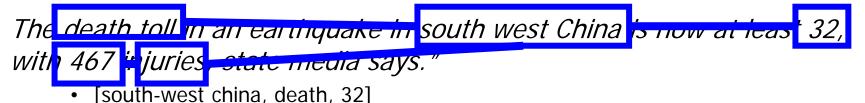


Text Analytics Relationship Extraction

- Relationship Extraction
- Approaches
 - Co-Occurrence
 - Pattern-Based
 - Classification-Based
- Case Studies
 - Damage reports after an earthquake
 - Protein-Protein-Interactions

- Very often, entities in a sentence are in a certain relationship to each other : Relationship extraction (RE)
 - Price of a product
 - CEO of a company
 - Who bought what?
 - Who talked to whom?
 - Of which band is this song?
 - Which proteins interact with which other proteins?
 - ...
- Usually, RE depends on pre-recognized entities
 - Can be modelled as joint inference problem

Z-100 sen erabinomannan extracted from Mycobacterium tuberculosis that has various immunomodulatory activities, such as the induction of interleukin 12, interferon gamma (IFN-gamma) and beta-chemokines. The effects of *Z-100* on human immunodeficiency virus type 1 (HIV-1) replication in human monocyte-derived macrophages (MDMs) are investigated in this paper. In MDMs, *Z-100* markedly suppressed the replication of not only macrophage-tropic (M-tropic) HIV-1 strain (HIV-1JR-CSF), but also HIV-1 pseudotypes that possessed amphotropic Moloney murine leukemia virus or vesicular stomatitis virus G envelopes *Z-100* v as found to infinite HIV-1 expression, even when added 24 h after infection. In addition, it substantially inhibited the expression of the pNL43lucDeltaenv ...



[south-west china, injury, 467]

What to Extract? Types of RE Problems

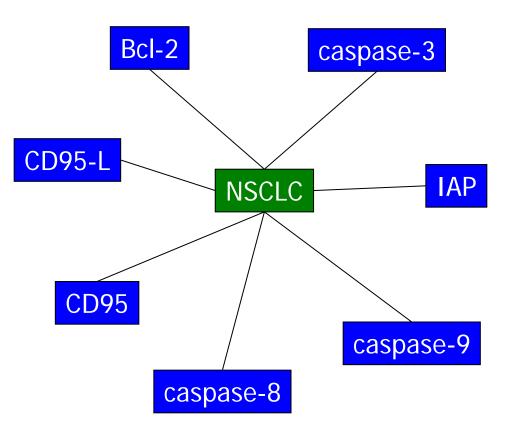
- Only the entities that have a certain relation
 - Output: Tuples (mostly pairs) of entities
 - Usually implicitly defined through training corpus
- Entity tuples and roles within relationship (direction)
 Who killed whom?
- Entity tuples and relationship type
 - Simplest: Verb of the sentence between entities
 - More advanced: Verb combining subject (E1) with object (E2)
 - But also nouns (interaction) and adjectives (interacting) can express relations
- Modifier of a relationship
 - Hedging: Might, could, should, not, ...

Is it Hard?

- Recognizing entities is difficult
 - Assume precision=0.8 for NER
 - Then, even a perfect binary RE has expected quality of only 64%
 - Currently large interest in joint inference (NER+RE in one step)
 - The higher the arity of the relationship, the worse
 - Often, RE is evaluated on a corpus pre-annotated with entities
- · Sentences may contain more than one relationship
- Relationships may span sentences (coreference resolution)
- Enumerations in sentences (and, or)
 - "Oracle bought MySQL and RDB, while MySQL previously bought Adabas, which was then re-bought by SAP"
 - "TF-a must up-regulate RAS or b-RAF to induce this behavior"

- Relationship Extraction
- Approaches
 - Co-Occurrence
 - Pattern-Based
 - Classification-Based
- Case Studies
 - Damage reports after an earthquake
 - Protein-Protein-Interactions

"NSCLC often becomes resistant to chemotherapy due to multiple defects found in expression of CD95-L, CD95 and members of the BcI-2 and IAP family, as well as caspase-8, -9 and -3 as examined by immunohistochemistry, ..."



Co-occurrence: 28 relationships, 21 false positives

- Appearing together in a context
 - A sentence, a paragraph, a window of n words
 - Larger context: Higher recall (even across sentences), lower precision
 - Best context size for a given relationship can be learned
- General, co-RE yields high recall yet poor precision
 - Problems with enumerations, nested structures, long sentences, ...
 - Completely agnostic to relationship type
- Improvement: Pre-filtering sentences for "type'ness"
 - For instance, filter by a set of verbs or trigger words
- A fine-tuned co-RE often is quite a challenging baseline

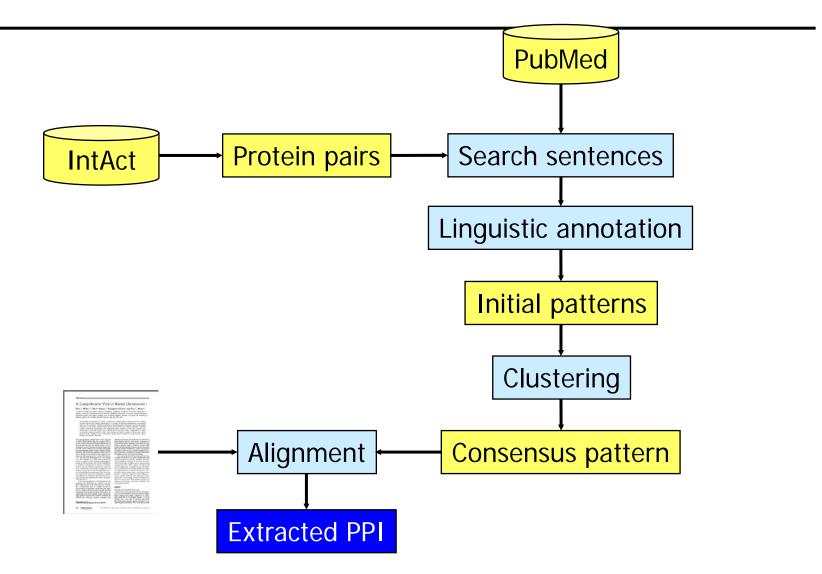
- Relationship Extraction
- Approaches
 - Co-Occurrence
 - Pattern-Based
 - Classification-Based
- Case Studies
 - Damage reports after an earthquake
 - Protein-Protein-Interactions

Pattern-Based Approaches to PPI Extraction

- Language pattern
 - Sentence
 - ... GENE regulates expression of GENE ...
 - ... GENE is strongly suppressed by GENE ...
 - Adding part-of-speech
 - ... GENE VRB NOM PRP GENE ...
 - ... GENE is ADJ VRB PRP GENE ...
- Different levels of generality
 - ... GENE .* VRB .* GENE
 - Simple rules, high recall, low precision
 - … GENE [is] ADJ? {regulat|suppres} NOM? PRP GENE
 - Complex rules, lower recall, higher precision
- Balanced precision/recall requires many rules

- Most systems work on hand-crafted sets of pattern
 - Hundreds of pattern
 - Enormous effort
 - Need to be created for any type of relationship
 - Protein-protein, gene-disease, disease-drug, ...
- One idea: Learn patterns from weakly labeled data
 - Semi-supervised learning

AliBaba Workflow (Hakenberg et al. 06, 07, 08, 09)



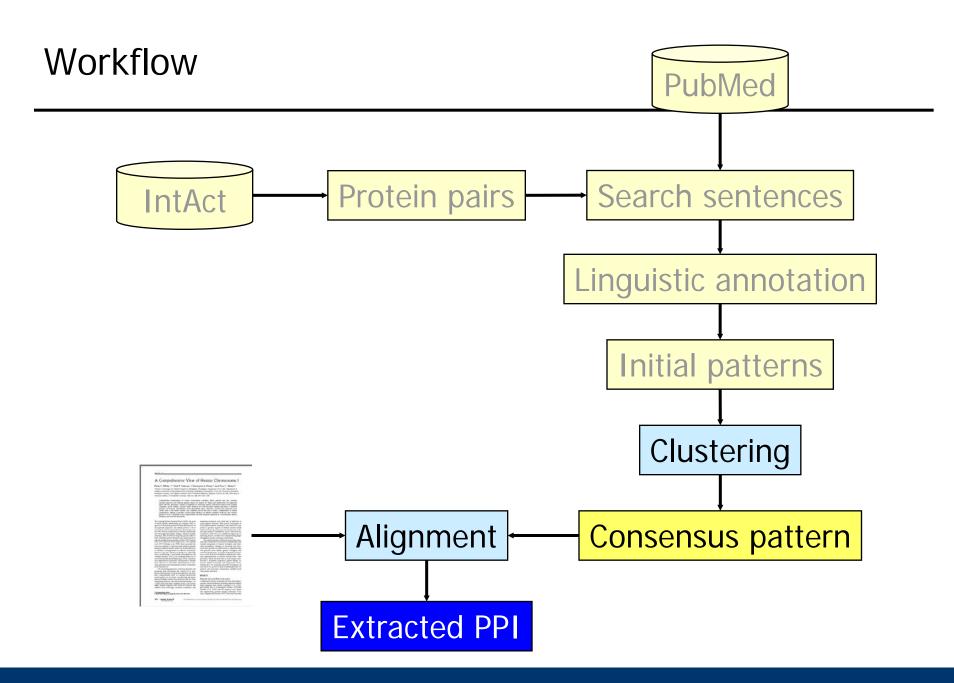
- Extract all pairs of proteins from IntAct
 - Only the names, not the evidence / links
 - Gold standard: These interactions are assumed to be real
- Find all sentences in PubMed
 - Pair of IntAct-proteins and "interaction word"
 - "... FADD immediately activates procaspase-8 ..."
- Extract core phrases
 - Width: Parameter
 - "...show that FADD immediately activates procaspase-8 during..."
- Annotate with linguistic information

• Multi-layered pattern

Original token	FADD	immediately	activates	procaspase-8
Class / POS	PTN	ADV	VRB	PTN
Word stem	PTN	immediat	activat	PTN

• Initial pattern set

- Highly specific
- Can be used immediately, but results in very low recall
- Generalization
 - Find clusters of similar patterns
 - For each cluster, generate consensus pattern

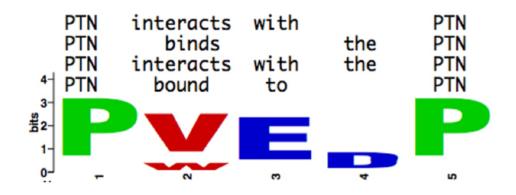


Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016

- Distance matrix for all pairs of initial patterns
- Hierarchical clustering
- Build consensus pattern using multiple sentence alignment

P_1	PTN	SYM	PTN	IVBD	PTN
P_2	PTN	CC	PTN	IVBD	PTN
P_3	PTN	SYM	PTN	IVB	PTN
P_4	PTN	CC	PTN	IVBD	PTN
P_5	PTN	CC	PTN	IVBD	PTN
P_c	$PTN_{5/5}$	$CC_{3/5} SYM_{2/5} $	$PTN_{5/5}$	$IVB_{1/5} IVBD_{4/5} $	$PTN_{5/5}$

Similarity of Language Patterns



• Sentence alignment

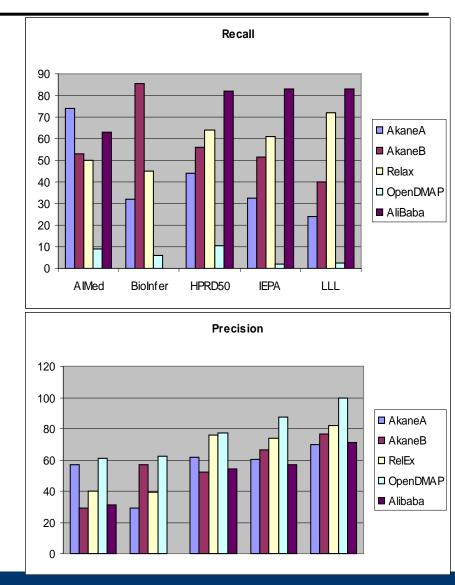
		NN	VBZ	DT	PTN	CC	PTN	IVBD	DT	PTN
	0	0	0	0 ĸ	0	0 🗙	0	0	0 K	0
PTN	0	0	0	0	4 🖈	0	4	0	0	4
CC	0	0	0	0 ĸ	0	5.6 🗙	0	0	0	0
PTN	0	0	0	0	4	0	9.6 🖈	0	0	0
IVBD	0	0	0	0 ĸ	0	0 ĸ	0	12.4 🗲	- 10.4 🖈	0
PTN	0	0	0	0	4	0	4	1.4^{\top}	т 1.4	14.4

- Three-layer end-free alignment (token, stem, POS)
- Solved by dynamic programming

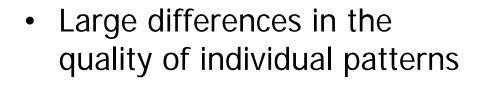
Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016

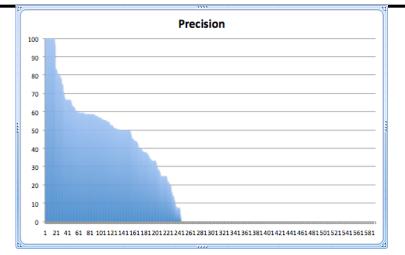
Tabelle mit Zahlen dazu, wie viele Pattern etc; es gab doch auch mal was für verchiedene Widths, <u>Kostenmatrizen etc.</u>

- Some results
 - AliBaba: Very good recall, acceptable precision
 - OpenDMAP: Very good precision, very low recall
 - RelEx: Best in F-measure
- Our advantage
 - Patterns are learned automatically
 - Simple tuning towards higher precision / higher recall
 - Adaptable to new problems

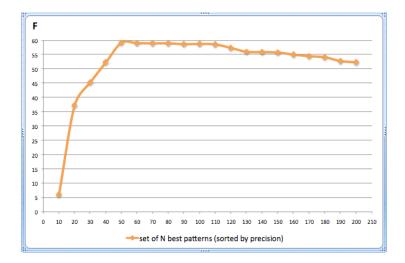


Good and Bad Patterns (BioNLP09)





Using only the best pattern

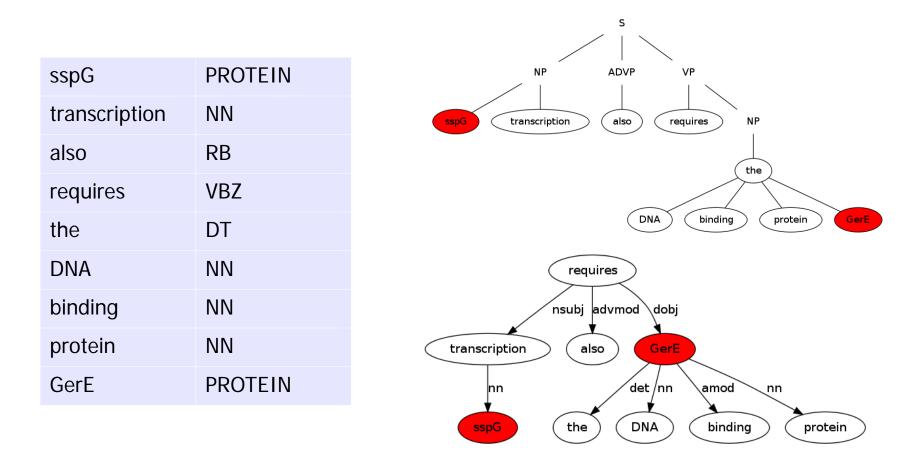


- Systems like AliBaba require a set of positive pairs as input
- These might not always be available in large quantities
 Or in satisfying quality
- Bootstrapping
 - Start with a small set of high quality pairs
 - Apply to corpus and rank all extracted relations by confidence
 - Add relations with highest confidence to the set of positive pairs
 - Systems: Dare [XUL08], SnowBall [AH00], TextRunner [BCS+07]
- The trick is the scoring of extracted data
 - Use confidence of the extraction algorithm, number of times a particular pair is extracted, background knowledge, ...
 - Choosing the wrong relationships creates more and more garbage
 - Semantic drift increases after each iteration

- Relationship Extraction
- Approaches
 - Co-Occurrence
 - Pattern-Based
 - Classification-Based
- Case Studies
 - Damage reports after an earthquake
 - Protein-Protein-Interactions

- Idea: Classify each pair of entities
 - Consider each entity pair (in a sentence) as an object
 - Compute a feature vector for this object
 - POS tags, distance, words, words in between, path in the dependency tree connecting the two, neighborhood, trigger words, ...
 - Learn a model from training data
 - Classify each object as having the relationship or not
- Any classification method can be used
- Finding the right features is essential
- As always in ML: Beware of overfitting

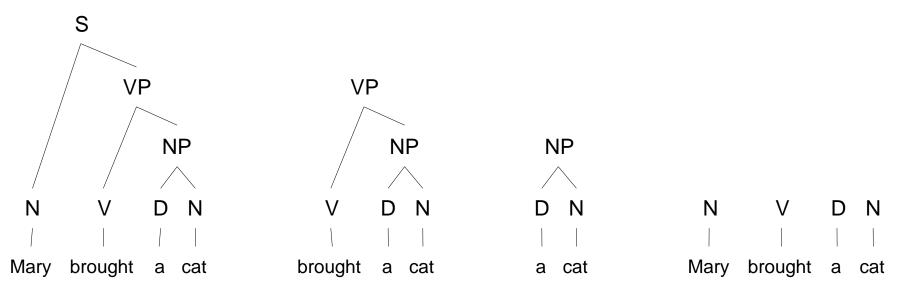
SsgG transcription also requires the DNA binding protein GerE



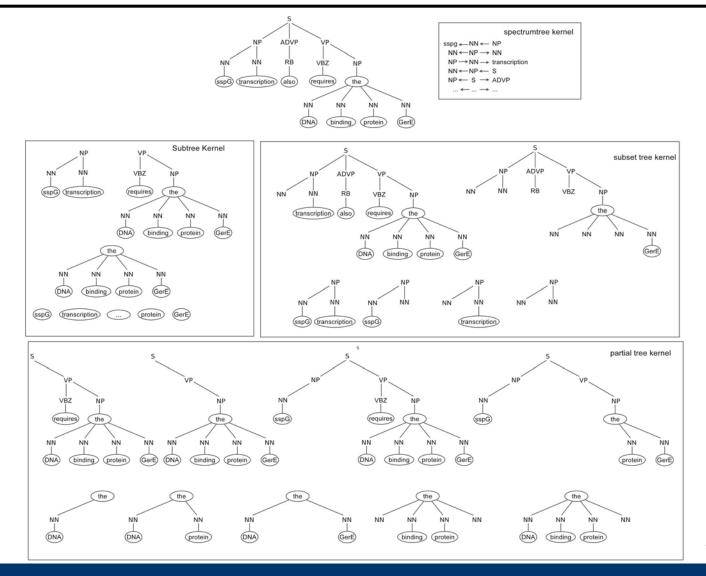
- How can we represent dependency trees in a feature vector such that similar trees lead to similar vectors?
- Elegant way: Kernel Trick
 - The learning problem in SVMs can be rewritten such that objects need not be explicitly described by features
 - Instead, one has to define a Kernel function computing the similarity of two objects
 - This function (and the object representations) is treated as a black box by the SVM
- We need a similarity measure for trees

Convolution Kernels

- General idea: Measure similarity of dependency trees in terms of common substructures
- One idea: All subtrees
 - Compute all subtrees of both objects, then use SET-similarity
- Alternatives: All subgraphs, all edges, all ...



Convolution Kernels - representations



Tikk et al. 2010

Ulf Leser: Maschinelle Sprachverarbeitung, Winter Semester 2015/2016

- Relationship Extraction
- Approaches
 - Co-Occurrence
 - Pattern-Based
 - Classification-Based
- Case Studies
 - Damage reports after an earthquake
 - Work by L. Döhling, partly based on S. Pietschmann
 - Protein-Protein-Interactions
 - Work by P. Thomas, D. Tikk, and I. Solt

Extracting n-Ary Relationships

- Option 1: Use co-occurrence
 - Whenever a sentence contains one entity of each requested type, extract the relationship
 - If for one type there are >1 entity: Chose closest (to what?)
 - Neglects grammar/semantic of sentences
 - If entities have a strong semantic relationship and are not highly ambiguous, this works quite well
- Option 2: Use n-ary patterns
- Option 3: Use classification
- Option 4: Map into many binary RE-problems
 - Compute binary RE's for each pair of the n-ary relationship
 - Generate n-ary relations (e.g. strategy of BioNLP'09 winning team)

Text Mining for the GFZ Earthquake Task Force

- Measures in case of an earthquake depend on the expected extend of damage
 - Here: Expected number of people injured / killed
- Early information typically is reported in news, but highly inconsistent and quickly changing
- Project: Find such information automatically
- Cast into a 5-ary RE problem
 - Who? (People, Students, ...)
 - How many? (many, some, 12, ten, ..)
 - What? (killed, trapped, injured, ...)
 - Negated? (not, ...)
 - Modifier for "how many"? (at least, more than, ...)

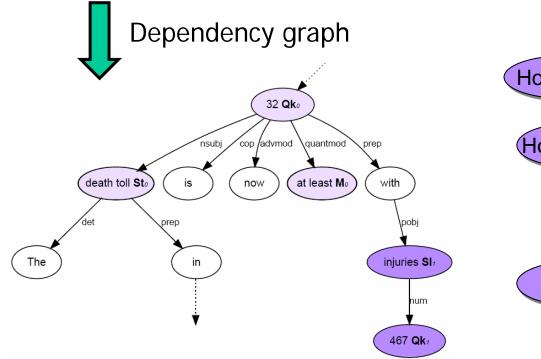
Example

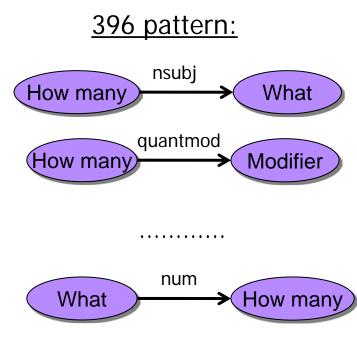
- "The death toll in an earthquake in south west China is now at least 32, with 467 injuries, media say."
 - [Who, How many, What, Negated, Injured]
 - [-, 32, death, -, "at least"]
 - [-, 467, injuries, -, -]

Approach

- Use word lists for Who? What? Negated? Modified?
- Use regular expression for "How many"?
 - Problem: Highly ambiguous, finds any number (problem for irrelevant texts)
- Learn paths in dependency trees between all pairs of entities from an annotated gold standard corpus
- Application
 - Identify all entities
 - Parse sentence
 - Extract paths
 - Match with learned paths
 - Extract binary relationships

The death toll in an earthquake in south west China is now at least 32, with 467 injuries, media say."

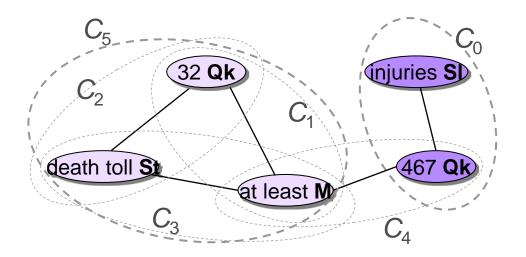




From Binary to 5-ary Relationships

Build graph representation from extracted binary relations
 – Find maximal cliques

The death toll in an earthquake in south west China is now at least 32, with 467 injuries, media say."



Many Further Tricks

		${\rm BestConfigP}$	BestConfigR	BestConfigF1	
IgnoreCa	se4NER	_	+	_	
UseStem4	4NER	_	+	_	
Depender	nzschema	Collapsed Basis, CCprocessed		Basis	
IgnoreCa	se4RE	*	* —		
UseStem4	UseStem4RE		+ –		
UsePOS4	UsePOS4RE		+	_	
IgnoreEn	titySubtype	+	+	_	
IgnoreDe	IgnoreDepDirection		+	+	
IgnoreDe	IgnoreDepType		+	+	
			RE		
	Р	R	F1	FP/TP/FN	
Standard Best Conford	2 · · · ·		;.568] .597[.527;.664]	/ /	
BestConfigP	.793[.715;.8	355] .563[.484	;.638] .658[.589;.722]	28/107/83	
$\operatorname{BestConfigR}$.523[.459;.8	586] .711[.629	;.781] .603[.541;.660]	123/135/55	
BestConfigF1	-		;.672] .673[.607;.732]	, ,	

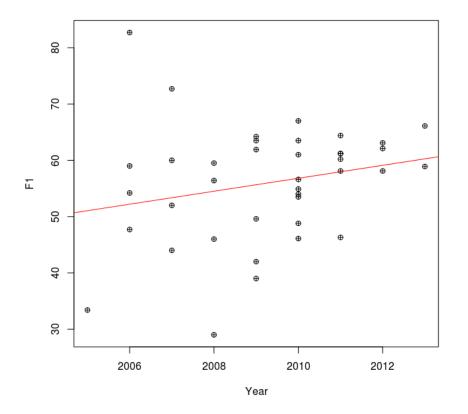
- Relationship Extraction
- Approaches
 - Co-Occurrence
 - Pattern-Based
 - Classification-Based
- Case Studies
 - Damage reports after an earthquake
 - Work by L. Döhling, partly based on S. Pietschmann
 - Protein-Protein-Interactions
 - Work by P. Thomas, D. Tikk, and I. Solt

Convolution Kernels for PPI: Many Proposals

- Collins, M. and Duffy, N. (2001). Convolution kernels for natural language.
- Vishwanathan, S., Smola, A. (2002): Fast kernels on strings and trees
- Moschitti, A. (2006): Efficient convolution kernels for dependency and constituent syntactic trees.
- Kuboyama, T. et al. (2007). A spectrum tree kernel.
- Erkan, G. et al. (2007). Semi-supervised classification for extracting protein interaction sentences using dependency parsing
- Giuliano, C et al. (2007). Kernel Methods for Semantic Relation Extraction
- Airola, A. et al. (2008). All-paths graph kernel for protein-protein interaction extraction
- Palaga, P (2009). Extracting Relations from Biomedical Texts Using Syntactic Information, Magisterarbeit, HU Berlin

. . .

• More than 60 publications for PPI extraction over last years



- Single method has different results on different corpora
 19% on average (Annotation guidelines and pos/neg ratio)
- Gold-standard corpora are differently interpreted
 - 951 to 1071 positive and 4026 to 5631 negative instances
 - Self-Interactions are sometimes ignored
- Directed / Undirected relations
- Entity blinding is important requisite for new interactions
 3% points increase without entity blinding (Drug-Interactions)
- Cross-Validation type?
 - Pairwise cross-validation leads to 18% points overestimation in F1

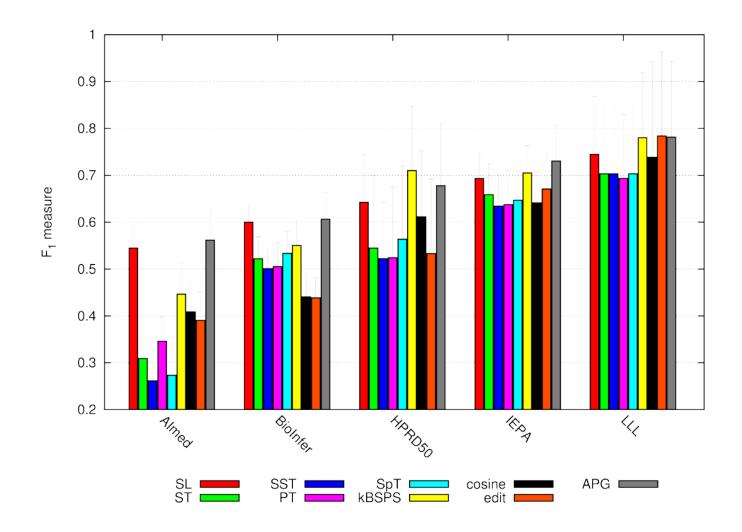
Based on Pyysalo et al. "Why Biomedical Relation Extraction Results are Incomparable and What to do about it"

- How to build averages in cross-validation
 - Microaveraging (accumulate TP,FN,FP) or Macroaveraging (average precision/recall over ten folds)
- Exhaustive cross-validation with high dimensional parameter space
 - Identifies performance "spikes"
 - Large effect especially on smaller corpora
 - Estimate optimal threshold on test set
 - Ideal: Use test-corpus only once (e.g. BioNLP09-ST)

Based on Pyysalo et al. "Why Biomedical Relation Extraction Results are Incomparable and What to do about it"

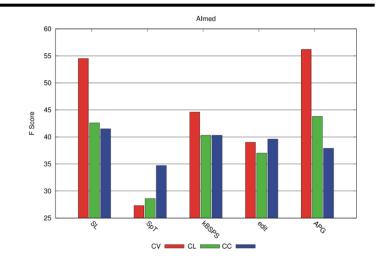
- Very difficult question
 - Different corpora, different evaluation schemes, different parsers, w/o protein identification, w/o parameter tuning, ...
- Reported results sometimes up to 90% F-measure
- Large-scale benchmark
 - 9 methods
 - 5 corpora
 - 3 evaluation schemes
 - Equal parser, equal treatment of NER, equal parameter tuning
- Bad news: "Real" performance remains unknown

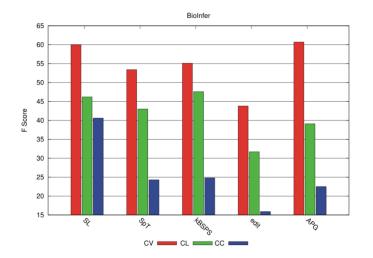
Cross-Validation (usual method)



But: Cross-Learning: ~10% drop in F1

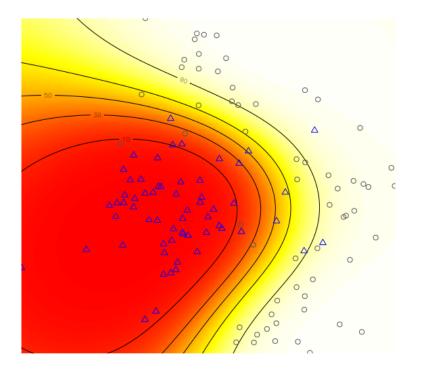
- CC probably overly hard
- CL: Best approximation of the real-case
- Some observations
 - APG generally best in CV setting, but not in CL / CC
 - SL on par with best methods, though using only POS tags
 - kBSP quite good on BioInfer, but not on AIMed
- In CL/CC, simple patternbased methods perform equally well

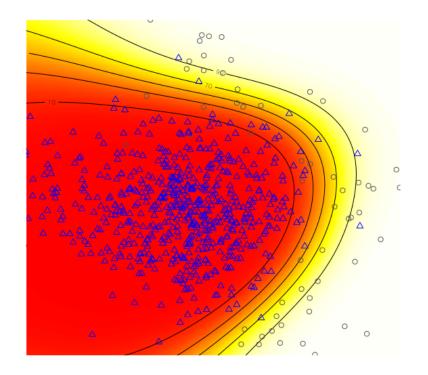




Classifier tend to predict majority class

- Sample from the same distribution
 - Balanced/Unbalanced data set and learn a classifier





- Remove presumably negative instances
 - Rule1: Two entities use the same mention
 - Rule2: Both entities have anti-possesive governors w.r.t. the relation (generated on training set)
 - Rule3: Entity2 is an abbreviation of Entity1
- Leads to:
 - Better balanced pos/neg ratio
 - Faster runtimes
 - Improved F1 for all five corpora

Chowdhury et al. 2012, "Impact of Less Skewed Distributions on Efficency and Effectiveness of Biomedical Relation Extraction"

Conclusions

- Unbiased evaluation of ML-based method reveals 5-20% performance drop compared to CV setting
- Highly-tuned ML-based methods not (much) better than "simple" pattern matching
- Large differences between corpora: Extrapolation of performance to new text is very questionable
- Dependency-tree based methods not (much) better than best ones using POS information
- Still: Three methods are best (APG, JSRE/SL, KBSP)
 And JSRE is by-far the fastest
- A large corpus for less biased evaluations is still missing
- Field should focus on more specific questions