
Patrick	Schäfer	(patrick.schaefer@hu-berlin.de)

Marc	Bux	(buxmarcn@informatik.hu-berlin.de)

Information	Retrieval
Assignment	3:	
Boolean	Information	Retrieval	with	Lucene	



Schäfer,	Bux:	Assignment	3 2

Lucene

• Open	source,	Java-based	information	retrieval	engine.

• Requires	two	steps:
– Indexing:	Create	a	Lucene	index	on	the	documents.

– Searching:	Parse	a	query	and	lookup	the	index.

• Different	flavors	&	extensions:	Solr,	Nutch,	Tika ...	

• But	you	have	to	use	the	java	Lucene	core	library.



Schäfer,	Bux:	Assignment	3 3

Task	

• Implement	Boolean	IR	as	in	assignment	2,	but	this	time	use	
Lucene:
– Parse	the	IMDB	movie	plots	(reuse	existing	code).

– Treat	all	text	in	lowercase	for	indexing	and	searching.

– Support	the full Lucene Query	Parser	Syntax1.

– Use	word	tokenization	and	stop	word	removal,	but	no	stemming.

• You	can	use	your	movie	plot	file	parser	from	Assignment	2.

• But	use	Lucene	(v6.3)2 for	indexing	and	searching!

[1] https://lucene.apache.org/core/6_3_0/queryparser/org/apache/lucene/queryparser/classic/package-
summary.html#package.description

[2] http://lucene.apache.org/core/ 



Schäfer,	Bux:	Assignment	3 4

Example	Queries
1. title:"game of	thrones"	AND	type:episode AND	(plot:Bastards OR	(plot:Jon AND	

plot:Snow))	-plot:son

2. title:"Star Wars"	AND	type:movie AND	plot:Luke AND	year:[1977	TO	1987]

3. plot:Berlin AND	plot:wall AND	type:television

4. plot:men~1 AND	plot:women~1 AND	plot:love AND	plot:fool AND	type:movie

5. title:westworld AND	type:episode AND	year:2016	AND	plot:Dolores

6. plot:You AND	plot:never AND	plot:get AND	plot:A AND	plot:second AND	plot:chance

7. plot:Hero AND	plot:Villain AND	plot:destroy AND	type:movie

8. (plot:lover -plot:perfect)	AND	plot:unfaithful* AND	plot:husband AND	plot:affair AND	
type:movie

9. (plot:Innocent OR plot:Guilty)	AND	plot:crime AND	plot:murder AND	plot:court AND	
plot:judge AND	type:movie

10. plot:Hero AND	plot:Marvel -plot:DC AND	type:movie

11. plot:Hero AND	plot:DC -plot:Marvel AND	type:movie



Schäfer,	Bux:	Assignment	3 5

Basic	Concepts	in	Lucene

• Lucene	builds	inverted	indices	and	allows	queries	on	these	
indices.

• A	Document is	the	unit	of	search	and	index.

• Indexing involves	adding	documents	to	an	IndexWriter.

• Searching involves	retrieving	documents	via	an	IndexSearcher.

• A	document	consists	of	one	or	more	fields.	

• A	field	is	a	key-value	pair.



Schäfer,	Bux:	Assignment	3 6

Understanding	Concepts	in	Lucene

• Tokenizers: break	field	data	into	lexical	units,	or	tokens.

• Filters:	examine	a	stream	of	tokens	and	keep	them,	transform	or	
discard	them,	or	create	new	ones.	

• Analyzers:	tokenizers	and	filters	may	be	combined.	This	
combination	is	called	an	analyzer.	The	output	of	an	analyzer is	
used	to	query	or	build	indices.

• Use	the	same	analyzer for	querying	and	building	indices.



Schäfer,	Bux:	Assignment	3 7

Lucene	Analyzers
• Lucene	provids	multiple	default	tokenizers,	i.e.:

– LetterTokenizer:	divide	text	at	non-characters.
– WhiteSpaceTokenizer:	divide	text	at	whitespace characters.
– StandardTokenizer:	grammar-based	tokenizer.

• Lucene	provides	multiple	default	filters, i.e.:
– LowerCaseFilter:	converts	any	uppercase	letters	to	lowercase.
– Word	Stemming	filters	(Kstem,	Hunspell,	Snowball	Porter,	…)

• Lucene	provides	multiple	default	analyzers,	i.e.:
– SimpleAnalyzer:	LetterTokenizer,		LowerCaseFilter.
– StandardAnalyzer:	StandardTokenizer,	LowerCaseFilter,	English	stop	words
– WhiteSpaceAnalyzer:	WhiteSpaceTokenizer.
– StopAnalyzer:	LetterTokenizer,	LowerCaseFilter,	English	stop	words.

• You	just	have	to	use	the	corresponding	analyzer (compare	slide	
3&14).



Schäfer,	Bux:	Assignment	3 8

Indexing	in	Lucene	

• Specify	the	analyzer to	use
Analyzer myAnalyzer = …; 

• Specify	a	directory	and	an	index	writer
Directory index = FSDirectory.open(new File(directory).toPath()); 
IndexWriterConfig config = new IndexWriterConfig(myAnalyzer);
IndexWriter writer = new IndexWriter(index, config);

• Create	a	document	and	add	this	document	to	the	index:
Document doc = new Document();

doc.add(new StringField(“id”, id, StringField.Store.YES));
doc.add(new TextField(“title”, title, TextField.Store.YES));
writer.addDocument(doc);

• Close	Index	writer:
writer.commit()
writer.close();



Schäfer,	Bux:	Assignment	3 9

StringField and	TextField

• StringField vs	TextField:	
– TextFields will	be	tokenized.	Used		for	texts	that	needs	to	be	tokenized.
– StringFields will	be	treated	as	a	single	term.	Used	for	atomic	values	that	

are	not	to	be	tokenized.	

• Many	other	typed	fields:
– IntPoint:	int indexed	for	exact/range	queries.	
– LongPoint:	long	indexed	for	exact/range	queries.	
– FloatPoint:	float	indexed	for	exact/range	queries.			
– DoublePoint:	double	indexed	for	exact/range	queries.	
– …

• Field.Store.YES :	indexed	&	returned	as	result.
• Field.Store.NO :	indexed	but	not	returned	as	result.



Schäfer,	Bux:	Assignment	3 10

Querying	in	Lucene

• Open	Lucene	index	for	searching
IndexReader indexReader = DirectoryReader.open(index);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);

• Parse	title:”querystr”	using	the	analyzer
Query q = new QueryParser("title", myAnalyzer).parse(querystr);

• Retrieve	all	results
TopDocs hits = indexSearcher.search(q, Integer.MAX_VALUE);



Schäfer,	Bux:	Assignment	3 11

Revisited:	Query	Syntax

• You	have	to	support	the	Query	Parser syntax1:
– term	query	syntax:

– phrase	query	syntax:

– AND	query,	OR	query

– NOT	queries
– Wildcards
– Proximity
– Range	searches
– ...

• There	is	a	built-in	Query	Parser	for	this	in	Lucene.

title:Game

title:”Game of Thrones”

title:”Game of Thrones” AND (plot:Baelish OR plot:Jon)

[1] http://www.lucenetutorial.com/lucene-query-syntax.html



Schäfer,	Bux:	Assignment	3 12

Revisited:	Query	Syntax

• Searchable	fields	are	as	follows:
– title
– plot	(if	a	document	has	multiple	plot	descriptions	they	can	be	appended)
– type (movie,	series,	episode,	television,	video,	videogame;	see	next	slide)
– year (optional)
– episodetitle (optional,	only	for	episodes)

• There	is	a	built-in	MultiFieldQueryParser1 for	this	in	Lucene.

[1]https://lucene.apache.org/core/6_3_0/queryparser/org/apache/lucene/query
parser/classic/MultiFieldQueryParser.html



Schäfer,	Bux:	Assignment	3 13

Revisited:	Corpus

• Reuse	the	corpus	plot.list1
– plain	text,	roughly	400	MB,	updated	version	every	Friday.
– you	can	reduce	the	size	of	the	corpus	by	using	the	HEAD	and	TAIL	tools:

head	-n	10000	plot.list >	small.list

• supported	document	types	and	their	syntax	in	the	corpus:
– movie:	MV:	<title>	(<year>)

– series:	MV:	"<title>"	(<year>)

– episode:	MV:	"<title>"	(<year>)	{<episodetitle>}

– television:	MV:	<title>	(<year>)	(TV)

– video:	MV:	<title>	(<year>)	(V)

– videogame:	MV:	<title>	(<year>)	(VG)

[1] http://www.imdb.com/interfaces



Schäfer,	Bux:	Assignment	3 14

Preprocessing

• Corpus:	the	corpus	text	has	to	tokenized.

• Phrase	search:	the	query	has	to	be	tokenized,	too.

• Convert	all	words	to	lower	case	(case-insensitive search	and	
indexing)	and	remove	English	stop	words.

• There	are	built-in	“Analyzers” for	this	in	Lucene.



Schäfer,	Bux:	Assignment	3 15

Getting started

• Download	Apache	Lucene	v6.3.

• Extract	the	zip	file,	copy	the	two	jars	to	your	project	and	add	
them	to	the	build-path:
– lucene-core-6.3.0.jar
– lucene-queryparser-6.3.0.jar

• in	BooleanSeachLucene.java,	implement	the	functions:
– public	void	buildIndices(String	plotFile)

(used	to	parse	the	file	and	build	the	lucene index)
– public	Set<String>	booleanQuery(String	queryString)

(parses	the	query	string	and	returns	the	title	lines	of	any	entries	in	the	
plotFile matching	the	query)

– public	void	close()
(can	be	used	to	close	Lucene	index,	Threadpool,	etc.)



Schäfer,	Bux:	Assignment	3 16

Test	your Program

• we	provide	you	with	a	modified:
– a	queries_lucene.txt file	containing	exemplary	queries
– a	results_lucene.txt file	containing	the	expected	results	of	running	these	

queries
– a	main	method	for	testing	your	code	(which	expects	as	parameters	the	

corpus	file,	the	queries	file	and	the	results	file)

• additionally,	you	can	write	your	own	test	queries:
– check	the	plausibility	of	your	results	using	GREP:

grep	"	<search-token>	"	<corpus-file>	
– use	-G	or	-P	parameter	for	regular	expressions



Schäfer,	Bux:	Assignment	3 17

• by	Thursday,	05.01.17,	23:59	(midnight)
• submission:	archive	(zip,	tar.gz)

– contains	Java	source	files,	any	used	libraries,	and	your	compiled	jar	
named	BooleanQueryLucene.jar

– file	name	(of	submitted	archive):	your	group	name

• upload	to	https://box.hu-berlin.de/u/d/6421657d18/
– if	this	doesn’t	work,	send	via	mail	to	buxmarcn@informatik.hu-berlin.de

• test	your	jar	before	submitting	by	running	our	queries	on	
gruenau2
– java	-jar	BooleanQueryLucene.jar <plot	list	file>	<queries	file>	<results	

file>
– you	might	have	to	increase	the	JVM‘s	heap	size	(e.g.,	-Xmx8g)
– your	jar	must	run	and	answer	all	test	queries	in	‘queries.txt’	correctly

Deliverables



Schäfer,	Bux:	Assignment	3 18

Presentation of Solutions

• you	are	be	able	to	pick	when	and	what	you‘d	like	to	present	
(first-come-first-served):

– monday:	https://dudle.inf.tu-dresden.de/inforet_ue3_mo/

– tuesday:	https://dudle.inf.tu-dresden.de/inforet_ue3_tu/

• presentation	will	be	given	on	9./10.01.17

• One	team	can	present	their	Lucene	query	parser.

• One	team	can	present	their Lucene	indexer	(+analyzer).



Schäfer,	Bux:	Assignment	3 19

Competition

• Index	as	fast	as	possible.	

• See	http://www.lucenetutorial.com/lucene-nrt-hello-world.html
for	possible	optimizations…

• Note	that	everybody	uses	the	same	indexer	(Lucene).

• stay	under	50	GB	memory	usage.

• we	will	call	the	program	using	our	eval tool:
– we	will	use	different	queries	and	-Xmx50g	parameter

• We	will	evaluate	twofold:
a) The	total	query	time.

b) The	total	time	for	building	the	index.



Schäfer,	Bux:	Assignment	3 20

Checklist

again,	before	submitting	your	results,	make	sure	that	you
1. did	not	change	or	remove	any	code	from	BooleanQueryLucene.java

2. did	not	alter	the	functions‘	signatures	(types	of	params,	return	values)

3. only	use	the	default constructor	and	don‘t	change	its	parameters

4. did	not	change	the	class	or	package	name

5. named	your	jar	BooleanQueryLucene.jar

6. tested	your	jar	on	gruenau2 by	running
java	-jar	BooleanQueryLucene.jar plot.list queries.txt	results.txt
(you	might	have	to	increase	Java	heap	space,	e.g.	-Xmx6g)

7. ascertained	that	the	queries	in	queries.txt	were	answered	correctly

8. Make	sure	to	upload	a	zip	file	named	by	your	group	name.



Schäfer,	Bux:	Assignment	3 21

Next	Steps

• this	week:	evaluation	of	assignment	2

• next	weeks:	academic	holidays	starting	from	Dec	19th to	Jan	2nd.	
There	is	just	one	Q/A	session	on	Jan	3rd for	assignment	3.

• Upload	your	solution	by	Thursday,	05.01.17,	23:59	(midnight)


