

Maschinelle Sprachverarbeitung

Parsing with Probabilistic Context-Free Grammar

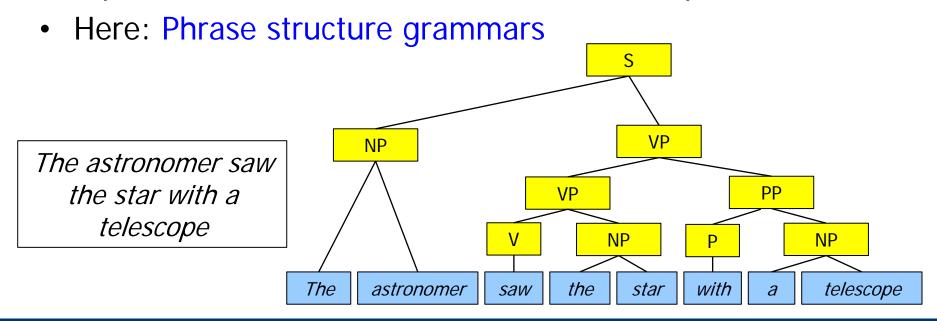
Ulf Leser

Content of this Lecture

- Phrase-Structure Parse Trees
- Probabilistic Context-Free Grammars
- Parsing with PCFG
- Other Issues in Parsing

Parsing Sentences

- POS tagging studies the plain sequence of words in a sentence
- But sentences have more and non-consecutive structures
- Plenty of linguistic theories exist about the nature and representation of these structures / units / phrases / ...

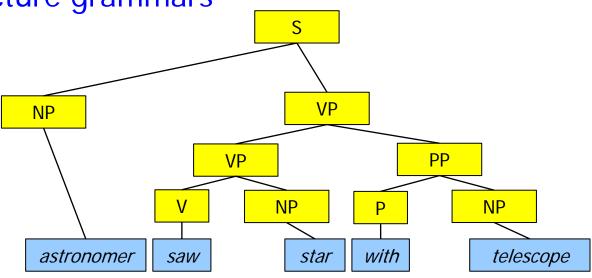


Parsing Sentences

- POS tagging studies the plain sequence of words in a sentence
- But sentences have more and non-consecutive structures
- Plenty of linguistic theories exist about the nature and representation of these structures / units / phrases / ...

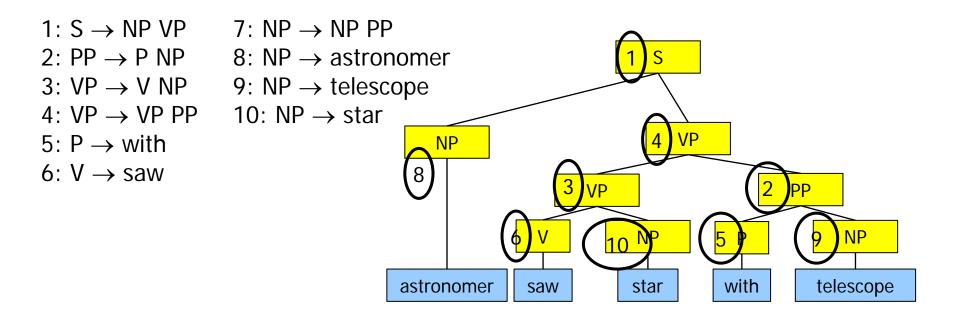
Here: Phrase structure grammars

The astronomer saw the star with a telescope

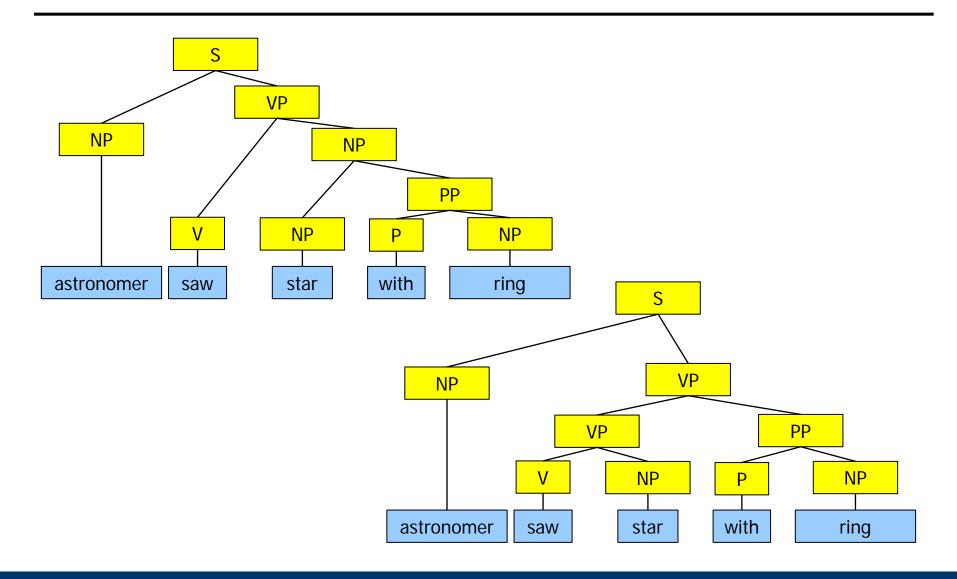


Phrase Structure Grammar

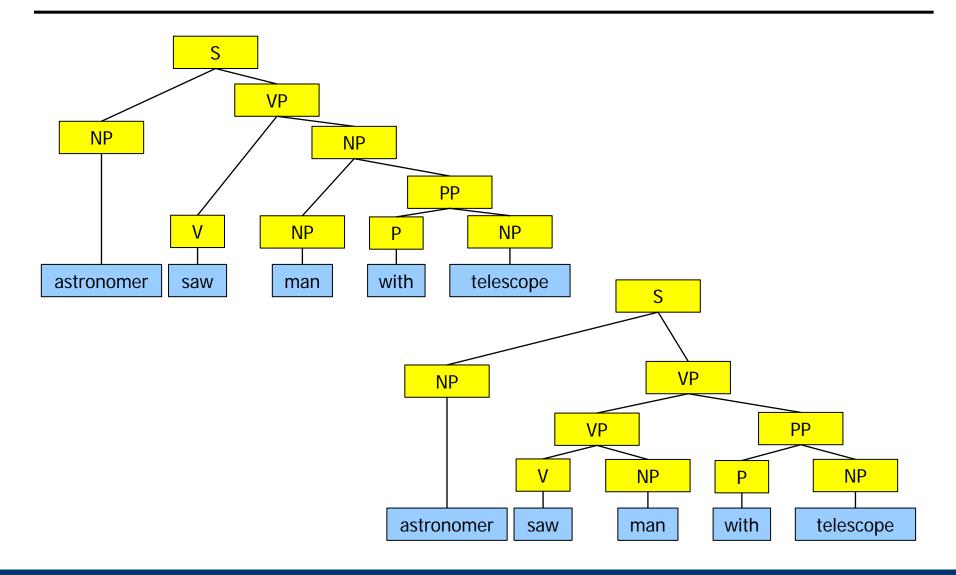
- Builds on assumptions
 - Sentences consist of nested structures
 - There is a fixed set of different structures (phrase types)
 - Nesting can be described by a context-free grammar



Ambiguity?

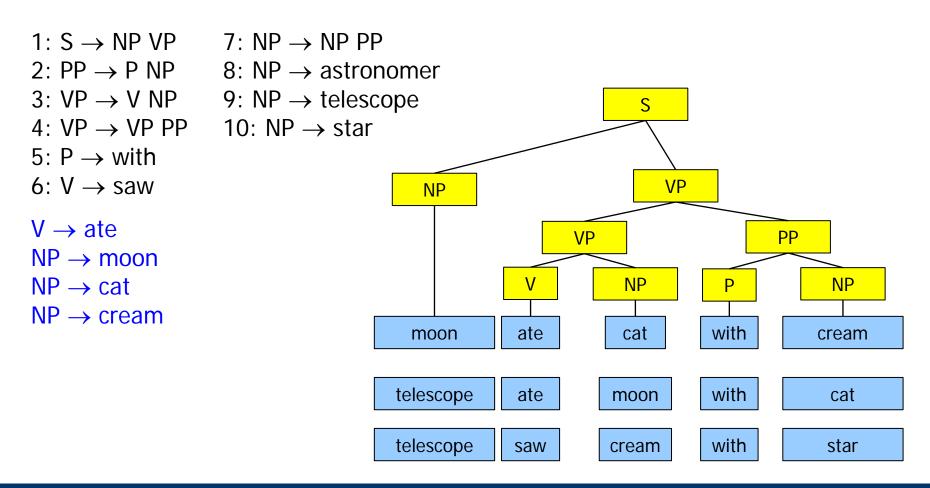


Problem 1: Ambiguity!



Problem 2: Syntax versus Semantics

Phrase structure grammars only capture syntax



Content of this Lecture

- Phrase-Structure Parse Trees
- Probabilistic Context-Free Grammars
- Parsing with PCFG
- Other Issues in Parsing

Probabilistic Context-Free Grammars (PCFG)

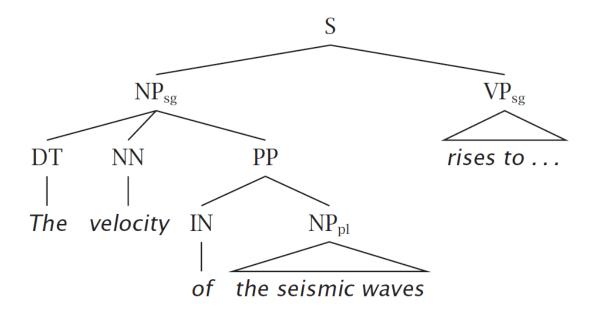
- Also called Stochastic Context Free Grammars
- Idea: Context free grammars by transition probabilities
 - Every rule gets a non-zero probability of firing
 - Grammar still recognizes the same language
 - But every parse can be assigned a probability

Usages

- Find parse with highest probability ("true" meaning)
- Detect ambiguous sentences (>1 parses with similar probability)
- What is the overall probability of a sentence given a grammar
 - Sum of the probabilities of all derivations producing the sentence
- Language models: Predict most probable next token in an incomplete sentence which is allowed by the grammar rules

POS Tagging versus Parsing

- The velocity of the seismic waves rises to ...
- Difficult for a POS tagger: waves/Plural rises/Singular
- Simple for a PCFG



More Formal

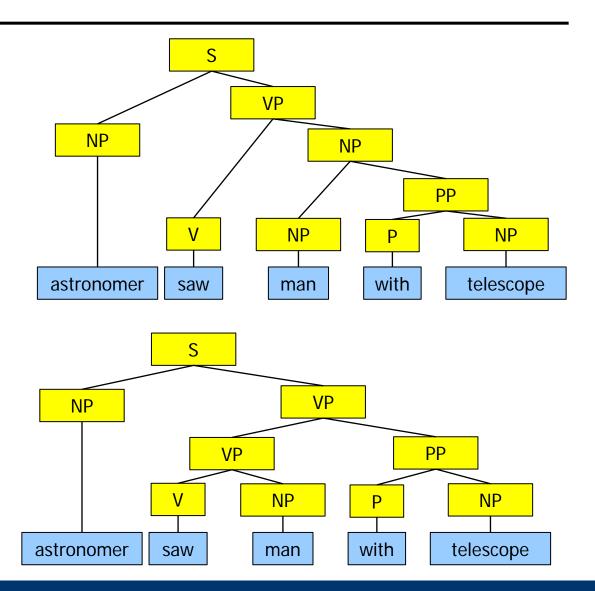
Definition

A PCFG if a 5-tuple (W, N, S, R, p) with

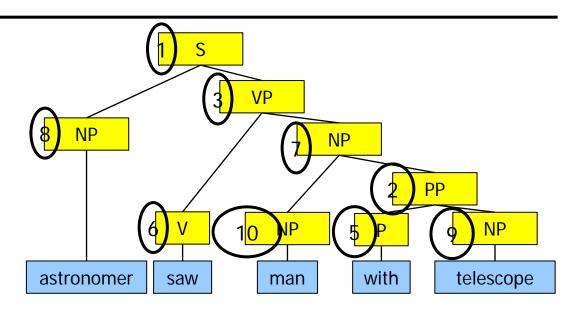
- W is a set of terminals (words) $w_1, w_2, ...$
- N is a set of non-terminals (phrase types) $N_1, N_2, ...$
- S is a designated start symbol
- R is a set of rules $\langle N_i \rightarrow \varphi \rangle$
 - where φ is a sequence of terminals and or non terminals
- p is a function assigning a non-zero probability to every rule such that

$$\forall i: \sum_{j} p(N_i \to \varphi_j) = 1$$

Rules	р
1: $S \rightarrow NP VP$	1,00
2: $PP \rightarrow P NP$	1,00
$3: VP \rightarrow V NP$	0,30
4: $VP \rightarrow VP PP$	0,70
5: $P \rightarrow with$	1,00
6: $V \rightarrow saw$	1,00
7: $NP \rightarrow NP PP$	0,80
8: NP → astronomer	0,10
9: NP → telescope	0,05
10: NP \rightarrow man	0,05



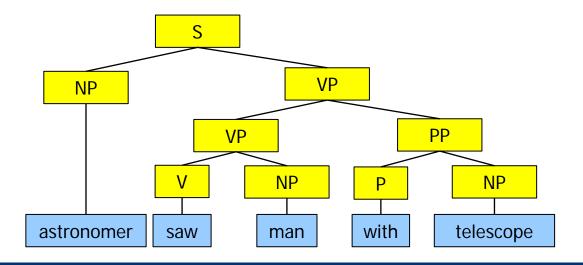
1: $S \rightarrow NP VP$	1,00
2: $PP \rightarrow P NP$	1,00
$3: VP \rightarrow V NP$	0,30
4: $VP \rightarrow VP PP$	0,70
5: $P \rightarrow with$	1,00
6: V → saw	1,00
7: $NP \rightarrow NP PP$	0,80
8: NP \rightarrow astronomer	0,10
9: NP → telescope	0,05
10: NP \rightarrow man	0,05



$$p(t_1) = 1 *0,1*0,3*1*0,8*0,05*1*1*0,05 = 0,0006$$

1: $S \rightarrow NP VP$	1,00
2: $PP \rightarrow P NP$	1,00
$3: VP \rightarrow V NP$	0,30
4: $VP \rightarrow VP PP$	0,70
5: $P \rightarrow with$	1,00
6: V → saw	1,00
7: $NP \rightarrow NP PP$	0,80
8: NP → astronomer	0,10
9: NP → telescope	0,05
10: NP \rightarrow man	0,05

$$p(t_2) = 1*0,1*0,7*0,3*1*0,05*1*1*0,05 = 0,000525$$



Implicit Assumptions

- Context-free: Probability of a derivation of a subtree under non-terminal N is independent of anything else in the tree
 - Above N, left of N, right of N
- Place-invariant: Probability of a given rule r is the same anywhere in the tree
 - Probability of a subtree is independent of its position in the sentence
- Semantic-unaware: Probability of terminals do not depend on the co-occurring terminals in the sentence
 - Semantic validity is not considered

Usefulness (of a good PCFG)

- Tri-gram models are the better language models
 - Work at word level conditional probabilities of word sequences
- PCFG are a step towards resolving ambiguity, but not a solution due to lack of semantics
- PCFG can produce robust parsers
 - When learned on a corpus with a few, rare errors, these are cast into rules with low probability
- Have some implicit bias (work-arounds known)
 - E.g. small trees get higher probabilities
- State-of-the-art parser combine PCFG with additional formalized knowledge

Three Issues

- Given a PCFG G and a sentence s∈L(G)
 - Issue 1: Decoding (or parsing): Which chain of rules (derivation) from G produced s with the highest probability?
 - Issue 2: Evaluation: What is the overall probability of s given G?
- Given a context free grammar G' and a set of sentences S with their derivation in G'
 - Issue 3: Learning: Which PCFG G with the same rule set as G' produces S with the highest probability?
 - We make our life simple: (1) G' is given, (2) sentences are parsed
 - Removing assumption (2) leads to an EM algorithm, removing (1) is hard (structure learning)
- Very close relationship to the same problems in HMMs

Chomsky Normal Form

- We only consider PCFG with rules of the following form (Chomsky Normal Form, CNF)
 - $-N \rightarrow w$ Non-terminal to terminal
 - $-N \rightarrow N'N''$ Non-terminal to two non terminals
 - Note: For any CFG G, there exists a CFG G' in Chomsky Normal Form such that G and G' are weakly equivalent, i.e., accept the same language (but with different derivations)
- Accordingly, a PCFG in CNF has |N|³+|N|*|W| parameter

Issue 3: Learning

- Given a context free grammar G' and a set of sentences S with their derivations in G': Which PCFG G with the same rule set as G' produces S with the highest probability?
- A simple Maximum Likelihood approach will do

$$\forall i : p(N_i \to \varphi_j) = \frac{|N_i \to \varphi_j|}{|N_i \to *|}$$

- | Number of occurrence of a rule in the set of derivations
- * Any rule consequence

Content of this Lecture

- Phrase-Structure Parse Trees
- Probabilistic Context-Free Grammars
- Parsing with PCFG
- Other Issues in Parsing

Issue 2: Evaluation

- Given a PCFG G and a sentence s∈L(G): What is the overall probability of s given G?
 - We did not discuss this problem for HMM, but for PCFG it is simpler to derive parsing from evaluation
- Naïve: Find all derivations of s, sum-up their probabilities
 - Problem: There can be exponentially many derivations
- We give a Dynamic Programming based algorithm

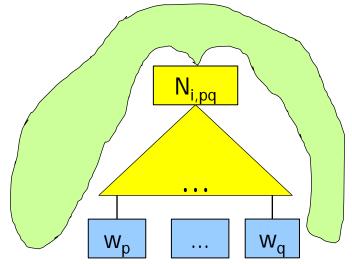
Idea

- Recall that a PCFG build on a context-free grammar in CNF
- Definition

The inside probability of a sub-sentence w_p ... w_q to be produced by a non-terminal N_i is defined as

$$\beta_i(p,q) = p(w_{pq}|N_{i,pq},G)$$

- w_{pq} : Sub-sentence of s starting at token w_p at pos. p until token w_q at pos. q
- N_{i,pq}: Non-terminal N_i producing w_{pq}
- From now on, we omit the "G" and "s"
- We search $\beta_s(1,n)$ for a sentence with n token

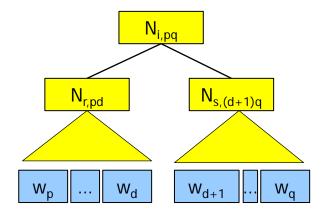


Induction

- We compute $\beta_S(1,n)$ by induction over the length of all sub-sentences
- Start: Assume p=q. Since we have a CNF, the rule producing w_{pp} must have the form $N_{i,pp} \rightarrow w_{pp}$.

$$\beta_i(p,p) = p(w_{pp}|N_{i,pp}) = p(N_{i,pp} \rightarrow w_{pp})$$

- This is parameter of G and can be lookup up for all (i,p)
- Induction: Assume p<q. Since we are in CNF, the derivation must look like this for some d with p≤d≤q



Derivation

•
$$\beta_i(p,q)$$

= $p(w_{pq}|N_{i,pq},G)$
= ...

$$= p(W_{pq}|N_{i,pq},G)$$

$$= ...$$

$$= \sum_{r,s} \sum_{d=p..q-1} p(w_{pd}, N_{r,pd}, w_{(d+1)q}, N_{s,(d+1)q}|N_{i,pq})$$

$$= \sum_{r,s} \sum_{d=p..q-1} p(N_{r,pd}, N_{s,(d+1)q}|N_{i,pq}) * p(w_{pd}|N_{r,pd}, N_{s,(d+1)q}, N_{i,pq}) *$$

$$* p(w_{(d+1)q}|N_{r,pd}, N_{s,(d+1)q}, N_{i,pq})$$

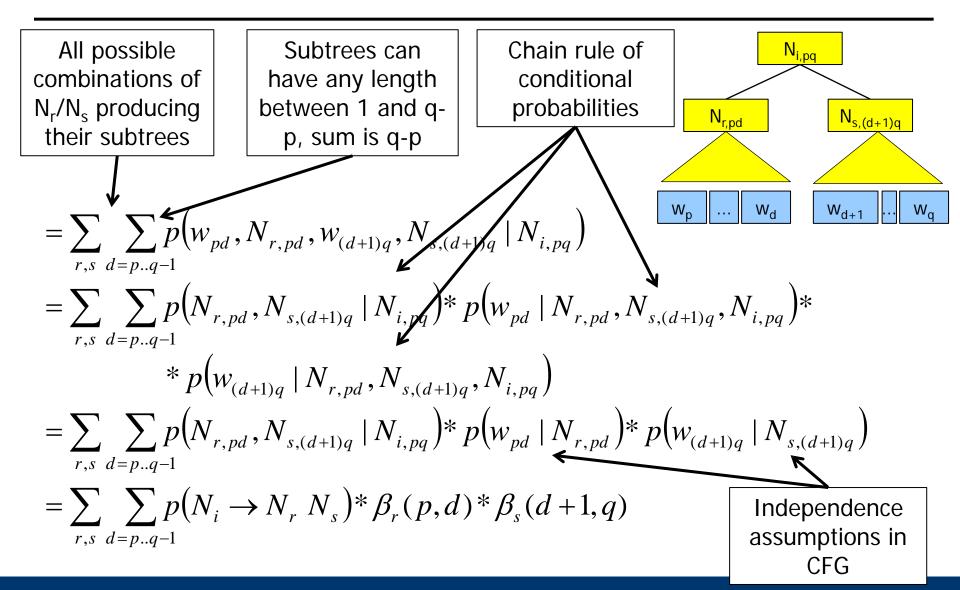
$$= \sum_{r,s} \sum_{d=p..q-1} p(N_{r,pd}, N_{s,(d+1)q}, N_{i,pq}) * p(w_{r,pd}, N_{s,(d+1)q}, N_{i,pq})$$

$$= \sum_{r,s} \sum_{d=r,s} p(N_{r,pd}, N_{s,(d+1)q} \mid N_{i,pq}) * p(w_{pd} \mid N_{r,pd}) * p(w_{(d+1)q} \mid N_{s,(d+1)q})$$

$$= \sum_{r,s} \sum_{d=p..q-1} p(N_i \to N_r N_s) * \beta_r(p,d) * \beta_s(d+1,q)$$

 $N_{i,pq}$

Derivation



astronomer

saw

man

with

telescope

1: $S \rightarrow NP VP$	1,00
2: $PP \rightarrow P NP$	1,00
3: $VP \rightarrow V NP$	0,70
4: $VP \rightarrow VP PP$	0,30
5: $P \rightarrow with$	1,00
6: V → saw	1,00

7: NP
$$\rightarrow$$
 NP PP 0,40
8: NP \rightarrow astronomer 0,10
9: NP \rightarrow telescope 0,18
10: NP \rightarrow man 0,18
11: NP \rightarrow saw 0,04
12: NP \rightarrow ears 0,10

	1	2	3	4	5
1	$\beta_{NP}(1,1)=0,1$				
2		$\beta_{V}(2,2)=1$ $\beta_{NP}(2,2)=0,04$			
3			$\beta_{NP}(3,3)=0,18$		
4				$\beta_{P}(4,4)=1$	
5					$\beta_{NP}(5,5)=0,18$

astronomer

saw

man

with

telescope

1: $S \rightarrow NP VP$	1,00
2: $PP \rightarrow P NP$	1,00
$3: VP \rightarrow V NP$	0,70
4: $VP \rightarrow VP PP$	0,30
5: $P \rightarrow with$	1,00
6: V → saw	1,00

7: NP \rightarrow NP PP	0,40
8: NP → astronomer	0,10
9: NP → telescope	0,18
10: NP → man	0,18
11: NP \rightarrow saw	0,04
12: NP \rightarrow ears	0,10
l .	

	1	2	3	4	5
1	$\beta_{NP}=0,1$	_			
2		$\beta_V = 1$ $\beta_{NP} = 0.04$	β _{VP} =0,7*1*0,18= 0,126		
3			$\beta_{NP}=0,18$	-	
4				$\beta_P=1$	β _{PP} =1*1*0,18= 0,18
5					β_{NP} =0,18

No rule $X \rightarrow NP V$ or $X \rightarrow NP NP$

Must be $VP \rightarrow V NP$ with p=0.7

astronomer

saw

man

with

telescope

 1: $S \rightarrow NP \ VP$ 1,00

 2: $PP \rightarrow P \ NP$ 1,00

 3: $VP \rightarrow V \ NP$ 0,70

 4: $VP \rightarrow VP \ PP$ 0,30

 5: $P \rightarrow with$ 1,00

 6: $V \rightarrow saw$ 1,00

7: NP \rightarrow NP PP	0,40
8: NP → astronomer	0,10
9: NP → telescope	0,18
10: NP → man	0,18
11: NP \rightarrow saw	0,04
12: NP → ears	0,10

	1	2	3	4	5
1	β_{NP} =0,1	-	β _S =1*0,1*0,126= 0,0126		
2		$\beta_V = 1$ $\beta_{NP} = 0.04$	β _{VP} =0,126	-	
3			β _{NP} =0,18	-	$\beta_{NP} = 0.4*0.18*0.18 = 0.1296$
4				$\beta_P = 1$	$\beta_{PP} = 0.18$
5					$\beta_{NP} = 0.18$

astronomer

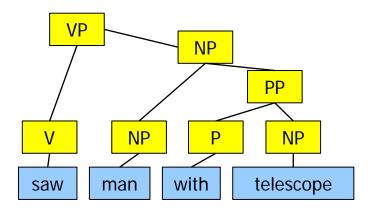
saw

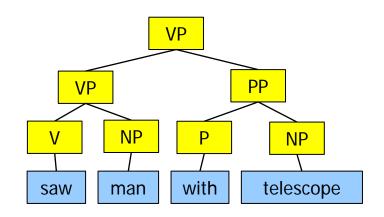
man

with

telescope

	1	2	3	4	5
1	$\beta_{NP}=0,1$	-	$\beta_S = 0.0126$	-	β _{VP} =0,0015
2		$\beta_V = 1$ $\beta_{NP} = 0.04$	β _{VP} =0,126	-	$\beta_{VP1} + \beta_{VP2} = 0.015$.
3			$\beta_{NP}=0,18$	-	PNP 0,1296
4				$\beta_P = 1$	$\beta_{PP} = 0.18$
5					$\beta_{NP} = 0.18$





Note

- This is the Cocke-Younger-Kasami (CYK) algorithm for parsing with context free grammars, enriched with aggregations / multiplications for computing probabilities
- Same complexity: O(n³*|G|)
 - n: Sentence length
 - |G|: Number of rules in the grammar G

Note

- This is the Cocke-Younger-Kasami (CYK) algorithm for parsing with context free grammars, enriched with aggregations / multiplications for computing probabilities
- Same complexity: O(n³*|G|)
 - n: Sentence length
 - |G|: Number of rules in the grammar G

Issue 1: Decoding / Parsing

- Once evaluation is solved, parsing is simple
- Instead of summing over all derivations, we only chose the most probable deviation of a sub-sentence for each possible root
- Let $\delta_i(p,q) = p(w_{pq}|N_{i,pq})$ be the most probable derivation of sub-sentence p..q from a non-terminal root N_i
- This gives

$$\begin{split} \delta_{i}(p,q) &= \underset{r,s}{\operatorname{arg\,max}} \left(\underset{d=p...q-1}{\operatorname{max}} \left(p \left(w_{pd}, N_{r,pd}, w_{(d+1)q}, N_{s,(d+1)q} \mid N_{i,pq} \right) \right) \right) \\ &= \underset{r,s}{\operatorname{arg\,max}} \left(p \left(N_{i} \rightarrow N_{r} \mid N_{s} \right) * \delta_{r}(p,d) * \delta_{s}(d+1,q) \right) \end{split}$$

We omit induction start and backtracing

Content of this Lecture

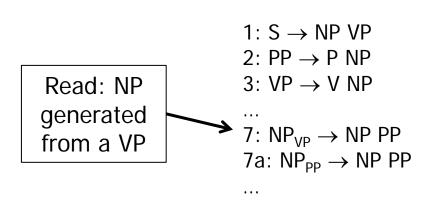
- Phrase-Structure Parse Trees
- Probabilistic Context-Free Grammars
- Parsing with PCFG
- Other Issues in Parsing

Treebanks

- A treebank is a set of sentences (corpus) whose phrase structures are annotated
 - Training corpus for PCFG
 - Not many exist; very costly, manual task
- Most prominent: Penn Treebank
 - Marcus, Marcinkiewicz, Santorini. "Building a large annotated corpus of English: The Penn Treebank." Computational linguistics 19.2 (1993): 313-330.
 - ~5500 citations (!)
 - 2,499 stories from a 3-years Wall Street Journal (WSJ) collection
 - Roughly 1 Million tokens, freely available
- Deutsche Baumbanken
 - Deutsche Diachrone Baumbank, 3 historical periods, small
 - Tübinger Baumbank, 38.000 Sätze, 345.000 Token

Using Derivation History

- Phrase structure grammars as described here are kind-of simplistic
- One idea for improvement: Incorporate dependencies between non-terminals
 - Probability of rules is not identical across all positions in a sentence
 - Trick: Annotate derivation of a non-terminal in its name and learn different probabilities for different derivations



Expansion	% as 1st Obj	% as 2nd Obj
$NP \rightarrow NNS$	7.5%	0.2%
$NP \rightarrow PRP$	13.4%	0.9%
$NP \rightarrow NP PP$	12.2%	14.4%
$NP \rightarrow DT NN$	10.4%	13.3%
$NP \rightarrow NNP$	4.5%	5.9%
$NP \rightarrow NN$	3.9%	9.2%
$NP \rightarrow JJ NN$	1.1%	10.4%
$NP \rightarrow NP SBAR$	0.3%	5.1%

Source: MS99; from Penn Treebank

Lexicalization

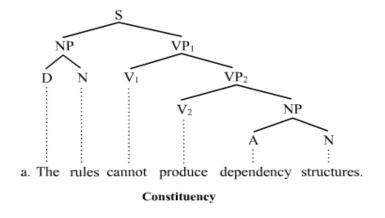
- Second idea: Incorporate word semantics (lexicalization)
 - Clearly, different verbs take different arguments leading to different structures (similar for other word types)
 - Trick: Learn a model for each head word of a non-terminal
 - VP_{walk}, VP_{take}, VP_{eat}, VP_{...}
 - Requires much larger training corpus and sophisticated smoothing

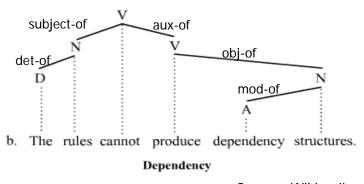
	Verb			
Local tree	come	take	think	want
VP-V	9.5%	2.6%	4.6%	5.7%
VP-VNP	1.1%	32.1%	0.2%	13.9%
$VP \rightarrow v PP$	34.5%	3.1%	7.1%	0.3%
$VP \rightarrow V SBAR$	6.6%	0.3%	73.0%	0.2%
$VP \rightarrow V S$	2.2%	1.3%	4.8%	70.8%
$VP \rightarrow V NP S$	0.1%	5.7%	0.0%	0.3%
$VP \rightarrow V PRT NP$	0.3%	5.8%	0.0%	0.0%
$VP \rightarrow V PRT PP$	6.1%	1.5%	0.2%	0.0%

Source: MS99; from Penn Treebank

Dependency Grammars

- Phrase structure grammars are not the only way to represent structural information within sentences
- Popular alternative: Dependency trees
 - Every word forms exactly one node
 - Edges describe the syntactic relationship between words: object-of, subject-of, modifier-of, preposition-of, ...
 - Different tag sets exist





Source: Wikipedia

Self-Assessment

- Which assumptions are behind PCFG for parsing?
- What is the complexity of the parsing problem in PCFG?
- Assume the following rule set ... Derive all derivations for the sentence ... together with their probabilities. Mark the most probable derivation.
- Derive the complexity of the decoding algorithm for PCFG
- What is the head word of a phrase in a phrase structure grammar?
- When are two grammars weakly equivalent?