer Manager

A

File int

erface

y

Operating System

Device i}terface

Set-based access using declarative language

Record-based access using logical access path

Record-based access using physical data structures

Byte access in virtual address space

Block access (software RAID)

Disc controller (Caching, Prefetching, Hardware RAID)

v
Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 19

Note: Idealized Representation

e Layers may be merged
— E.g. logical and internal record-based layers

e Not all functionality can be assigned to exactly one layer
— E.g. recovery, optimization

e Layers sometimes must access non-neighboring layers
— Prefetching needs to know the query
e Layer 4 to Layer 1/2
— Optimizer needs to know about physical data layout
e Layer 1 to layer 4/5
— Breaks information hiding principle

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

20

Table of Content

e Storage Hierarchy
e 5-Layer Architecture
e Overview: Layer-by-Layer

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

21

Bottom-Up

Data Model

A 4

Logical Access

A

A

Data Structures

4

A 4

Buffer Management

A

A 4

Operating System

|

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

22

Classical Discs

Zugriffs- A Kopt Spindel Sektor Spur

kamm

Kopt

Arm

. . Zylinder
a) seitliche Ansicht b) Draufsicht

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 23

RAID 1: Mirroring

e Redundancy: Fail-safety and access speed
— Increased read performance, write perf. not affected (parallel write)
— Disc crash (one) can be tolerated
— Be careful about dependent components (controller, power, ...)

e Drawbacks
— Which value is correct in case of divergence in the two copies?
— Space consumption doubles

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 24

Bottom-Up

Data Model

A 4

Logical Access

A

A

Data Structures

4

A 4

Buffer Management

A

A 4

Operating System

Records, Blocks,
Files

|

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

25

Access Methods: Sequential Unsorted Files

e Access to records by record/tuple identifier (RID or TID)

1522 Bond
123 Mason
1754 Miller

e Operations
— INSERT(Record):
— SEEK(TID):
e FIRST (File):
« NEXT(File):
« EOF (File):
— DELETE(TID):

Move to end of file and add, O(1)

Sequential scan, O(n)

O(1)

O(1)

O(1)

Seek TID; flag as deleted, O(n)

— REPLACE(TID, Record): Seek TID; write record, O(n)
 What happens if records have variable size?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 26

Access Methods: Sequential sorted Files

123 Mason
1522 Bond
1754 Miller

e QOperations

— SEEK(TID): Bin search, O(log(n))
e But a lot of random access
e Might be slower than scanning the file

— INSERT(Record): seek(TID), move subseqguent records by one
e This is terribly expensive — O(n) reads and writes

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Indexed Files

Root

Internal Node

Leaves

e QOperations
— SEEK(TID): Using order in TIDs; O(log(n))
e Only if tree is balanced; only if tree is ordered by the right value
— INSERT(TID): Seek TID and insert; possibly restructuring

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 28

Storage In Oracle

 Data files are assigned to Database Physical
tablespaces Tabl/e\space 4 Data file

— May consist of multiple files J

— All data from one object (table, | Segment
Index) are in one tablespace

— Backup, quotas, access, ... Extent P

e Extents: Continuous BracleBloch———< 05 Block

sequences of blocks on disc

e Space Is allocated in extents
(min, next, max, ...)

e Segments logically group all extents of an object

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 29

Managing space in Oracle

Tablespace (gestrichelter Bereich)

L
Index
Tabelle Tabelle
Index
\. Index
Index
Index Index Index
Index Tabelle
Index
Index
Index \
Index X
Index \ Index
3 i
- // =1 / £
Datenbankdateien Objekte {(Segmente)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Bottom-Up

Data Model

A 4

Logical Access

A

A

Data Structures

4

A 4

Virtual — physical blocks,
access paths

Buffer Management

A

A 4

Operating System

|

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

31

Bottom-Up

Data Model

A 4

Logical Access

A

A

Data Structures

4

A 4

Virtual — physical blocks,
access paths

Buffer Management

A

A 4

Operating System

|

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

32

Caching = Buffer Management

Main Memory
Buffer (Cache)

l Page XYZ

Buffer Manager

S~

L

PO

P1

P2

SN—

——

e Which blocks should be cached — for how long?
e Caching data blocks? Index blocks?
e Competition: Intermediate data, data buffers, sort buffer, ...

Disc

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

33

From Buffers to Records

e Absolute addressing: TID = <Pageld, Offset, ID>
| Offset

Page Id * Pro: Fast access
D, X, Y, ... « Con: Records cannot
be moved

e Absolute addressing + search: TID = <Pageld,ID>

E>
-- Search --
Page Id « Pro: Records can be
ID, X, Y, ... moved within page
 Con: Slower access

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 34

Free Space, TX, and Concurrent Processes

ind Free -H:.
Space

f"-é"“"‘k“ Ves
et . (_)rac_:le procedure for

Y | finding free space
- E" Ves

ff) Use the space e Free space managed at
\; PR — the level of segments

T T Nes [\}ifaiaﬁuudj _ _

St o— — Logical database objects

e Explanation
— TFL: transaction free list

|) /(‘“a — PFL: process free list
N — MFL: master free list
¢

[] A E — HWM: High water mark
Advance HWH ?:f;:::: LE:EED.- Return Error -{f Huis \".
H‘__,—*”

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Records - Blocks

e Records can be placed arbitrarily within blocks
— TID need to encode the position (block ...)
— Pro: Flexibility; moving records is comparably simple
— Con: Finding a record by value requires scanning the entire file

e Record values can determine the block in which they are
stored
— Underspecified: Which value?
— Pro: Finding a record by the distinguished value is faster

— Con: Space management becomes much more difficult
e Almost empty blocks, expensive re-organizations, ...

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

36

Hash-based Files

e Hash file consists of
— Set of m buckets (one or more blocks)
— A hash function h(K) = {0,...m-1} on a set K of keys;
— A hash table (bucket directory) with pointers to buckets

e Pro: Easier to handle than sorted file, faster than raw file
e Contra: Unpredictable performance, one attribute rules

Buckets with overflow pages

Hash
table

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

37

Multidimensional Shapes: R-Trees

=G
3 o7 [me
m -
|T|1'_' . L] iEEEEEEEEEEDIN
m
: @ od
R2 B
mz2
md| —— e ! 8
1 m3 mE E
- o
10 4
: ROl o -
| [I
i1 me rs MBS b i
R7T |R3 g—
ps B
|R7 | RS |
R1| R2 | R3 Hd4 | RS | BB

|m1 m2 p10 | [m10 p% ||p1 md m3 m5 | |m7 ma p2 | [p2 p4 p5 06 | |me mE p7 p2 |

Quelle: Geppert, Data Warehousing, VL SoSe 2002

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Bottom-Up

Data Model

Query optimization

A 4

Logical Access

A

A

Data Structures

4

A 4

Buffer Management

A

A 4

Operating System

|

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

39

The ANSI/SPARC Three Layer-Model

View View View

N P

Data Model Conceptual Logical model: Tables,
Schema attributes, constraints, ...
Logical Access |
v Internal Physical model: Data
Data Structures Schema structures, indexes, ...

|

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 40

Query Execution

View View

View

~.]

Conceptual
Schema

a

\ 4

Internal
Schema

Query rewriting, view expansion

Query execution plan generation
and optimization: Access paths,
join order, ...

Execution of operators,
pipelining

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 41

Query Processing

e Declarative query
SELECT Name, Address, Checking, Balance
FROM customer C, account A
WHERE Name = "Bond" and C.Account# = A.Account#

e Translated in procedural Query Execution Plan (QEP)
FOR EACH c in CUSTOMER DO
IF c.Name = “"Bond” THEN
FOR EACH a IN ACCOUNT DO

IF a.Account# = c.Account# THEN
Output ("Bond"”, c.Address, a.Checking, a.Balance)

e Semantically equivalent: Always compute the same result,
iIrrespectively of the DB content

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 42

One Query — Many QEPs

SELECT Name, Address, Checking, Balance
. FROM customer C, account A
FOR EACH c in CUSTOMER DO WHERE Name = “Bond" and C.Acco# = A.Acco#t

IF c.Name = "Bond" THEN
FOR EACH a IN ACCOUNT DO
IF a.Acco# = c.Acco# THEN Output ("Bond", c.Address, a.Checking, a.Balance)

FOR EACH a in ACCOUNT DO
FOR EACH c IN CUSTOMER DO
IF a.Acco# = c.Acco# THEN
IF c.Name = "BOND" THEN Output ("Bond”, c.Address, a.Checking, a. Balance)

FOR EACH c in CUSTOMER WITH Name="Bond" BY INDEX DO
FOR EACH a IN ACCOUNT DO
IF a.Acco# = c.Acco# THEN Output ("Bond", c.Address, a.Checking, a. Balance)

FOR EACH c in CUSTOMER WITH Name="Bond" BY INDEX DO
FOR EACH a IN ACCOUNT with a.Acco#=c.Acco# BY INDEX DO
Output ("Bond", c.Address, a.Checking, a. Balance)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 43

Query optimization

e Task: Find the (hopefully) fastest QEP

e Two interdependent levels: Best plan, best impl.

— Different QEPs by algebraic rewriting
* P1: oOpame=mong(ACCOUNt ><I Customer)
e P2: Account X Gyime=gong(CUStOMEr)
— Different QEPs by different operator implementations
e P1': Access by scan, hash-join
e P1”: Access by index, nested-loop-join

e Plan space: Enumerate and evaluate (some? all?) QEPs

e Optimization goal: Minimize size of intermediate results

— Might miss optimality in terms of runtime
e Expansive subplan with sorted result
e Cheap subplan with unsorted result

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

44

Rule-Based Optimizer

e Use rules-of-thumbs
— Push selections as far as possible
— Push projections as far as possible
— Use indexes whenever possible
— Always prefer sort-merge join
— Order joins: Tables with more selections first

e Does not use information about current size of relations
and indexes or distribution of values

e Does not use expected effects of operators in the query
(selectivity)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

45

Cost-Based Optimizer

e Use statistics on current state of relations

— Size, value distribution, fragmentation, cluster factors, ...

FOR EACH a in ACCOUNT DO
FOR EACH c IN CUSTOMER DO
IF a.Account# = c.Account# THEN
IF c.Name = "BOND" THEN ...

— Let selectivity of oy me=gong P€ 1%0, |Customer|=10.000,
|Account|=12.000, Customer:Account is 1:N
— Performs ...
e Join: 10.000 * 12.000 = 120M comparisons
e Produces ~12.000 intermediate result tuples
e Filters down to ~120 results

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

46

Cost-Based Optimizer

Use statistics on current state of relations
— Size, value distribution, fragmentation, cluster factors, ...

FOR EACH c in CUSTOMER WITH Name="Bond" BY INDEX DO
FOR EACH a IN ACCOUNT DO
IF a.Account# = c.Account# THEN
Output ("Bond”, c.Address, a.Checking, a. Balance)

— Same setting

— Performs

e Reads some index blocks to find 100 customers
— But these are read using random access

e Join: 100*12.000= 1.2M comparisons
e Produces 120 results

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

47

Join methods

e Suppose the previous query would contain no selection
e Can‘t we do better than “Join: 120M comparisons”

e Join methods
— Nested loop join: O(m*n) key comparisons
— Sort-merge join
e First sort relations in O(n*log(n)+m*log(m))
e Merge results in O(m+n)
e Sometimes better, sometimes worse
— Hash join, index-join, grace-join, zig-zag join, ...
e Note: Complexity here measures number of comparisons
— This is a “main-memory” viewpoint
— Must not be used for 10 tasks

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

48

Data Dictionary

e Query execution needs metadata: Data dictionary
— Semantic parsing of query: Which relations exist?
— Which indexes exists?
— Cardinality estimates of relations?
— Size of buffer for in-memory sorting?

Table name | Att name |Att type size Avg_size
Customer Name Varchar2 100 24
Customer account# Int 8 8
Customer

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

49

Access Control

e Read and write access on objects

e Read and write access on system operations
— Create user, kill session, export database, ...

e GRANT, REVOKE Operations

e Example:
GRANT ALL PRIVILIGES ON ACCOUNT TO Freytag WITH
GRANT OPTION

e No complete protection

— Granularity of access rights usually relation/attribute — not tuple
» Use views, label-based access control

— Access to data without DBMS (at OS level)
— Complement with file protection, encryption of data

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 50

Bottom-Up

Transactions,
serializability, recovery

Data Model

A

\ 4

Logical Access

A

A 4

Data Structures

A

\ 4

Buffer Management

A

y

Operating System

|

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

51

Transactions (TX)

e Transaction: “Logical unit of work”

Begin_Transaction

UPDATE ACCOUNT
SET Savings = Savings + 1M
SET Checking = Checking - 1M
WHERE Account# = 007;

INSERT JOURNAL <007, NNN, “Transfer”, ...>
End_Transaction
e ACID properties
— Atomic execution
— Consistent DB state after commits
— Isolation: No influence on result by concurrent TX
— Durability: After commit, changes are reflected in the database

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

52

Lost Update Problem

Deposit $ 1,000 Deposit $ 2,000
< >
Read account value Read account value
__—| [5.000
5,000 5000
Add $1,000
5,000 ~ Add $ 2,000
Write back 6,000 =000
Write back
< >
7,000

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 53

Synchronization and schedules

T1: read A4; To: read B;
A =4-10; B =08 -20;
write A; write B;
read 8; read C;
B=8+10: C=0C+20:
write B; write C;
Schedule 5, Schedule S5 Schedule Sy
1y 15 1y 15 Ty 15
read A read A read A
A—10 read B | A—-10
write A A—10 read B
read B B —20 | write A
B+ 10 write A B — 20
write B write B | read B
read B | read B write B
B — 20 read C' | B+10
write B | B+ 10 read '
read C C'+20 | write B
C'+20 | write B '+ 20
write C' write C' write C'

Ulf Leser: Implementation of Database Systems,

Winter Semester 2016/2017

54

Synchronization and locks

e When is a schedules , fine*?
— When it is serializable
— l.e., when it is equivalent to a serial schedule
— Proof serializability of schedules

e Strategy: Blocking everything is dreadful
e Strategy: Checking after execution is wasteful

e Synchronization protocols
— Guarantee to produce only serializable schedules

— Require certain well-behavior of transactions

e Two phase locking, multi-version synchronization, timestamp
synchronization, ...

e Be careful with deadlocks

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

55

Recovery — Broad Principle

& Transactions

Concurrency Control

Manager

Main Memory (MM).

Secondary
Storage

Recovery-Mgr.

Log

" S-Log |

~

J

Buffer-Mgr.

DB

*| S-DB

N

e Store data redundantly: Save old values

e Different formats for different access characteristics

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

56

SO many managers

Lk RECO PRI SR

R

System Global Area

Redo Log

Butfer

Detebesa
Bufter Ceche

L‘I‘

|
Lizer Shamd | |Dedicated
Process Sanver Samvar
Process Process

Usar Processas
I b & &

Caoa

Legend: Usar

Procass

LMS Lock pmcess
RECO Racoverar process
PMOH Procass monitar
SMON Systern monitor
CKPT Checkpoint

AHCO Archiver

DBW0 Database writer
LGWH Log writer

Doon Diepatchar Process

Deteliles

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Oracle processes

e LMS
e RECO
e PMON
e SMON
e CKPT
e ARCO
e DBW
e LGW

Lock manager (only clustered dbs)
Recovery of distributed transactions
Control and restart of all processes
Recovery at start-up after failure
Checkpointing

Archiving of Redo-Log data

Writing of database blocks

Writing of Redo-Log blocks
Dispatcher fur multithreaded servers

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017

58

	Foliennummer 1
	Table of Content
	2010: Price versus speed
	2010: Storage Hierarchy
	2016: Storage Hierarchy
	Costs Drop Faster than you Think
	New Players
	New Players
	Characteristics
	Storage Area Networks (SAN)
	Prize of Main Memory
	New: Multi-Core with NUMA
	Consequences
	Table of Content
	Overview
	Five Layer Architecture
	Tasks
	Operations
	Interfaces
	Note: Idealized Representation
	Table of Content
	Bottom-Up
	Classical Discs
	RAID 1: Mirroring
	Bottom-Up
	Access Methods: Sequential Unsorted Files
	Access Methods: Sequential sorted Files
	Indexed Files
	Storage in Oracle
	Managing space in Oracle
	Bottom-Up
	Bottom-Up
	Caching = Buffer Management
	From Buffers to Records
	Free Space, TX, and Concurrent Processes
	Records - Blocks
	Hash-based Files
	Multidimensional Shapes: R-Trees
	Bottom-Up
	The ANSI/SPARC Three Layer-Model
	Query Execution
	Query Processing
	One Query – Many QEPs
	Query optimization
	Rule-Based Optimizer
	Cost-Based Optimizer
	Cost-Based Optimizer
	Join methods
	Data Dictionary
	Access Control
	Bottom-Up
	Transactions (TX)
	Lost Update Problem
	Synchronization and schedules
	Synchronization and locks
	Recovery – Broad Principle
	So many managers ...
	Oracle processes

