Maschinelle Sprachverarbeitung

Text Classification

Ulf Leser
Content of this Lecture

• Classification
 – Approach, evaluation and overfitting
 – Examples
• Algorithms
• Case studies
Disclaimer

• This is not a course on Machine Learning
• Classification/clustering are presented from an application point-of-view
 - There exist more methods, much work on empirical comparisons, and a lot of work on analytically explaining the differences
• Experience: Choosing another classification / clustering method typically will not lead to dramatic improvements
 - Problems are either well classifiable or not
 - Also simple methods find the most discriminating properties
• More important: Choice of features
 - Requires creativity and must be adapted to every problem
 - We do not discuss feature selection
Text Classification

• Given a set D of docs and a set of classes C. A classifier is a function $f: D \rightarrow C$

• How does this work in general (supervised learning)?
 – Function v mapping a doc into vector of features (feature space)
 • For instance, its bag-of-words, possibly weighted by TF*IDF
 – Obtain a set S of docs with their classes (training data)
 – Find the characteristics of the docs in each class (model)
 • Which feature values / ranges are characteristic?
 • What combinations or properties are characteristic?
 – Encode the model in a classifier function f operating on the feature vector: $v: D \rightarrow V$, and $f: V \rightarrow C$
 – Classification: Compute $f(v(d))$
Applications of Text Classification

- Language identification
- Topic identification
- Spam detection
- Content-based message routing
- Named entity recognition (is this token part of a NE?)
- Relationship extraction (does this pair of NE have the relationship we search for?)
- Author identification (which plays were really written by Shakespeare?)
- ...
Good Classifiers

- Problem: Finding a good classifier
 - Assigning as many docs as possible to their correct class
 - Involves finding a proper feature space
- How do we know?
 - Use a (separate) gold standard data set
 - Use training data twice (beware of overfitting)
 - Learning the model
 - Evaluating the model
 - f is the better, the more docs it assigns to their correct classes
Overfitting

- Let \(S \) be a set of instances with their classes (training data)
- We can easily build a **perfect classifier for \(S \)**
 - \(f(d) = \{f(d'), \text{ if } \exists d' \in S \text{ with } d' = d; \text{ random otherwise}\} \)
 - \(f \) is perfect for any doc from \(S \)
- But: Produces random results for any new document
- Improvement
 - \(f(d) = \{f(d'), \text{ if } \exists d' \in S \text{ with } d' \sim d; \text{ random otherwise}\} \)
 - Improvement depends on \(|S|\) and definition of “\(\sim \)”
 - See kNN classifiers
- **Overfitting**
 - If the model strongly depends on \(S \), \(f \) overfits – it will only work well if all future docs are very similar to the docs in \(S \)
 - You cannot find overfitting when evaluation is performed on \(S \) only
Against Overfitting

- **f must generalize**: Capture features that are typical for all docs in D, not only for the docs in S
- Still, often we only have S for evaluation …
 - We need to extrapolate the quality of f to unknown docs
- **Usual method**: Cross-validation (leave-one-out, jack-knife)
 - Divide S into k disjoint partitions (typical: k=10)
 - Leave-one-out: k=|S|
 - Learn model on k-1 partitions and evaluate on the k’th
 - Perform k times, each time evaluating on another partition
 - Estimated quality on new docs = average performance over k runs
Problem 1: Information Leakage

• Developing a classifier is an iterative process
 - Define feature space
 - Evaluate performance using cross-validation
 - Perform error analysis, leading to others features
 - Iterate until satisfied with result

• In this process, you “sneak” into the data (during error analysis) you later will evaluate on
 - “Information leakage”: Information on eval data is used in training

• Solution
 - Reserve a portion P of S for evaluation
 - Perform iterative process only on S\P
 - Final evaluation on P; no more iterations
Problem 2: Biased S

- Very often, S is biased. Classical example:
 - Often, one class c’ (or some classes) is much less frequent than the other(s)
 - E.g. finding text written in dialect
 - To have enough instances of c’ in S, these are searched in D
 - Later, examples from other classes are added
 - But how many?
 - Fraction of c’ in S is much (?) higher than in D
 - I.e., than obtained by random sampling

- Solutions
 - Try to estimate fraction of c’ in D and produce stratified S
 - Very difficult and costly, often almost impossible
 - Because S would need to be very large
Content of this Lecture

- Classification
 - Approach, evaluation and overfitting
 - Examples
- Algorithms
- Case studies
A Simple Example

- Aggregated history of credit loss in a bank

<table>
<thead>
<tr>
<th>ID</th>
<th>Age</th>
<th>Income</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>1500</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>2000</td>
<td>Low</td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td>1500</td>
<td>High</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>2800</td>
<td>Low</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>3000</td>
<td>Low</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>6000</td>
<td>High</td>
</tr>
</tbody>
</table>

- Now we see a new person, 45 years old, 4000 Euro income
- What is his/her risk?
Regression

- Simple approach: Linear separation by line achieving the minimum squared error (regression)
- Use location relative to regression line as classifier
 - Bad method – regression does not take classes into account
 - But there are classifier based on regression
Performance on the Training Data

- Quality of predicting “high risk”
 - Precision = 2/2, Recall = 2/3, Accuracy = 5/6
- Assumptions: Linear problems, numerical attributes
Categorical Attributes

<table>
<thead>
<tr>
<th>ID</th>
<th>Age</th>
<th>Type of car</th>
<th>Risk of Accident</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>Family</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>Sports</td>
<td>High</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
<td>Sports</td>
<td>High</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>Family</td>
<td>Low</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>Truck</td>
<td>Low</td>
</tr>
</tbody>
</table>

- Assume this is analyzed by an insurance agent
- What will he/she infer?
 - Probably a **set of rules**, such as

    ```
    if age > 50 then risk = low
    elseif age < 25 then risk = high
    elseif car = sports then risk = high
    else risk = low
    ```
Decision Rules

<table>
<thead>
<tr>
<th>ID</th>
<th>Age</th>
<th>Type of car</th>
<th>Risk of Accident</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>Family</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>Sports</td>
<td>High</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
<td>Sports</td>
<td>High</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>Family</td>
<td>Low</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>Truck</td>
<td>Low</td>
</tr>
</tbody>
</table>

- Can we find less rules which, for this data set, result in the same classification quality?

 \[
 \begin{align*}
 \text{if} & \quad \text{age} > 50 & \quad \text{then} & \quad \text{risk} = \text{low} \\
 \text{elseif} & \quad \text{car} = \text{truck} & \quad \text{then} & \quad \text{risk} = \text{low} \\
 \text{else} & \quad & \quad \text{risk} = \text{high}
 \end{align*}
 \]
A Third Approach

<table>
<thead>
<tr>
<th>ID</th>
<th>Age</th>
<th>Type of car</th>
<th>Risk of Accident</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>Family</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>Sports</td>
<td>High</td>
</tr>
<tr>
<td>3</td>
<td>43</td>
<td>Sports</td>
<td>High</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>Family</td>
<td>Low</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>Truck</td>
<td>Low</td>
</tr>
</tbody>
</table>

- Why not:

If age=23 and car = family then risk = high
elseif age=17 and car = sports then risk = high
elseif age=43 and car = sports then risk = high
elseif age=68 and car = family then risk = low
elseif age=25 and car = truck then risk = low
else flip a coin
Overfitting - Again

• This was in instance of our “perfect classifier”
• We learn a model from a small sample of the real world
• Overfitting
 – If the model is too close to the training data, it performs perfect on the training data but learned any bias present in the training data
 – Thus, the rules do not generalize well
• Solution
 – Use an appropriate feature set and learning algorithm
 – Evaluate your method using cross-validation
Content of this Lecture

• Classification

• Algorithms
 – Nearest Neighbor
 – Naïve Bayes
 – Maximum Entropy
 – Linear Models and Support Vector Machines (SVM)

• Case studies
Classification Methods

• There are many different classification methods
 – k-nearest neighbor
 – Naïve Bayes, Bayesian Networks, Graphical models
 – Decision Trees and Rainforests
 – Maximum Entropy
 – Support Vector Machines
 – Perceptrons, Neural Networks
 – …

• Effectiveness of classification depends on problem, algorithm, feature selection method, sample, evaluation, …

• Differences when using different methods on the same data/representation are often astonishing small
Nearest Neighbor Classifiers

• Definition

Let S be a set of classified documents, m a distance function between any two documents, and d an unclassified doc.

- A nearest-neighbor (NN) classifier assigns to d the class of the nearest document in S wrt. m
- A k-nearest-neighbor (kNN) classifier assigns to d the most frequent class among the k nearest documents in S wrt. m

• Remark

- Very simple and effective, but slow
- We may weight the k nearest docs according to their distance to d
- We need to take care of multiple docs with the same distance
Illustration – Separating Hyperplanes

Voronoi diagram in 2D-space (for 1NN)

5NN
Properties

• Assumption: **Similar docs have the same class**
 - I.e.: The textual content of a doc determines the class
 - Depends a lot on the **text representation**
 - Depends a lot on the **distance function**

• kNN in general more robust than NN

• Example of **lazy learning**
 - Actually, there is no learning
 - Actually, there is no model

• Features often are defined implicitly through the **distance function**
Disadvantages

• **Major problem:** *Performance* (speed)
 - Need to compute the distance between d and all docs in S
 - This requires |S| applications of the distance function
 • Often the cosine of two 100K-dimensional vectors

• **Suggestions for speed-up**
 - Clustering: Merge groups of *close points in S* into a single representative
 • Linear speed-up (size of groups)
 - Use multidimensional index structure (see DBS-II)
 - Map into lower-dimensional space such that distances are preserved as good as possible
 • Metric embeddings, *dimensionality reduction*
 • Not this lecture
kNN for Text

• In the VSM world, kNN is implemented very easily using the tools we already learned
• How?
 – Use cosine distance of bag-of-word vectors as distance
 – The usual VSM query mechanism computes exactly the k nearest neighbors when d is used as query
 – Difference
 • $|d| >> |q|$: usually has many more keywords than a typical IR-query q
 • We might need other ways of optimizing “queries”
Content of this Lecture

• Classification
• Algorithms
 – Nearest Neighbor
 – Naïve Bayes
 – Maximum Entropy
 – Linear Models and Support Vector Machines (SVM)
• Case studies
Bayes’ Classification

• Uses **frequencies of feature values** in the different classes

• Given
 - Set S of docs and set of classes $C=\{c_1, c_2, \ldots c_m\}$
 - Docs are described as a set F of **discrete features**
 • Usually the presence/absence of terms in d

• We seek $p(c_i|d)$, the probability of a doc $d \in S$ being a member of class c_i

• d eventually is assigned to c_i with $\text{argmax } p(c_i|d)$

• Replace d with feature representation

$$p(c \mid d) = p(c \mid v(d)) = p(c \mid f_1[d], \ldots, f_n[d]) = p(c \mid t_1, \ldots, t_n)$$
Probabilities

- What we learn from the training data (MLE)
 - The a-priori probability $p(t)$ of every term t
 - How many docs from S have t?
 - The a-priori probability $p(c)$ of every class $c \in C$
 - How many docs in S are of class c?
 - The conditional probabilities $p(t|c)$ for term t being true in class c
 - Proportion of docs in c with term t among all docs in c
- Rephrase and use Bayes’ theorem

\[
p(c \mid t_1, \ldots, t_n) = \frac{p(t_1, \ldots, t_n \mid c) \times p(c)}{p(t_1, \ldots, t_n)} \approx p(t_1, \ldots, t_n \mid c) \times p(c)
\]
Naïve Bayes

- We have \(p(c \mid d) \approx p(t_1, \ldots, t_n \mid c) \ast p(c) \)
- The first term cannot be learned accurately with any reasonably large training set
 - There are \(2^n \) combinations of (binary) feature values
- „Naïve“ solution: Assume statistical independence of terms
- Then
 \[
 p(t_1, \ldots, t_n \mid c) = p(t_1 \mid c) \ast \ldots \ast p(t_n \mid c)
 \]
- Finally
 \[
 p(c \mid d) \approx p(c) \ast \prod_{i=1}^{n} p(t_i \mid c)
 \]
Properties

- Simple, robust, fast
- Needs **smoothing**: Avoid any probability to become zero
- Can be extended to **ranges of TF*IDF values** instead of binary features
 - Requires appropriate binning – more parameter
- Learning is simple, model is **compact** (O(|K|*|C|) space)
- Often used as **baseline** for other methods
- When we use the logarithm (produces equal ranking), we see that NB is a **log-linear classifier**

\[
p(c \mid d) \approx \log \left(p(c) \prod p(t_i \mid c) \right) \\
= \log(p(c)) + \sum \log(p(t_i \mid c))
\]
Feature Selection

• Good idea: Use only *subset of all features*
 - Faster, reduction of noise
• Simple method: Use those t where $p(t|c)$ show the *biggest differences* between the different classes
 - Needs to assess differences; e.g., entropy, information gain, …
• Numerous methods for *feature selection*
 - Finding the best features is not the same as finding the *best subset of features*
 - Overfitting is an issue: “Best features for S” ≠ “best features for D”
• Some methods benefit more than others
 - MaxEnt and SVM usually not much, Bayes usually a lot (think of redundant features)
Content of this Lecture

• Classification

• Algorithms
 – Nearest Neighbor
 – Naïve Bayes
 – Maximum Entropy
 – Linear Models and Support Vector Machines (SVM)

• Case studies
Discriminative versus Generative Models

• Naïve Bayes uses Bayes’ Theorem to estimate $p(c|d)$

$$p(c \mid t_1, \ldots, t_n) = \frac{p(t_1, \ldots, t_n \mid c) \ast p(c)}{p(t_1, \ldots, t_n)} \approx p(t_1, \ldots, t_n \mid c) \ast p(c)$$

• Approaches that estimate $p(d|c)$ are called generative
 - $p(d|c)$ is the probability of class c producing data d
 - Naïve Bayes is a generative model

• Approaches that directly estimate $p(c|d)$ are called discriminative
 - But: We only have a very small sample of the document space
 - Many models perform equally well on the training data
 - Generalization is very difficult
Example: Maximum Entropy (ME) Modeling

- Given a set of (binary) features derived from d, it directly learns conditional probabilities $p(c|d)$
- Since $p(c,d) = p(c|d) \cdot p(d)$ and $p(d)$ is the same for all c, we compute $p(c,d) \sim p(c|d)$
- Definition

 Let s_{ij} be the score of a feature i for doc d_j (such as TF*IDF of a token). We derive from s_{ij} a binary indicator function f_i

 $$f_i(d_j, c) = \begin{cases}
 1, & \text{if } s_{ij} > 0 \land c = c(d_j) \\
 0, & \text{otherwise}
 \end{cases}$$

 - $c(d_j)$: Class of d_j

- Remark
 - We will often call those indicator functions “features”, although they embed information about classes ("a feature in a class")
Classification with ME

• The ME approach models the joint probability $p(c,d)$ as

$$p(c, d) = \frac{1}{Z} \prod_{i=1}^{K} \alpha_{i,c}^{f_i(d)}$$

 - Z is a normalization constant to turn the scores into probabilities
 - The feature weights α_i are learned from the data
 - K is the number of features
 - This particular function is determined by optimization algorithm

• Application: Compute $p(c,d)$ for all c and return best class
Finding Feature Weights

• Problem: Learning optimal feature weights α_i
• Choose α_i such that probability of S given M is maximal

$$p(S \mid M) = \sum_{d \in S} p(c(d), d \mid M)$$

• Choice should consider dependencies between features
• Recall Naïve Bayes
 – Computes α-like values independently for each feature (rel freq)
 – Uses log-linear combination for classification
 – This only works well if statistical independence holds
 – For instance, using the same feature multiple times does influence a NB result
Maximum Entropy Principle

• Problem: There are usually many combinations of weights that may all give rise to the same maximal probability of \(S \)
• ME chooses the model with the largest entropy
 – ME tries to make as few assumptions as possible given the data
 – Abstract formulation: The training data leaves too much freedom. We want to choose \(M \) such that all “undetermined” probability mass is distributed equally
 – Such a distribution exists and is unique
 – Optimization needs to take this into account
Entropy of a Distribution

- Let F be a feature space and M be an assignment of probabilities to each feature s in F. The entropy of the probability distribution M is defined as

$$h(M) = -\sum_{s \in F} p(s \mid M) \log(p(s \mid M))$$

- Search M such that $P(S \mid M)$ is maximal and $h(M)$ is maximal
Example [NLTK, see http://nltk.googlecode.com/svn/trunk/doc/book/ch06.html]

- Assume we have 10 different classes A-J and no further knowledge. We want to classify a document d. Which probabilities should we assign to the classes?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>10%</td>
</tr>
<tr>
<td>(ii)</td>
<td>5%</td>
<td>15%</td>
<td>0%</td>
<td>30%</td>
<td>0%</td>
<td>8%</td>
<td>12%</td>
<td>0%</td>
<td>6%</td>
<td>24%</td>
</tr>
<tr>
<td>(iii)</td>
<td>0%</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

- Model (i) does not model more than we know
- Model (i) also has maximal entropy
Example continued

- We learn that A is true in 55% of all cases. Which model do you chose?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>(iv)</td>
<td>55%</td>
<td>45%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>(v)</td>
<td>55%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>(vi)</td>
<td>55%</td>
<td>3%</td>
<td>1%</td>
<td>2%</td>
<td>9%</td>
<td>5%</td>
<td>0%</td>
<td>25%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

- Model (v) also has **maximal entropy** under all models that incorporate the knowledge about A
Example continued

- We additionally learn that if the word “up” appears in a document, then there is an 80% chance that A or C are true. Furthermore, “up” is contained in 10% of the docs.

- This would result in the following model
 - We need to introduce features
 - The 55% a-priori chance for A still holds

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>+up</td>
<td>5.1%</td>
<td>0.25%</td>
<td>2.9%</td>
<td>0.25%</td>
<td>0.25%</td>
<td>0.25%</td>
<td>0.25%</td>
<td>0.25%</td>
<td>0.25%</td>
<td>0.25%</td>
</tr>
<tr>
<td>-up</td>
<td>49.9%</td>
<td>4.46%</td>
<td>4.46%</td>
<td>4.46%</td>
<td>4.46%</td>
<td>4.46%</td>
<td>4.46%</td>
<td>4.46%</td>
<td>4.46%</td>
<td>4.46%</td>
</tr>
</tbody>
</table>

- Things get **complicated** if we have >100k features
Example 2 [Pix, Stockschläder, WS07/08]

- Assume we count occurrences of “has blue eyes” and “is left-handed” among a population of tamarins
- We observe $p(\text{eye})=1/3$ and $p(\text{left})=1/3$
- What is the joint probability $p(\text{eye, left})$ of blue-eyed, left-handed tamarins?
 - We don’t know
 - It must be $0 \leq p(\text{eye, blue}) \leq \min(p(\text{eye}), p(\text{left})) = 1/3$
- Four cases

<table>
<thead>
<tr>
<th>$p(\ldots, \ldots)$</th>
<th>left-handed</th>
<th>not left-handed</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue-eyed</td>
<td>x</td>
<td>$1/3-x$</td>
<td>$1/3$</td>
</tr>
<tr>
<td>not blue-eyed</td>
<td>$1/3-x$</td>
<td>$1-2/3+x$</td>
<td>$2/3$</td>
</tr>
<tr>
<td>sum</td>
<td>$1/3$</td>
<td>$2/3$</td>
<td>1</td>
</tr>
</tbody>
</table>
Maximizing Entropy

- The **entropy of the joint distribution** \(M \) is

\[
h(M) = -\sum_{i=1}^{4} p(x, y) \log(p(x, y))
\]

- The value is maximal for \(\frac{dH}{dx} = 0 \)
- Computing the first derivative and solving the equation leads to \(x = 1/9 \)
 - Which, in this case, is the same as assuming independence, but this is not generally the case
- In general, finding a solution in **this analytical way** is not possible
Generalized Iterative Scaling (idea)

- No analytical solution to the general optimization problem exists
- **Generalized Iterative Scaling** to find optimal α_i
 - Iterative procedure finding the optimal solution
 - Start from a *random guess* of all weights and iteratively redistribute probability mass until convergence to a optimum for $p(S|M)$ under $h(M)$ constraint
 - See [MS99] for the algorithm
- Problem: Usually *converges very slowly*
- Several improvements are known
 - Improved Iterative Scaling
 - Conjugate Gradient Descent
Properties of Maximum Entropy Classifiers

• In general, ME outperforms NB
• ME **does not assume independence** of features
 – Learning of feature weights always considers **entire distribution**
 – Two highly correlated features will get only half of the weight as if there was only one feature
• Very popular in statistical NLP
 – Some of the **best POS-tagger** are ME-based
 – Some of the best NER systems are ME-based
• Several extensions
 – Maximum Entropy Markov Models
 – Conditional Random Fields
Content of this Lecture

• Classification
• Algorithms
 – Nearest Neighbor
 – Naïve Bayes
 – Maximum Entropy
 – Support Vector Machines (SVM)
• Case studies
Class of Linear Classifiers

- Many common classifiers are (log-)linear classifiers
 - Naïve Bayes, Perceptron, Linear and Logistic Regression, Maximum Entropy, Support Vector Machines
- If applied on a binary classification problem, all these methods somehow compute a hyperplane which (hopefully) separates the two classes
- Despite similarity, noticeable performance differences exist
 - Which feature space is used?
 - Which of the infinite number of possible hyperplanes is chosen?
 - How are non-linear-separable data sets handled?
- Experience: Classifiers more powerful than linear often don’t perform better (on text)
NB and Regression

- **Regression** computes a separating hyperplane using error minimization.

- If we assume **binary Naïve Bayes**, we may compute

\[
p(c \mid d) \approx \log(p(c)) + \sum \log(p(t_i \mid c))
\]
\[
= a + \sum b_i \cdot TF_i
\]

Linear hyperplane; value > 0 gives c, value < 0 gives $\neg c$
ME is a Log-Linear Model

\[
p(c, d) = \frac{1}{Z} \prod_{i=1}^{K} \alpha_i^{f_i(d, c)} \approx \log \left(\frac{1}{Z} \right) + \sum_{i=1}^{K} f_i(d, c) \cdot \alpha_i
\]
Text = High Dimensional Data

- High dimensionality: 100k+ features
- Sparsity: Feature values are almost all zero
- Most document pairs are very far apart (i.e., not strictly orthogonal, but only share very common words)
- Consequence: Most document sets are well separable
 - This is part of why linear classifiers are quite successful in this domain
- The trick is more of finding the “right” separating hyperplane instead of just finding (any) one
Linear Classifiers (2D)

- **Hyperplane** separating classes in high dimensional space
- But which?

Quelle: Xiaojin Zhu, SVM-cs540
Support Vector Machines (sketch)

- SVMs: Hyperplane which maximizes the margin
 - I.e., is as far away from any data point as possible
 - Cast in a linear optimization problem and solved efficiently
 - Classification only depends on support vectors – efficient
 - Points most closest to hyperplane
 - Minimizes a particular type of error
Kernel Trick: Problems not Linearly Separable

- Map data into an even higher dimensional space
- Not-linearly separable sets may become linearly separable
- Doing this efficiently requires a good deal of work
 - The “kernel trick”
Properties of SVM

- **State-of-the-art** in text classification
- Often requires long training time
- Classification is **rather fast**
 - Only distance to hyperplane is needed
 - Hyperplane is defined by only few vectors (**support vectors**)
- SVM are quite good “as is”, but tuning possible
 - Kernel function, biased margins, …
- Several free implementations exist: SVMlight, libSVM, …
Content of this Lecture

• Classification
• Algorithms
• Case studies
 – Topic classification
 – Spam filtering
Topic Classification [Rutsch et al., 2005]

- Find publications treating the molecular basis of hereditary diseases
- Pure key word search generates too many results
 - “Asthma”: 84 884 hits
 - Asthma and cats, factors inducing asthma, treatment, …
 - “Wilson disease”: 4552 hits
 - Including all publications from doctors named Wilson
- Pure key word search does not cope with synonyms
Idea

• Learn what is typical for a paper treating molecular basis of diseases from examples
 – 25 hereditary diseases
 – 20 abstracts for each disease
• We call this “typical” a model of the data
• Models are learned using some method

• Classification: Given a new text, find the model which fits best and predict the associated class (disease)

• What can we learn from 20 documents?
Complete Workflow

OMIM-Datenbank → Diseases and training documents

Training set:
25 diseases, a 15 docs

Test set:
25 diseases, a 5 docs

Tuning

Training

Classification

Evaluation
Results (Nearest-Centroid Classifier)

- Configurations (y-axis)
 - Stemming: yes/no
 - Stop words: 0, 100, 1000, 10000
 - Different forms of tokenization
- Best: No stemming, 10.000 stop words
Results with Section Weighting

- Use different weights for terms depending on the section they appear in
 - Introduction, results, material and methods, discussion, …
Influence of Stemming

<table>
<thead>
<tr>
<th></th>
<th>Mit stemmer</th>
<th>Ohne Stemmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nomen und Verben</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>Precision</td>
<td>61,00</td>
<td>63,07</td>
</tr>
<tr>
<td>Recall</td>
<td>59,29</td>
<td>60,51</td>
</tr>
<tr>
<td>F-Measure</td>
<td>60,13</td>
<td>61,76</td>
</tr>
</tbody>
</table>
Content of this Lecture

- Classification
- Algorithms
- Case studies
 - Topic classification
 - Spam filtering

Thanks to: Conrad Plake, “Vi@gra and Co.: Approaches to E-Mail Spam Detection”, Dresden, December 2010
Spam

- Spam = Unsolicited bulk email
- Old „problem“: 1978 first spams for advertisement
- Estimate: >95% of all mails are spam
- Many important issues not covered here
 - Filtering at provider, botnets, DNS filtering with black / gray / white lists, using further metadata (attachments, language, embedded images, n# of addressees, …) etc.
 - Legal issues
SPAM Detection as a Classification Task

- **Content-based** SPAM filtering
- Task: Given the body of an email – classify as SPAM or not
- Difficulties
 - Highly unbalanced classes (97% Spam)
 - *Spammer react* on every new trick – an arms race
 - Topics change over time
- Baseline approach: **Naïve Bayes on VSM**
 - Implemented in Thunderbird and MS-Outlook
 - Fast learning, *iterative learning*, relatively fast classification
 - Using TF, TF-IDF, Information Gain, …
 - Stemming (mixed reports)
 - Stop-Word removal (seems to help)
Many Further Suggestions

- Rule learning [Cohen, 1996]
- k-Nearest-Neighbors [Androutsopoulos et al., 2000]
- SVM [Kolcz/Alspector, 2001]
- Decision trees [Carreras/Marquez, 2001]
- Centroid-based [Soonthornphisaj et al., 2002]
- Artificial Neural Networks [Clark et al., 2003]
- Logistic regression [Goodman/Yih, 2006]
- Maximum Entropy Models
- …

Source: Blanzieri and Bryl, 2009
Measuring Performance

- We so far always assumed that a **FP is as bad as a FN**
 - Inherent in F-measure
- Is this true for Spam?
 -Missing a non-spam mail (FP) usually is perceived as much more severe than accidentally reading a spam mail (FN)
- Performance with growing feature sets and \(c(\text{FP}) = 9 \times c(\text{FN}) \)
Problem Solved?

• Tricking a Spam filter
 – False feedback by malicious users (for global filters)
 – Bayesian attack: add “good” words
 – Change orthography (e.g., viaagra, vi@gra)
 – Tokenization attack (e.g., free -> f r e e)
 – Image spam (already >30%)

• Concept drift
 – Spam topics change over time
 – Filters need to adapt
CEAS 2008 Challenge: Active Learning Task

- **CEAS**: Conference on Email and Anti-Spam
- **Active Learning**
 - Systems selected up to 1000 mails
 - Selection using score with pre-learned model
 - Classes of these were given
 - Simulates a system which asks a user if uncertain
- **143,000 mails**

<table>
<thead>
<tr>
<th>Name</th>
<th>Spam Caught %</th>
<th>Blocked Ham %</th>
<th>1-AUC %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic Regression + Active Learning</td>
<td>99.92</td>
<td>0.12</td>
<td>0.0033</td>
</tr>
<tr>
<td>Online SVM (TREC07-tftS) - Entry 1</td>
<td>98.65</td>
<td>0.08</td>
<td>0.0250</td>
</tr>
<tr>
<td>Online SVM (TREC07-tftS) - Entry 3</td>
<td>98.65</td>
<td>0.07</td>
<td>0.0257</td>
</tr>
<tr>
<td>Heilongjiang Institute of Technology - Entry 3</td>
<td>98.66</td>
<td>0.14</td>
<td>0.0303</td>
</tr>
<tr>
<td>Online SVM (TREC07-tftS) - Entry 2</td>
<td>98.61</td>
<td>0.07</td>
<td>0.0331</td>
</tr>
<tr>
<td>Heilongjiang Institute of Technology - Entry 2</td>
<td>98.64</td>
<td>0.19</td>
<td>0.0557</td>
</tr>
<tr>
<td>PPM Compression (TREC07-ijspmm)</td>
<td>94.28</td>
<td>0.01</td>
<td>0.1031</td>
</tr>
<tr>
<td>Communication and Computer Network Lab</td>
<td>99.98</td>
<td>27.55</td>
<td>0.1500</td>
</tr>
<tr>
<td>(South China Univ. of Technology) - Entry 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Markov Compression (TREC07-wat2)</td>
<td>98.11</td>
<td>0.34</td>
<td>0.2988</td>
</tr>
<tr>
<td>Communication and Computer Network Lab</td>
<td>99.88</td>
<td>25.53</td>
<td>0.5234</td>
</tr>
<tr>
<td>(South China Univ. of Technology) - Entry 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF (Igor Assis Braga) - Entry 3</td>
<td>72.57</td>
<td>0.01</td>
<td>1.4495</td>
</tr>
<tr>
<td>IGF (Igor Assis Braga) - Entry 2</td>
<td>80.59</td>
<td>0.01</td>
<td>8.9047</td>
</tr>
<tr>
<td>Kosmopoulos Aris - Entry 2</td>
<td>81.84</td>
<td>51.14</td>
<td>27.1210</td>
</tr>
<tr>
<td>Kosmopoulos Aris - Entry 1</td>
<td>86.20</td>
<td>57.20</td>
<td>28.7998</td>
</tr>
</tbody>
</table>