
Patrick Schäfer (patrick.schaefer@hu-berlin.de)

Marc Bux (buxmarcn@informatik.hu-berlin.de)

Information Retrieval

Assignment 2:
Boolean Information Retrieval

mailto:patrick.schaefer@hu-berlin.de
mailto:patrick.schaefer@hu-berlin.de
mailto:patrick.schaefer@hu-berlin.de
mailto:buxmarcn@informatik.hu-berlin.de
mailto:buxmarcn@informatik.hu-berlin.de
mailto:buxmarcn@informatik.hu-berlin.de

Schäfer, Bux: Information Retrieval Exercises – Introduction 2

Assignment 2: Boolean IR on Full Text

• last assignment: hard-coded queries on small data

• this time: arbitrary queries on large(r) data

• obtain corpus plot.list from http://www.imdb.com/interfaces

– read license: only for personal use, do not redistribute

– plain text, roughly 400 MB

– updated version every Friday

– you can reduce the size of the corpus by using the HEAD and TAIL tools:

head -n 10000 plot.list > small.list

• write a program which can find

– arbitrary terms,

– arbitrary phrases, and

– arbitrary combinations thereof

• in other words: implement Boolean IR

– term, phrase and AND search

http://www.imdb.com/interfaces

Schäfer, Bux: Information Retrieval Exercises – Introduction 3

Example (Corpus Excerpt)

MV: Moonraker (1979)

PL: James Bond is back for another mission and this time, he is blasting off

PL: into space. A spaceship traveling through space is mysteriously hi-jacked

PL: and Bond must work quickly to find out who was behind it all. He starts

PL: with the rockets creators, Drax Industries and the man behind the

PL: organisation, Hugo Drax. On his journey he ends up meeting Dr. Holly

PL: Goodhead and encounters the metal-toothed Jaws once again.

BY: simon

PL: A Boeing 747 carrying a US space shuttle on loan to the UK crashes into the

PL: Atlantic Ocean. When the British examine the wreckage they can find no

PL: trace of the spacecraft and send agent James Bond to the shuttle's

PL: manufacturers, Drax Industries, to investigate.

BY: Dave Jenkins

Schäfer, Bux: Information Retrieval Exercises – Introduction 4

Query Syntax

• token query syntax: <field>:<token>

• phrase query syntax: <field>:"<phrase>"

• and query syntax: <query> AND <query>
(where <query> can be a token, phrase, or AND query)

• searchable fields are as follows:
– title

– plot (if a document has multiple plot descriptions they can be appended)

– type (movie, series, episode, television, video, videogame; see next slide)

– year (optional)

– episodetitle (optional, only for episodes)

• the syntax is a subset of the Lucene QueryParser syntax
– http://www.lucenetutorial.com/lucene-query-syntax.html

• “ AND ” and double quotes not allowed in tokens or phrases
– i.e., don’t worry about queries like title:"BATMAN AND ROBIN"

http://www.lucenetutorial.com/lucene-query-syntax.html
http://www.lucenetutorial.com/lucene-query-syntax.html
http://www.lucenetutorial.com/lucene-query-syntax.html
http://www.lucenetutorial.com/lucene-query-syntax.html
http://www.lucenetutorial.com/lucene-query-syntax.html

Schäfer, Bux: Information Retrieval Exercises – Introduction 5

Corpus

• the file contains documents from IMDB

• supported document types and their syntax in the corpus:

– movie: MV: <title> (<year>)

– series: MV: "<title>" (<year>)

– episode: MV: "<title>" (<year>) {<episodetitle>}

– television: MV: <title> (<year>) (TV)

– video: MV: <title> (<year>) (V)

– videogame: MV: <title> (<year>) (VG)

• corpus is in ISO-8859-1 format

– BufferedReader reader = new BufferedReader(

 new InputStreamReader(new FileInputStream(path),

 StandardCharsets.ISO_8859_1));

Schäfer, Bux: Information Retrieval Exercises – Introduction 6

Documents

• an entry starts with “MV: ” and ends with horizontal lines

(“--”) or at the end of the corpus

• each entry must be treated as one document

– which may match a query or not

– identified by their full title line in the corpus: e.g., MV: Moonraker (1979)

• again, every document has up to five searchable fields:

title, plot, type, year, episodetitle

• other information (e.g., “BY: “) in the corpus can be discarded

Schäfer, Bux: Information Retrieval Exercises – Introduction 7

Some Peculiar Documents

• MV: Disparity (2013) {{SUSPENDED}}

MV: "Moments" (2011) {Dreams (#1.1)} {{SUSPENDED}}

→ {{SUSPENDED}} can be discarded

• MV: Disparity (????)

→ not all entries have a year field

• MV: Displaced (2014/II)

MV: Displaced (2014/III)

MV: The Ambassador (????/IV)

MV: The Ambassador (1984)

→ different documents may have identical name, year, and type

• MV: Þegar það gerist (1998) (TV)

→ make sure to parse the file using ISO-8859-1 encoding

Schäfer, Bux: Information Retrieval Exercises – Introduction 8

Preprocessing

• corpus text has to split (“tokenized”) into terms to build indices

• in phrase search, the query is a consecutive sequence of terms

• convert terms (for indices, term queries, and phrase queries) to

lower case (case-insensitive search)

• use as delimiters only blanks, dots, commas, colons, exclamation

marks, and question marks (.,:!?)

• leave all other special characters untouched

– they become parts of tokens

• examples:

– “The Lord of the Rings: The Two Towers”

→ “the”, “lord”, “of”, “the”, “rings”, “the”, “two”, “towers”

– “Marvel’s The Avengers” → “marvel’s”, “the”, “avengers”

Schäfer, Bux: Information Retrieval Exercises – Introduction 9

Program

• in BooleanSeach.java, implement the functions for building

indices and running queries:

– public void buildIndices(String plotFile)

– public Set<String> booleanQuery(String queryString)

(returns the title lines of any entries in the plotFile matching the query)

– for more detailed information, consult Javadoc for both methods

– only add classes and code, do not change or remove any code

– do not alter the functions‘ signatures (types of params, return values)

– do not change the class or package name

– only use the default constructor and don‘t change its parameters

• do not use Lucene (yet)

– you may use other libraries

Schäfer, Bux: Information Retrieval Exercises – Introduction 10

Test your Program

• we provide you with:

– a queries.txt file containing exemplary queries

– a results.txt file containing the expected results of running these queries

– a main method for testing your code (which expects as parameters the

corpus file, the queries file and the results file)

• additionally, you can write your own test queries

– check the plausibility of your results using GREP:

grep " <search-token> " <corpus-file>

– use -G or -P parameter for regular expressions

Schäfer, Bux: Information Retrieval Exercises – Introduction 11

Example Queries (from queries.txt)

• title:"game of thrones" AND type:episode AND plot:shae AND plot:Baelish

• plot:Skywalker AND type:series

• plot:"year 2200"

• plot:Berlin AND plot:wall AND type:television

• plot:Cthulhu

• title:"saber rider" AND plot:april

• plot:"James Bond" AND plot:"Jaws" AND type:movie

• title:"Pimp my Ride" AND episodetitle:mustang

• plot:"matt berninger"

• title:"grand theft auto" AND type:videogame

• plot:"Jim Jefferies"

• plot:Berlin AND type:videogame

• plot:starcraft AND type:movie

• type:video AND title:"from dusk till dawn"

Schäfer, Bux: Information Retrieval Exercises – Introduction 12

• by Thursday, 8.12., 23:59 (midnight)

– two-and-a-half weeks

• submission: archive (zip, tar.gz)

– contains Java source files, any used libraries, and your compiled jar

named BooleanQuery.jar

– file name (of submitted archive): your group name

• upload to https://box.hu-berlin.de/u/d/76b81341a0/

– if this doesn’t work, send via mail to buxmarcn@informatik.hu-berlin.de

• test your jar before submitting by running our queries on

gruenau2

– java -jar BooleanQuery.jar <plot list file> <queries file> <results file>

– you might have to increase the JVM‘s heap size (e.g., -Xmx8g)

– your jar must run and answer all test queries correctly

Deliverables

https://box.hu-berlin.de/u/d/76b81341a0/
https://box.hu-berlin.de/u/d/76b81341a0/
https://box.hu-berlin.de/u/d/76b81341a0/
mailto:buxmarcn@informatik.hu-berlin.de
mailto:buxmarcn@informatik.hu-berlin.de
mailto:buxmarcn@informatik.hu-berlin.de

Schäfer, Bux: Information Retrieval Exercises – Introduction 13

Presentation of Solutions

• you are be able to pick when and what you‘d like to present

(first-come-first-served):

– monday: https://dudle.inf.tu-dresden.de/inforet_ue2_mo/

– tuesday: https://dudle.inf.tu-dresden.de/inforet_ue2_tu/

• presentation will be given on 12./13.12.

• three teams will present their term search & indices

• one team will present their phrase search

• one team will present their AND search

• one team will present their parser

https://dudle.inf.tu-dresden.de/inforet_ue2_mo/
https://dudle.inf.tu-dresden.de/inforet_ue2_mo/
https://dudle.inf.tu-dresden.de/inforet_ue2_mo/
https://dudle.inf.tu-dresden.de/inforet_ue2_mo/
https://dudle.inf.tu-dresden.de/inforet_ue2_tu/
https://dudle.inf.tu-dresden.de/inforet_ue2_tu/
https://dudle.inf.tu-dresden.de/inforet_ue2_tu/
https://dudle.inf.tu-dresden.de/inforet_ue2_tu/
https://dudle.inf.tu-dresden.de/inforet_ue2_tu/
https://dudle.inf.tu-dresden.de/inforet_ue2_tu/

Schäfer, Bux: Information Retrieval Exercises – Introduction 14

Competition

• search as fast as possible

• build as many indices as you deem necessary

– stay under 50 GB memory usage

• we will call the program using our eval tool

– we will use 9 different queries and -Xmx50g parameter

• the time for building the index counts as much as a single query

– i.e., one tenth of the total achievable competition points

Schäfer, Bux: Information Retrieval Exercises – Introduction 15

Challenges

• parse “indexable” documents from an unstructured text file

– handle special characters, unexpected syntax variants

• conceptualize and implement indices

– size will not be evaluated

– for different fields (title, plot, year, type, episodetitle)?

• efficient computation of document lists per term

– might be large (e.g., searching for “the”)

• efficient implementation of AND operator

– fast intersection of document lists

• efficient implementation of evaluating entire query

• implementation of phrase search

Schäfer, Bux: Information Retrieval Exercises – Introduction 16

Checklist

again, before submitting your results, make sure that you

1. did not change or remove any code from BooleanQuery.java

2. did not alter the functions‘ signatures (types of params, return values)

3. only use the default constructor and don‘t change its parameters

4. did not change the class or package name

5. named your jar BooleanQuery.jar

6. tested your jar on gruenau2 by running

java -jar BooleanQuery.jar plot.list queries.txt results.txt

(you might have to increase Java heap space, e.g. -Xmx6g)

7. ascertained that the 15 queries in queries.txt were answered correctly

Schäfer, Bux: Information Retrieval Exercises – Introduction 17

FAQ

1. May we use a database for the indices?

– Yes, but only an embedded one (SQLite etc.).

2. May we create more than one index?

– Yes, as long as you stay below 50 GB memory usage.

3. What is the specification of the evaluation VM?

– 50 GB memory, 15 virtual cores, 200 GB HDD.

4. Should we parse and index the number of a series’ episode?

(e.g., season 3, episode 6 in {The Climb (#3.6)})

– No, treat all content in the curly braces (including the episode number)

as text, which can then be queried via the field “episodetitle”.

5. Are phrase queries case-insensitive?

– Yes, all queries (and thereofre also the indices) are case-insensitive.

Schäfer, Bux: Information Retrieval Exercises – Introduction 18

FAQ (2)

6. Queries are case-insensitive and therefore the indices should

be case-insensitve. Does that imply that the title lines returned

by the booleanQuery method may be in lower case as well?

– No, the strings returned by the booleanQuery method ought to be

identical to the title lines in the corpus.

7. Are semicolons also a valid delimiter when determining terms

from text (i.e., during tokenization)?

– No, the only valid delimiters are blanks, dots, commas, colons,

exclamation marks, and question marks. This implies that the text

“obsession: party;” results in the terms “obsession” “party;”.

8. Does our BooleanQuery program have access to a local copy of

the corpus or will it have to obtain the corpus from the web?

– The buildIndices method expects the corpus to be accessible locally

under the path indicated by plotFile parameter.

Schäfer, Bux: Information Retrieval Exercises – Introduction 19

FAQ (3)

9. How can the parser decide if a document is a movie or series?

– Series have their title enclosed by double quotes, movies don‘t. See slide

5 for an overview of the supported types and their syntax. See

https://contribute.imdb.com/updates/guide/title_formats for even more

information on formats.

10. Some documents have a version number besides their year,

such as MV: Displaced (2014/II). Should our tool be able to

query this version number?

– The field "year" should merely allow for querying the year itself. The

version number (in this case "II") is not part of the year and we won’t test

your program with queries like year:II. Note however that documents

whose title lines are exactly identical besides the version number, should

also be treated (and returned) as two separate documents.

https://contribute.imdb.com/updates/guide/title_formats
https://contribute.imdb.com/updates/guide/title_formats

Schäfer, Bux: Information Retrieval Exercises – Introduction 20

FAQ (4)

11. Can you concretize phrase query?

– Here, we define a phrase as a consecutive sequence of terms. You can

determine the terms of a corpus via tokenization (i.e., by splitting at any

of the delimiters [.,:!?]) and converting to lower case. You can treat

phrase queries in exactly the same way. Effectively, a document matches

a phrase query if it contains all of the query's terms in exactly the same

order as in the query.

For instance, a document with plot the cat, the "dog" should match

queries plot:"cat, the", plot:"cat the", plot:"the,,,:::cAt THE" ([.,:!?] are all

delimiters). However, it should not match the query plot:"he cat"

(because the term "he" is not contained in the document and phrase

queries, as we define them, are not the same as substring searches).

Whether or not it matches the query plot:"the "dog"" is undefined

(double quotes are not interpreted as a delimiter and we don’t allow

AND or double quotes in queries anyways).

Schäfer, Bux: Information Retrieval Exercises – Introduction 21

FAQ (5)

12. Should we implement the search such that "????" is a valid

query for the year field?

– No, the field "year" is optional and documents with an undefined year

(i.e., "????") don't have to be queryable via their year.

13. A lot of the documents have a series and episode number at

the end of their episodetitle field, e.g. {Dark Wings, Dark Words

(#3.2)}. Should we parse and index this series and episode

number?

– No, just ignore it and interpret all content in the curly braces as the

episodetitle. If your tokenization works as intended, it will split the string

(#3.2) into terms (#3 and 2). If someone wanted to query series or

episode number, they could then do so by formulating the query

episodetitle:(#3 .

Schäfer, Bux: Information Retrieval Exercises – Introduction 22

FAQ (6)

14. Does the corpus contain documents with brackets in their title?

– Yes. Running the command

grep -P "MV: \".*\(.*\" \(" plot.list

reveals document like

MV: "4X (Non-verbal)" (2012) .

15. During evaluation, is there a time limit for building the index ?

– Yes. Since we have to evaluate more than 20 submissions over the course

of a few days, there is only so much time we can allot to each

submission. Specifically, if your index does not build within 60 minutes,

we will terminate the process. In this case, all queries will count as

“failed”.

Also, if any of your queries takes longer than five minutes, we will

terminate that query. In this case, only that query will count as “failed”.

Schäfer, Bux: Information Retrieval Exercises – Introduction 23

FAQ (7)

16. Can you tell us more about the evaluation procedure?

– Yes. We will run nine new, potentially more difficult, queries using our

own runnable Jar, which will import and invoke the methods you

implemented. For each of these queries as well as for building the index,

we will measure runtime and determine your rank. If your submission

does not return the “correct” results, it will get the (shared) maximum

rank for this particular query. To determine the total rank of your

submission, we will compute the average across all ten ranks.

17. When does this assignment count as “completed”?

– When all of the original 14 queries in the queries.txt file we provided

are processed correctly, i.e., when they return the results listed in the

results.txt file. Therefore, please check if your implementation adheres

to this requirement before submitting. If your implementation does not

return the expected result for any of the 14 provided queries, it will be

excluded from the contest and you will have to provide a corrected

version.

Schäfer, Bux: Information Retrieval Exercises – Introduction 24

FAQ (8)

18. In my implementation, query plot:Skywalker type:series returns

a lot more results than the ones found in results.txt, e.g.,

MV: "Star Wars: Clone Wars" (2003) {Chapter 1 (#1.1)}.

Are the results in results.txt incomplete?

– According to our definition of series and episodes, the example you

mentioned is an episode (and, thus, not a series), since it has an episode

title in curly braces. Please strictly follow the syntax of the six document

types found on slide 5:

movie: MV: <title> (<year>)

series: MV: "<title>" (<year>)

episode: MV: "<title>" (<year>) {<episodetitle>}

Note that a document can’t have more than a single type. Therefore,

when we query a series, we don’t expect episodes (of this series) in the

returned results.

Schäfer, Bux: Information Retrieval Exercises – Introduction 25

FAQ (9)

19. When reading the results.txt file, some special characters are

not correctly parsed, e.g.,

MV: Die EislÃ¤uferin (2015) (TV) instead of

MV: Die Eisläuferin (2015) (TV)

Why might this be?

– Apparently, your results.txt is not encoded as Latin-1 / ISO 8859-1 or

something else has gone wrong with the file. Maybe you created a new

file of different encoding and copied the content of the results.txt from

our website into that file. In any case, please make sure that the file is in

the correct format or re-download the file from our website.

Schäfer, Bux: Information Retrieval Exercises – Introduction 26

How To: Inverted Files

• simple and effective index structure for searching terms in a

collection of documents

• “bag of words” approach

• instead of “docs contain terms”, we use “terms appear in docs”

(“inverted” index)

term1 term2 term3

Doc1 1 0 1

Doc2 1 0 0

Doc3 0 1 1

Doc4 1 0 0

Doc5 1 1 1

Doc6 1 1 0

Doc7 0 1 0

Doc8 0 1 0

Doc1 Doc2 Doc3 Doc4 Doc5 Doc6 Doc7 Doc8

term1 1 1 0 1 1 1 0 0

term2 0 0 1 0 1 1 1 1

term3 1 0 1 0 1 0 0 0

Schäfer, Bux: Information Retrieval Exercises – Introduction 27

Building an Inverted File [Andreas Nürnberger, IR-2007]

Doc1:
Now is the time
for all good men
to come to the aid
of their country

Doc2:
It was a dark and
stormy night in
the country
manor. The time
was past midnight

Merge

term Doc

now 1

is 1

the 1

time 1

for 1

all 1

good 1

men 1

to 1

come 1

to 1

the 1

aid 1

of 1

their 1

country 1

term Doc

it 2

was 2

a 2

dark 2

and 2

stormy 2

night 2

in 2

the 2

country 2

manor 2

the 2

time 2

was 2

past 2

midnight 2

term Doc

a 2

aid 1

all 1

and 2

come 1

country 1,2

dark 2

for 1

good 1

in 2

is 1

it 2

manor 2

men 1

midnight 2

night 2

now 1

of 1

past 2

stormy 2

the 1,2

their 1

time 1,2

to 1,2

was 1,2

Schäfer, Bux: Information Retrieval Exercises – Introduction 28

Boolean Retrieval

• we can now efficiently implement Boolean

queries

• for each query term termi, look up document list

Doci containing termi

• evaluate query in the usual order:

– termi  termj : Doci  Docj

• example:

– plot:time AND plot:past AND plot:the

= Docplot:time  Docplot:past  Docplot:the

= {1,2}  {2}  {1,2}

= {2}

term Doc

a 2

aid 1

all 1

and 2

come 1

country 1,2

dark 2

for 1

good 1

in 2

is 1

it 2

manor 2

men 1

midnight 2

night 2

now 1

of 1

past 2

stormy 2

the 1,2

their 1

time 1,2

to 1,2

was 1,2

Schäfer, Bux: Information Retrieval Exercises – Introduction 29

Next Steps

• this week: we’ll send you the evaluation of assignment 1

• next week: Q/A session for assignment 2 (as every week)

– attendance is optional

