

Maschinelle Sprachverarbeitung

Part-Of-Speech Tagging and Hidden Markov Models

Ulf Leser

Terminänderung

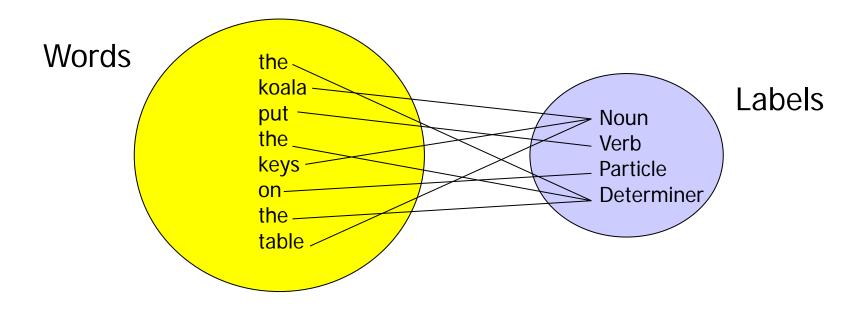
- Vorlesung vom 23.11.
- wird auf den 25.11., 11.00 Uhr, Raum 3.113
- verschoben

Content of this Lecture

- Part-Of-Speech (POS)
- Simple methods for POS tagging
- Hidden Markov Models
- Closing Remarks
- Most material from
 - [MS99], Chapter 9/10
 - Durbin, R., Eddy, S., Krogh, A. and Mitchison, G. (1998). "Biological Sequence Analysis: Probablistic Models of Proteins and Nucleic Acids". Cambridge University Press.
 - Rabiner, L. R. (1988). "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition." *Proceedings of the IEEE* 77(2): 257-286.

Part-of-Speech (POS)

- In a sentence, each word has a grammatical class
- Simplest case: Noun, verb, adjective, adverb, article, ...
 - That's not a grammatical role: Subject, object, ...



Tag Sets

- (POS-) tag set: Set of labels representing POS-classes
 - Simple tag set: Only broad word classes
 - Complex tag sets: Include morphological information
 - · Noun: Gender, case, number
 - Verb: Tense, number, person
 - Adjective: normal, comparative, superlative
 - ...
- Word classes even for the same language are not defined
 - London-Lund Corpus of Spoken English: 197 tags
 - Lancaster-Oslo/ Bergen: 135 tags
 - Penn tag set: 45 tags
 - Brown tag set: 87 tags
 - STTS (Stuttgart-Tübingen Tagset): ~50 tags

U-Penn TreeBank Tag Set (45 tags)

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	66	Left quote	(' or ")
POS	Possessive ending	's	,,	Right quote	(' or ")
PRP	Personal pronoun	I, you, he	(Left parenthesis	([,(,{,<)
PRP\$	Possessive pronoun	your, one's)	Right parenthesis	(],),},>)
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	(.!?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ;)
RP	Particle	up, off			

Tagged Sentences

- Simple tag set
 - The/D koala/N put/V the/D keys/N on/P the/D table/N
- Including morphological information
 - The/D koala/Ns put/V-past-3rd the/D keys/N-p on/P ...
- Using Penn tag set
 - The/DT koala/NN put/VBN the/DT keys/NNS on/P ...

The	koala	put	the	keys	on	the	table
D	N	V	D	N	Р	D	N
D	N-sing	V-past-3rd	D	N-plu	Р	D	N-sing
DT	NN	VBN	DT	NNS	P	DT	NN

POS Tagging

- Maybe each term has a single intrinsic grammatical class?
 - Peter, deliberately, school, the, better (?), ...
- No: Homonyms
 - One term can represent many words (senses)
 - Different senses can have different word classes
 - "ist modern"-"Balken modern", "Win a grant"-"to grant access"
- No: Words intentionally used in different word classes
 - "We flour the pan", "Put the buy here", "the buy back of ..."
 - In German, things are easier: kaufen Einkauf, gabeln Gabelung
 - Of course, there are exceptions: wir essen das Essen
- Still, most words have a preferred class

Problems

- Correct class depends on context within the sentence
 - The back door = JJ
 - On my back = NN
 - Win the voters back = RB
 - Promised to back the bill = VB
- Note: Also sentences may be ambiguous
 - The representative put chairs on the table
 - The/DT representative/NN put/VBD chairs/NNS on/IN the/DT table/NN
 - The/DT representative/JJ put/NN chairs/VBZ on/IN the/DT table/NN
 - Presumably the first is more probable than the second
- Another big problem (prob. the biggest): Unseen words
 - Recall Zipf's law there will always be unseen words

A Real Issue

		Original			Treebank		
		87-tag corpus		45-tag corpus			
Unambiguous (1 tag)		44,019		38,857			
Ambiguous (2–7 tags)		5,490		8844			
Details:	2 tags	4,967		6,731			
	3 tags	411		1621			
	4 tags	91		357			
	5 tags	17		90			
	6 tags	2	(well, beat)	32			
	7 tags	2	(still, down)	6	(well, set, round, open,		
					fit, down)		
	8 tags			4	('s, half, back, a)		
	9 tags			3	(that, more, in)		

Source: Jurasky / Martin

Why POS Tagging?

- Parsing a sentence usually starts with POS tagging
- Finding phrases (shallow parsing) requires POS tagging
 - Noun phrases, verb phrases, adverbial phrases, ...
- POS tags are beneficial for word sense disambiguation
- Applications in all areas of Text Mining
 - NER: ~10% boost using POS-features for single-token entities
 - NER: ~20% boost using POS-tags during post-processing of multitoken entities
- High accuracy with relative simple methods (97%)
- Many tagger available (BRILL, TNT, MedPost, ...)

Content of this Lecture

- Part-Of-Speech (POS)
- Simple methods for POS tagging
 - Most frequent class
 - Syntagmatic rules
 - Transformation-based tagging
- Hidden Markov Models
- Closing Remarks

Simplest Method: Most Frequent Class

- Words have a preferred POS
 - The POS tag which a word most often gets assigned to
 - Recall school: We use words such as "adjektiviertes Verb",
 "adjektiviertes Nomen", "a noun being used as an adjective"
- Method: Tag each word with its preferred POS

Using Syntagmatic Information

- Syntagmatic: "the relationship between linguistic units in a construction or sequence"
 - [http://www.thefreedictionary.com]
- Idea: Look at surrounding POS tags
 - Some POS-tag sequences are frequent, others impossible
 - DT JJ NN versus DT JJ VBZ
- Idea: Count frequencies of POS-patterns in a tagged corpus
 - Count all tag bi-grams, tag tri-grams, ...
 - Count regular expressions (DT * NN versus DT * VBZ)
 - ... (many ways to define a pattern)

Usage for Tagging

- Start with words with unique POS tags (the, to, lady, ...)
 - But: "The The"
- Find and apply the most frequent patterns over these tags
 - Assume <DT JJ> and <JJ NN> are frequent
 - "The blue car" -> DT * * -> DT JJ * -> DT JJ NN
 - But: "The representative put chairs" -> DT * * * -> DT JJ * * ->DT JJ NN *
- Needs conflict resolution: "the bank in" -> DT * IN
 - Assume frequent bi-grams <DT JJ> and <VBZ IN>
- Pattern-cover problem: Cover a sentence with patterns such that the sum of their relative frequencies is maximal

Transformation-Based Tagger

- Brill: "Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part-of-Speech Tagging", Computational Linguistics, 1995.
- Idea: Identify "typical situations" in a tagged corpus
 - Example: After "to", there usually comes a verb
 - Situations may combine words, tags, morphological information, etc.
- Capture "situations" by transformation rules
- Apply when seeing untagged text
- Sort-of generalization of the syntagmatic approach

Transformation-Based Tagging

Learning rules

- We simulate the real case: "Untag" a tagged corpus
- Tag each word with its most probably POS-tag
- Find the most frequent differences between the original (tagged) text and the retagged text and encode as a rule
 - These are the most typical errors one performs when using only the most probable classes
 - Their correction (using the gold standard) is learned

Tagging

- Assign each word its most probable POS tag
- Apply transformation rules to rewrite tag sequence
- Issues: Order of application of rules? Termination?

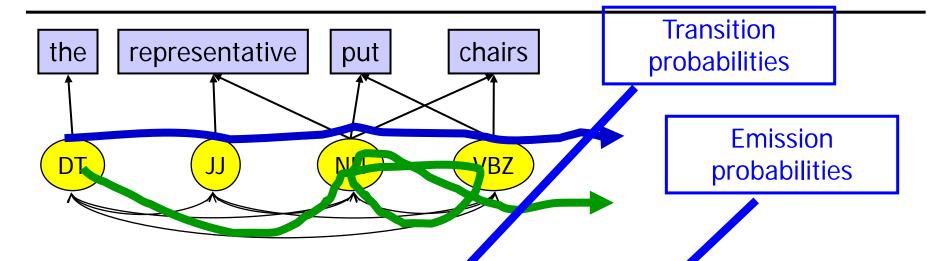
Content of this Lecture

- Part-Of-Speech (POS)
- Simple methods for POS tagging
- Hidden Markov Models
 - Definition and Application
 - Learning the Model
 - Tagging
- Closing Remarks

Sequential Probabilistic Model

- Recall Markov Models (1st order)
 - A Markov Model is a stochastic process with states $s_1, ..., s_n$ with ...
 - Every state emits exactly one symbol from Σ
 - No two states emit the same symbol
 - $p(w_n = s_n/w_{n-1} = s_{n-1}, w_{n-2} = s_{n-2}, ..., w_1 = s_1) = p(w_t = s_t/w_{n-1} = s_{n-1})$
- That doesn't help: Relationship POS WORD is m:n
- We need an extension
 - We assume one state per POS tag
 - Each state may emit any word with a given probability
 - This is a Hidden Markov Model
 - When seeing a sentence, we can only observe the sequence of emissions, but not the underlying sequence of (hidden) states

Example



- Several possible paths, ecch with individual probability
 - DT <u>JJ NN VBZ</u>
 - p(DT|"start") * p(JJ|DT) * p(NN|JJ) * r (VBZ|NN) * p(the|DT) * p(representative|JJ) * r (put|NN) * p(chairs|VBZ)
 - DT $\frac{1}{2}$ ININ VBZ ININ
 - p(DT|"start") * p(NN|DT) * p(VBZ|NN) * p(NN|VBZ) *
 p(the|DT) * p(representative|NN) * p(put|VBZ) * p(chairs|NN)

Definition

Definition

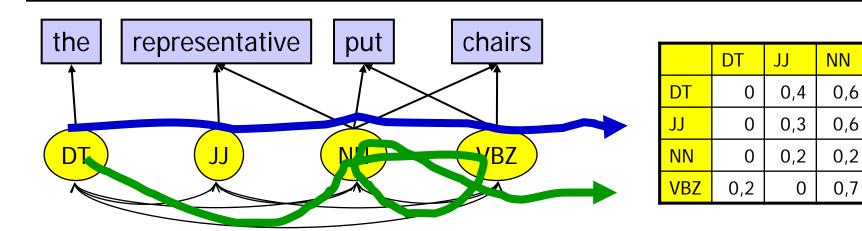
A Hidden Markov Model of order one is a sequential stochastic process with k states $s_1, ..., s_k$ with

- Every state s emits every symbol $x \in \Sigma$ with probability p(x/s)
- The sequence of states is a 1st order Markov Model
- The $a_{0.1}$ are called start probabilities
- The a_{t-1,t} are called transition probabilities
- The $e_s(x) = p(x/s)$ are called emission probabilities

Note

- A given sequence of symbols can be emitted by many different sequences of states
- These have individual probabilities depending on the transition probabilities and the emission probabilities in the state sequence

Example



- DT JJ NN VBZ
 p(DT|"start") * p(JJ|DT) * p(NN|JJ) * p(VBZ|NN) *
 p(the|DT) * p(representative|JJ) * p(put|NN) * p(chairs|VBZ)
 = ... * 0.4 * 0.6 * 0.6 * ...
- DT NN VBZ NN
 p(DT|"start") * p(NN|DT) * p(VBZ|NN) * p(NN|VBZ) *
 p(the|DT) * p(representative|NN) * p(put|VBZ) * p(chairs|NN)
 = ... * 0.6 * 0.6 * 0.7 * ...

VBZ

0,1

0,6

0,1

HMM: Classical Problems

- Decoding/parsing: Given a sequence S of symbols and a HMM M: Which sequence of states did most likely emit S?
 - This is our tagging problem once we have the model
 - Solution: Viterbi algorithm
- Evaluation: Given a sequence S of symbols and a HMM M:
 With which probability did M emit S?
 - Fit of the model for the observation
 - Different than parsing, as many sequence may have emitted S
 - Solution: Forward/Backward algorithm (skipped here)
- Learning: Given a sequence S and a set of states: Which HMM emits S with the highest probability?
 - We need to learn start, emission, and transition probabilities
 - Solution: MLE or Baum-Welch algorithm (skipped here)

Another Example: The Dishonest Casino

A casino has two dice:

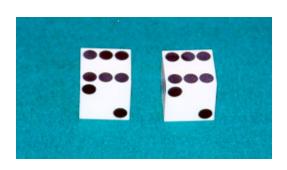
- Fair die p(1)=p(2)=p(3)=p(4)=p(5)=p(6)=1/6
- Loaded die p(1)=p(2)=p(3)=p(4)=p(5)=1/10p(6) = 1/2

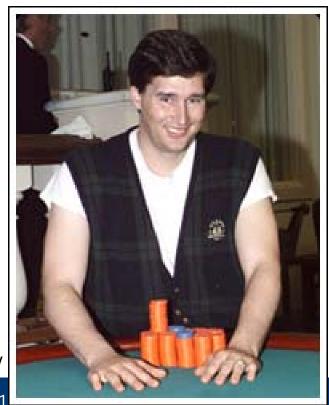
Casino occasionally switches between dice (and you want to know when)

Game:

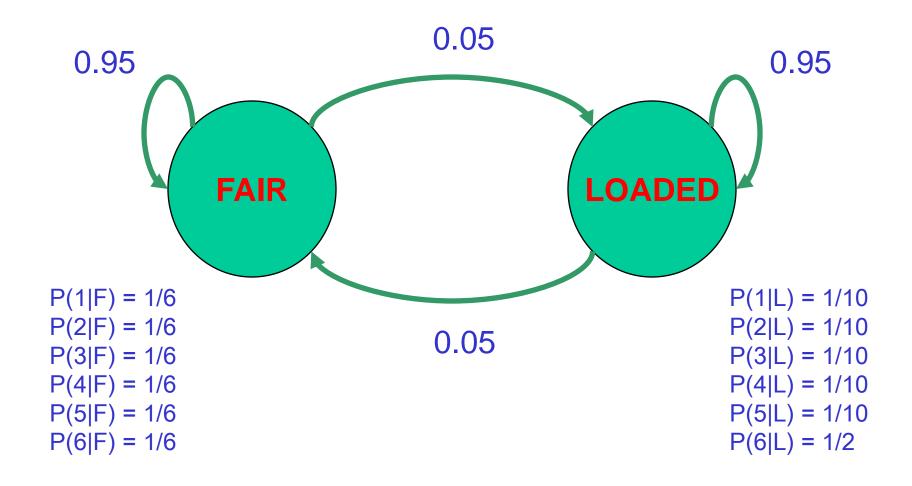
- 1. You bet \$1
- 2. You roll (always with a fair die)
- 3. You may bet more or surrender
- 4. Casino player rolls (with some die...)
- 5. Highest number wins

Quelle: Batzoglou, Stanford





The dishonest casino model



Question # 1 – Decoding

GIVEN A sequence of rolls by the casino player

62146146136136661664661636616366163616515615115146123562344

QUESTION What portion of the sequence was generated with the fair die, and what portion with the loaded die?

This is the **DECODING** question

Question # 2 – Evaluation

GIVEN A sequence of rolls by the casino player

62146146136136661664661636616366163616515615115146123562344

QUESTION How likely is this sequence, given our model of how the casino works?

This is the **EVALUATION** problem

Question # 3 – Learning

GIVEN A sequence of rolls by the casino player

6146136136661664661636616366163616515615115146123562344

QUESTION

How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?

This is the **LEARNING** question

[Note: We need to know how many dice there are!]

Content of this Lecture

- Part-Of-Speech (POS)
- Simple methods for POS tagging
- Hidden Markov Models
 - Definition and Application
 - Learning the Model
 - Tagging
- Concluding Remarks

Learning a HMM

- We always assume the set of states (POS tags) as fixed
- We need to learn start, emission and transition probabilities
- Assuming a large, tagged corpus, MLE does the job
 - Count relative frequencies of all starts, emissions, transitions
 - Start probabilities are straight-forward and skipped

MLE for Transition and Emission Probabilities

Transitions

- Count frequencies of all state transitions s → t
- Transform in relative frequencies for each outgoing state
 - Let A_{st} be the number of transitions s→t

$$a_{st} = p(t \mid s) = \frac{A_{st}}{\sum_{t' \in M} A_{st'}}$$

Emissions

- Count frequencies of emissions over all symbols and states
- Transform in relative frequencies for each state
 - Let E_s(x) be the number of times that state s emits symbol x

$$e_s(x) = \frac{E_s(x)}{\sum_{x' \in \Sigma} E_s(x')}$$

Overfitting

- We have a data sparsity problem
 - Not so bad for the state transitions
 - Not too many POS Tags
 - But some classes are very rare
 - Quite bad for emission probabilities
 - As large as the corpus might be, most rare emissions are never seen and would (falsely) be assigned probability 0
- Need to apply smoothing
 - See previous lecture

Content of this Lecture

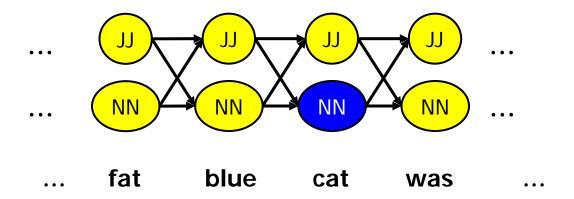
- Part-Of-Speech (POS)
- Simple methods for POS tagging
- Hidden Markov Models
 - Definition and Application
 - Learning the Model
 - Tagging
- Concluding Remarks

Viterbi Algorithm

- Definition
 - Let M be a HMM and S a sequence of symbols. The parsing problem is to find a (or all) state sequence of M that generated S with the highest probability
- Very often, we call a sequence of states a path
- Naïve solution
 - Let's assume that $a_{ij}>0$ and $e_i(x)>0$ for all x,i,j and i,j≤k
 - Then there exist kⁿ path
 - We cannot look at all of them
- Viterbi-Algorithm
 - Viterbi, A. J. (1967). "Error bounds for convolution codes and an asymptotically optimal decoding algorithm." *IEEE Transact. on Information Theory* 13: 260-269.

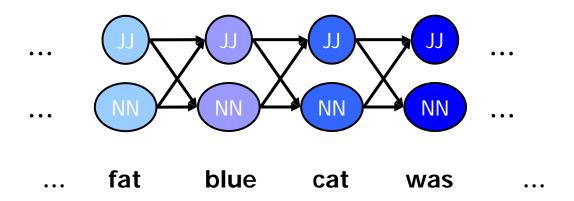
Idea: Dynamic Programming

- Every potential state s at position i in S is reachable by many paths
- However, one of those must be the most probable one
- All continuations of the path for S from s at position i only need this highest probability over all paths reaching s at i
- Compute maximal probabilities iteratively for all positions



Viterbi: Dynamic Programming

- We compute optimal (= most probable) paths for increasingly long prefixes of S
- Let v_t(i) be the probability of the optimal path for S[..i] ending in state t
- We want to express $v_t(i)$ using only the $v_{s \in M}(i-1)$ values
- Once we have found this formula, we may iteratively compute $v_s(1)$, $v_s(2)$, ..., $v_s(|S|)$ (for all $s \in M$)



Recursion

- Let v_s(i) be the probability of the optimal path for S[..i] ending in state s
- Assume we proceed from s in position i to t in position i+1
- What is the probability of the path ending in t passing through s before?
 - The probability of s (= $v_s(i)$)
 - * the transition probability from s to t (a_{st})
 - * the probability that t emits $S[i+1] (=e_t(S[i+1]))$
- Of course, we may reach t from any state at position i
- This gives

$$v_{t}(i+1) = e_{t}(S[i+1]) * \max_{s \in M} (v_{s}(i) * a_{st})$$

Tabular Computation

		The	fat	blue
S ₀	1	0	0	
DT	0	1	0	0
JJ	0	0	•••	•••
NN	0	0	•••	•••
NNS	0	0	•••	•••
VB	0	0	•••	•••
VBZ	0	0	•••	•••
•••				

- Use table for storing v_s(i)
- Special start state with prob. 1; all other states have start prob. 0
- Compute column-wise
- Every cell can be reached from every cell in the previous column
- If a state never emits a certain symbol, all probabilities in columns with this symbol will be 0

Result

		The	fat	blue	•••	cake.
S ₀	1	0	0	0		0
DT	0	1	0	0	•••	0,004
JJ	0	0	•••	•••	•••	0,0012
NN	0	0				0,034
NNS	0	0	i.			0,0001
VB	0	0			•••	0,002
VBZ	0	0		•••	•••	0,013
•••						0,008

- The probability of the most probably parse is the largest value in the right-most column
- Most probable tag sequence is determined by traceback

Complexity

- Let |S|=n, |M|=k (states)
- This gives
 - The table has n*k cells
 - For computing a cell value, we need to access all potential predecessor states (=k)
 - Together: O(n*k²)

Numerical Difficulties

- Naturally, the numbers are getting extremely small
 - We are multiplying small probabilities (all <<1)
- We need to take care of not running into problems with computational accuracy
- Solution: Use logarithms
 - Instead of

$$v_{t}(i+1) = e_{t}(S[i+1]) * \max_{s \in M} (v_{s}(i) * a_{st}))$$

Compute

$$v_t(i+1) = \log(e_t(S[i+1])) + \max_{s \in M}(v_s(i) + \log(a_{st}))$$

Unknown Words

- HMM do not help in tagging unknown words
- The treatment of unknown words is one of the major differentiating features in different POS taggers
- Simple approach: Are emitted by all tags with equal prob.
 - Their tags are estimated only by the transition probabilities
 - Not very accurate
- Information one may use
 - Morphological clues: suffixes (-ed mostly is past tense of a verb)
 - Likelihood of a POS class of allowing a new word
 - Some classes are closed: Determiner, pronouns, ...
 - Special characters, "Greek" syllables, ... (hint to proper names)

Wrap-Up

- Advantages of HMM
 - Clean framework
 - Relative simple math
 - Good performance when learning/predicting POS-tri-grams
 - Needs large learning corpus
- Disadvantages
 - Cannot capture non-local dependencies
 - Beyond the "n" of n-grams
 - Cannot condition probability of tags on concrete preceding words (but only on preceding tags)
 - But language has such constraints
- Extensions exist, but these are not trivial
 - Conditional Random Fields, Markov Logic Networks, ...

Content of this Lecture

- Part-Of-Speech (POS)
- Simple methods for POS tagging
- Hidden Markov Models
- Concluding Remarks

Evaluation (English)

- Most frequent: ~85% accuracy
- Rule-based: <90% accuracy
- Probabilistic: >90% accuracy
- Domain-specific: ~97% accuracy

POS Tagging Today

- Brill, TnT, TreeTagger, OpenNLP MaxEnt tagger, ...
- Choosing a tagger: Which corpus was used to learn the model? Domain specificity? Can I retrain it? Treatment of unknown words? Tag-Set?
- Some figures
 - Brill tagger has ~87% accuracy on Medline abstracts
 - When learned on Brown corpus = bad model for Medline
 - Performance of >97% accuracy is possible
 - MedPost: HMM-based, with a dictionary of fixed (word / POS-tag) assignments for the 10.000 most frequent "unknown" Medline terms
 - TnT / MaxEnt tagger reach 95-98 on newspaper corpora
- Further improvements hit inter-annotator agreement
 - And depend on the tag set the richer, the more difficult

References

- Brill, E. (1992). "A simple rule-based part of speech tagger". Conf Applied Natural Language Processing, Trento, Italy
- Brants, T. (2000). "TnT a statistical part-of-speech tagger". Conf Applied Natural Language Processing, Seattle, USA
- Smith, L., Rindflesch, T. and Wilbur, W. J. (2004).
 "MedPost: a part-of-speech tagger for biomedical text."
 Bioinformatics