
Information Retrieval

Patrick Schäfer (patrick.schaefer@hu-berlin.de)
Marc Bux (buxmarcn@informatik.hu-berlin.de)

Assignment 1:
IMDB Spider
Due Date: Thursday, 17.11., 23:59

Patrick Schäfer, Marc Bux: Information Retrieval, Exercises

IMDB: Internet Movie Database

Patrick Schäfer, Marc Bux: Information Retrieval, Exercises

Assignment

• Task:
Given a list of 500 movies, answer queries on movies.

• Problem:
IMDB data is human-readable, but semi-structured.

• Idea:
– We “scrap”* data from each movie on IMDB.
– Then, we perform queries on the scrapped data.

* Data scrapping is a technique in which a computer program extracts data
from human-readable output coming from another program.

Patrick Schäfer, Marc Bux: Information Retrieval, Exercises

Concrete tasks

1. Implement a JAVA program that reads a list of 500 movie titles from a
JSON file.

2. For each movie title, perform a web search on IMDB and retrieve
movie’s URL.

3. For each movie, extract metadata (actors, budget, description) from
movie’s URL and store to a JSON file.

4. Implement queries on movies’ metadata.

Patrick Schäfer, Marc Bux: Information Retrieval, Exercises

1. Read Movie Titles from JSON File

• Read movie titles from a JSON* file “movies.json”:
[

{"movie_name":"Avatar"},
{"movie_name":"Star Wars VII: The Force Awakens"},
...

]

• You can use any JAVA library for parsing JSON files.
• Reference implementation: Oracle’s JSONP (https://jsonp.java.net/).
• JSON.simple (https://github.com/fangyidong/json-simple).
• GSON (https://github.com/google/gson).
• Jackson Project (https://github.com/FasterXML/jackson).

* JSON is a common syntax for storing and exchanging data. JSON is an alternative to XML:
http://www.w3schools.com/js/js_json_intro.asp

Patrick Schäfer, Marc Bux: Information Retrieval, Exercises

2. Perform a Web Search on IMDB

• Implement IMDBSpider.java that opens the URL:
http://akas.imdb.com/find?q=<MOVIE>&s=tt&ttype=ft

• From the results, extract the first element and its URL.
• Use URL encoding of movie titles.

Patrick Schäfer, Marc Bux: Information Retrieval, Exercises

2. Perform a Web Search on IMDB

• You have to parse the html file to extract the URL.
• You can use any method. You could use XPATH and html cleaner:

– http://htmlcleaner.sourceforge.net
– http://htmlcleaner.sourceforge.net/doc/org/htmlcleaner/XPather.html

The table is named „findList“

An entry is named „result_text“

Patrick Schäfer, Marc Bux: Information Retrieval, Exercises

2. Perform a Web Search on IMDB

• XPATH is a syntax for navigating parts of an XML document.
• Has a directory-path-like syntax.

• <table class= ”list" >
<tr>

<TD class = ”result">Avatar</TD>
</tr>

</AAA>

• XPATH:
/table[@class='list']//td[@class='result']/text()

=> Avatar

Patrick Schäfer, Marc Bux: Information Retrieval, Exercises

3. Extract Metadata from Movie’s URL

Patrick Schäfer, Marc Bux: Information Retrieval, Exercises

3. Extract Metadata from Movie’s URL

• Extract the following information from each movie and store it to a
separate JSON file:

url, title, year, genreList, countryList, description, budget, gross,
ratingValue, ratingCount, duration, castList, characterList,
directorList.

• Treat each attribute as a String and list names refer to JSON lists. Stick
to exactly these names!

• Refer to example_movie_avatar.json for an example.
[{ "url":"http://akas.imdb.com/title/tt0499549/?ref_=fn_ft_tt_1",

"title":"Avatar - Aufbruch nach Pandora (2009)",
"year":"2009",
"genreList":["Action","Adventure", "Fantasy", "Sci-Fi"], ...
}

]

Patrick Schäfer, Marc Bux: Information Retrieval, Exercises

4. Easy Queries

• You have to correctly implement (at least) three basic queries out of:
1. All-rounder: Determine all movies in which the director stars as an actor

(cast). Return the top ten matches sorted by decreasing IMDB rating.
2. Under the radar: Determine the top ten US-American movies until (including)

2015 that have made the biggest loss despite an IMDB score above
(excluding) 8.0, based on at least 1,000 votes. Here, loss is defined as
budget minus gross.

3. The pillars of storytelling: Determine all movies that contain both (sub-
)strings "kill" and "love" in their lowercase description (String.toLowerCase()).
Sort the results by the number of appearances of these strings and return the
top ten matches.

4. The red planet: Determine all movies of the Sci-Fi genre that mention "Mars"
in their description (case-aware!). List all found movies in ascending order of
publication (year).

5. Colossal failure: Determine all US-American movies with a duration beyond 2
hours, a budget beyond 1 million and an IMDB rating below 5.0. Sort results
by ascending IMDB rating.

Patrick Schäfer, Marc Bux: Information Retrieval, Exercises

4. Harder Queries (Aggregation & Join)

• You have to correctly implement (at least) two queries out of:
6. Uncreative writers: Determine the ten most frequent character names of all

times ordered by frequency of occurrence. Filter any name containing
"himself", "doctor", and "herself" from the result.

7. Workhorse: Provide a ranked list of the top ten most active actors (cast), i.e.,
those actors which have starred in most movies.

8. Must see: List the best rated movie of each year starting from 1990 until
(including) 2010 with more than 10,000 ratings. Order the movies by
increasing year.

9. Rotten Tomatoes: List the worst rated movie of each year starting from 1990
till (including) 2010 with an IMCB score larger than 0. Order the movies by
increasing year.

10. Magic Couples: Determine those couples that feature together in the most
movies. I.e., Adam Sandler and Allen Covert feature together in multiple
movies; Report the top 10 pairs of actors and sort the result by the number of
movies.

Patrick Schäfer, Marc Bux: Information Retrieval, Exercises

4. Optional: Custom Queries

• Come up with a fancy custom query.
• Give a text description of the query, the implementation

and the result.

Patrick Schäfer, Marc Bux: Information Retrieval, Exercises

Caveats

• Crawler:
– You must implement the JAVA class IMDBSpider.java, which reads

the movie titles from a JSON file and stores each movie into a
separate JSON file.

• Queries:
– You must implement five queries in IMDBQueries.java.
– Optional Custom Query: You can implement one fancy custom

query. Give a description of the query, source code and the result.
– A query counts as implemented if it is correct. So, implement more

than five to be sure.

• Your two jars must be ready to run on GRUENAU2 (Java 8)

Patrick Schäfer, Marc Bux: Information Retrieval, Exercises

Competition

• Queries should not only be correct but as fast as possible.
• While you have 500 movies, we will execute your queries

with 5000+ movies.

• Evaluation:
– A correctly implemented query.
– Bonus for faster implementation.

• We determine the best 5 teams.

Patrick Schäfer, Marc Bux: Information Retrieval, Exercises

• By Thursday, 17.11., 23:59 (midnight)
– Two-and-a-half weeks

• Send zipped assignment by mail to
buxmarcn@informatik.hu-berlin.de
and patrick.schaefer@hu-berlin.de

• Submission: JAVA source codes, libraries, and two
executable JARs
– IMDBSpider must be callable with

java -jar IMDBSpider.jar movies.json <moviesDir>
– IMDBQueries must be callable with

java -jar IMDBQueries.jar <moviesDir>

Deliverables

Patrick Schäfer, Marc Bux: Information Retrieval, Exercises

Presentation of Solutions

• You are be able to pick when and what you‘d like to
present (first-come-first-served):

Monday:
https://dudle.inf.tu-dresden.de/inforet_ue1/

Tuesday:
https://dudle.inf.tu-dresden.de/w2hvbhdi/

• Presentation has to be given on 21.11./22.11..

Patrick Schäfer, Marc Bux: Information Retrieval, Exercises

Next Week (Attendance Optional)

• Q/A session for assignment 1 (as every week).

• Live coding session. Getting you started with:
– Eclipse,
– JSON parsing,
– Opening URLs, and
– XPATH,
– Executable Jars.

