

Semesterprojekt Implementierung eines Brettspiels (inklusive computergesteuerter Spieler)

Wintersemester 16/17

Ticket to Ride: Concepts in Graph Theory

Patrick Schäfer Marc Bux patrick.schaefer@hu-berlin.de buxmarcn@informatik.hu-berlin.de

The Board Represents a Graph

Ticket to Ride: Concepts in Graph Theory

Ticket to Ride and Graph Theory

- G = (V,E), V=Cities, E = Railways.
- Each vertex of the graph represents one city in Europe.
- An edge connects two cities. Each edge has a colour and a length (cost).
- The graph has more edges than any player can claim.
- The set of cities and edges is a player's *edge-induced* subgraph.
- *Connected components:* Subgraphs don't have to be connected.
- Paths and Cycles
 - Determining whether a destination ticket has been met, is done by finding a path between two cities.
 - Creating cycles in the edge-induced subgraph does not increase coverage of cities and thus, does not help meeting destination tickets (but may block others).

Graph Algorithms

- Concepts known from: "Algorithmen und Datenstrukturen"
 - Graph representations: Adjacency List, Adjacency Matrix
 - Shortest paths: Dijkstra, Floyd Warshall
 - Graph traversal: BFS, DFS
 - Minimum Spanning Tree: Prim, Kruskal
 - Topological sorting of directed graphs.

Ticket to Ride Rules and their Concepts in Computer Science

- What is the best representation of the board?
 - Adjacency matrix or adjacency list?
- Given a destination ticket, what is the shortest path?
 - Shortest path: Dijkstra
- How to fulfil most destination tickets with the least amount of trains (given payers do not have enough train tokens to claim a spanning tree of the full graph)?
 - Minimum spanning tree on subgraph (Minimum Steiner tree)
- Calculating the final score:
 - List of routes claimed by a player
 - Lookup in graph data structure (adjacency matrix or adjacency list)
 - List of destination tickets fulfilled by a player.
 - Graph traversal: DFS / BFS
 - 10 point bonus is awarded to player with the longest route on the board.
 - Longest path in a tree / graph

P, NP, NP-hard, NP-complete

- Definition:
 - P is the set of **decision problems** that can be solved in polynomial time.
 - NP is the set of **decision problems** where we can **verify** a solution in polynomial time.
 - NP-hard: at least as hard as NP (using polynomial time reduction).
 - NP-complete: it is NP-hard and in NP.

What the world might look like...

Longest Simple Path

From the rulebook:

"Finally, give the 10 point bonus for the European Express to the player(s) who have the **Longest Continuous Path** on the board. When evaluating and comparing path lengths, only take into account continuous lines of plastic trains of the same color. A continuous path may include **loops, and pass through the same city several times**, but a given plastic train may never be used twice in the same continuous path. "

Acyclic Graph / Undirected Tree

Ticket to Ride: Concepts in Graph Theory

Acyclic Graph / Undirected Tree

Longest Simple Path

- There is an algorithm for finding the longest simple path in undirected trees using two Depth-First-Searches:
 - Start DFS from a random vertex v and find the farthest vertex v' away.
 - Now, start a DFS from v' to find the vertex v'' farthest away from it.
 This path is the longest path in the graph.

• Does this still work in a cyclic graph?

Cyclic, Undirected Graph

Reformulation

- Is there a path in the player's edge-induced subgraph, that visits all edges? => Euler Path (NP-hard)
- Finding the longest simple path in a cyclic graph is NP-hard. Thus, there is likely to be no polynomial time algorithm.
- There are approximate algorithms in polynomial time.
- For final scoring, we need the **exact length** of the longest path (not an approximation).
- Side note: finding the longest simple path in an undirected tree (acyclic graph) is in polynomial time.

A MST for Ticket to Ride

Minimum Spanning Tree (Forest)

- A spanning tree of the full graph would guarantee that any destination ticket is fulfilled.
- But payers do not have enough train tokens to claim a spanning tree of the full graph.
- Thus, the best strategy is to capture a minimum spanning tree or forest of a subset of vertices (based on the destination tickets).
- Steiner Tree / Forest: Given an undirected, weighted graph G=(V,E) and a subset of vertices V', referred to as terminals, we search the subgraph G' with minimum weight, that connects all terminals (and may include additional vertices).

Shortest Path on Destination Ticket

Ticket to Ride: Concepts in Graph Theory

Using Dijkstra...?

A Spanning Tree on the Subgraph...

A Spanning Tree on the Subgraph...

A Spanning Tree on the Subgraph...

NP-hardness

- We are dealing with NP-hard **optimization problems** [1]:
 - *"LONGEST PATH*: Given a non-negatively weighted graph *G* and two vertices *u* and *v*, what is the longest simple path from *u* to *v* in the graph? A path is *simple* if it visits each vertex at most once.,
 - *"STEINER TREE*: Given a weighted, undirected graph *G* with some of the vertices marked, what is the minimum-weight subtree of *G* that contains every marked vertex? If *every* vertex is marked, the minimum Steiner tree is just the minimum spanning tree; if exactly two vertices are marked, the minimum Steiner tree is just the shortest path between them."

[1] Garey and Johnsons, "Computers and Intractability: A Guide to the Theory of NP-Completeness"

Steiner Tree / Forest in Cyclic Graphs is NP-hard

- Steiner Tree optimization problem is NP-hard, thus there is likely to be no exact polynomial time algorithm.
- Naïve approach:

for each subset of nodes:// 2|V|-Subsetscompute the MST.// O(|E|+|V|log|v|)pick the subset with minimum costs.

- There are *approximation* algorithms with polynomial time, that have upper bound guarantees on the maximum cost.
- Finding a good algorithm is part of the AI-Challenge.

Literature

- 21 NP-Hard Problems: <u>http://web.engr.illinois.edu/~jeffe/teaching/algorithms/2009/</u> <u>notes/21-nphard.pdf</u>
- Taking Students Out for a Ride: Using a Board Game to Teach Graph Theory: <u>http://www.cs.xu.edu/csci390/13s/p367-</u> <u>lim.pdf</u>
- Garey and Johnsons, "Computers and Intractability: A Guide to the Theory of NP-Completeness"