Maschinelle Sprachverarbeitung
Retrieval Models and Implementation
Content of this Lecture

• Information Retrieval Models
 – Boolean Model
 – Vector Space Model

• Inverted Files
Information Retrieval Core

- The core question in IR:
 Which of a given set of (normalized) documents is relevant for a given query?
- Ranking: How relevant for a given query is each document?
How can Relevance be Judged?

- **Non-Overlapping Lists**
- **Proximal Nodes**
- **Structured Models**
- **Classic Models**
 - Boolean
 - Vector-Space
 - Probabilistic
- **Set Theoretic**
 - Fuzzy
 - Extended Boolean
- **Algebraic**
 - Generalized Vector
 - Lat. Semantic Index
 - Neural Networks
- **Probabilistic**
 - Inference Network
 - Belief Network

- **Us**
 - *Task*
 - Retrieval: **Adhoc**
 - Filtering
 - Browsing

- **Browsing**
 - Flat
 - Structure Guided
 - Hypertext

[BYRN99]
Notation

- All of the models we discuss use the “Bag of Words” view
- Definition
 - Let D be the set of all normalized documents, $d \in D$ is a document
 - Let K be the set of all terms in D, $k_i \in K$ is a term
 - Can as well be tokens
 - Let w be the function that maps a given d to its set of distinct terms in K (its bag-of-words)
 - Let v_d by a vector of size $|K|$ for d (or a query q) with
 - $v_d[i] = 0$ iff $k_i \notin w(d)$
 - $v_d[i] = 1$ iff $k_i \in w(d)$
 - Often, we use weights instead of a Boolean membership function
 - Let $w_{ij} \geq 0$ be the weight of term k_i in document d_j ($w_{ij} = v_j[i]$)
 - $w_{ij} = 0$ if $k_i \notin d_j$
Boolean Model

• Simple model based on set theory
• Queries are specified as **Boolean expressions** over terms
 – Terms connected by AND, OR, NOT, (XOR, ...)
 – Parenthesis are possible (but ignored here)
• Relevance of a document is either 0 or 1
 – Let q contain the atoms (terms) \(<k_1, k_2, ...>\)
 – An atom \(k_i\) evaluates to true for a document \(d\) iff \(v_d[k_i] = 1\)
 – Compute truth values of all atoms for each \(d\)
 – Compute truth of \(q\) for \(d\) as **logical expression** over atom values
Properties

• Simple, clear semantics, widely used in (early) systems

• Disadvantages
 - No partial matching
 • Suppose query $k_1 \land k_2 \land \ldots \land k_9$
 • A doc d with $k_1 \land k_2 \ldots k_8$ is as irrelevant as one with none of the terms
 - No ranking
 - Terms cannot be weighted
 • But some are more important than others
 - Lay users don’t understand Boolean expressions

• Results: Often unsatisfactory
 - Too many documents (too few restrictions, many OR)
 - Too few documents (too many restrictions, many AND)
A Note on Implementation

• One should not iterate over D, but use a term index
 - Assume we have an index with fast operation $find: K \rightarrow P^D$
 - Search each atom k_i of the query, resulting in a set $D_i \subseteq D$
 - Evaluate query in given order of atoms using set operations on D_i’s
 • $k_i \land k_j : D_i \cap D_j$
 • $k_i \lor k_j : D_i \cup D_j$
 • NOT $k_i : D \setminus D_i$

• Improvements: Cost-based evaluation
 - Evaluate sub-expressions first that result in smaller intermediate results
 - Less memory requirements, faster intersections, …
Content of this Lecture

• Information Retrieval Models
 – Boolean Model
 – Vector Space Model
• Inverted Files
Vector Space Model

 - A breakthrough in IR
 - Still most popular model today

- General idea
 - Fix vocabulary K (the dictionary)
 - View each doc (and the query) as point in a $|K|$-dimensional space
 - Rank docs according to distance from the query in that space

- Main advantages
 - Inherent ranking (according to distance)
 - Naturally supports partial matching (increases distance)
Vector Space

- Each term is one dimension
 - Different suggestions for determining co-ordinates, i.e., term weights
- The closest docs are the most relevant ones
 - Rationale: Vectors correspond to themes which are loosely related to sets of terms
 - Distance between vectors \(\sim \) distance between themes
 - Different suggestions for defining distance
The Angle between Two Vectors

- Recall: The **scalar product** between two vectors v and w of equal dimension is defined as

$$v \circ w = |v| \cdot |w| \cdot \cos(v, w)$$

- This gives us the angle

$$\cos(v, w) = \frac{v \circ w}{|v| \cdot |w|}$$

 - With

$$|v| = \sqrt{\sum v_i^2} \quad v \circ w = \sum_{i=1}^{n} v_i \cdot w_i$$
Distance as Angle

Distance = \textbf{cosine of the angle} between doc \(d\) and query \(q\)

\[
sim(d, q) = \cos(v_d, v_q) = \frac{v_d \circ v_q}{\|v_d\| \times \|v_q\|} = \frac{\sum (v_q[i] \times v_d[i])}{\sqrt{\sum v_d[i]^2} \times \sqrt{\sum v_q[i]^2}}
\]

Length normalization

Can be dropped for ranking
Example

- Assume stop word removal, stemming, and **binary weights**

<table>
<thead>
<tr>
<th>Text</th>
<th>verkauf</th>
<th>haus</th>
<th>italien</th>
<th>gart</th>
<th>miet</th>
<th>blüh</th>
<th>woll</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Wir verkaufen Häuser in Italien</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Häuser mit Gärten zu vermieten</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Häuser: In Italien, um Italien, um Italien herum</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Die italienschen Gärtner sind im Garten</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Der Garten in unserem italienschen Haus blüht</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Q Wir wollen ein Haus mit Garten in Italien mieten</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Ranking

\[
sim(d, q) = \frac{\sum (v_q[i] \cdot v_d[i])}{\sqrt{\sum v_d[i]^2}}
\]

- \(\text{sim}(d_1, q) = \frac{(1 \cdot 0 + 1 \cdot 1 + 1 \cdot 1 + 0 \cdot 1 + 0 \cdot 1 + 0 \cdot 0 + 0 \cdot 1)}{\sqrt{3}} \approx 1.15 \)
- \(\text{sim}(d_2, q) = \frac{(1 + 1 + 1)}{\sqrt{3}} \approx 1.73 \)
- \(\text{sim}(d_3, q) = \frac{(1 + 1)}{\sqrt{2}} \approx 1.41 \)
- \(\text{sim}(d_4, q) = \frac{(1 + 1)}{\sqrt{2}} \approx 1.41 \)
- \(\text{sim}(d_5, q) = \frac{(1 + 1 + 1)}{\sqrt{4}} \approx 1.5 \)

Rg

<table>
<thead>
<tr>
<th>Rg</th>
<th>Q: Wir wollen ein Haus mit Garten in Italien mieten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(d_2:) Häuser mit Gärten zu vermieten</td>
</tr>
<tr>
<td>2</td>
<td>(d_5:) Der Garten in unserem italienischen Haus blüht</td>
</tr>
<tr>
<td>3</td>
<td>(d_4:) Die italienischen Gärtner sind im Garten</td>
</tr>
<tr>
<td></td>
<td>(d_3:) Häuser: In Italien, um Italien, um Italien herum</td>
</tr>
<tr>
<td>5</td>
<td>(d_1:) Wir verkaufen Häuser in Italien</td>
</tr>
</tbody>
</table>
Introducing Term Weights

- Definition

 Let \(D \) be a document collection, \(K \) be the set of all terms in \(D \), \(d \in D \) and \(k \in K \)

 - The **term frequency** \(tf_{dk} \) is the frequency of \(k \) in \(d \)

 - The **document frequency** \(df_k \) is the frequency of docs in \(D \) containing \(k \)
 - This should rather be called “corpus frequency”
 - May also be defined as the frequency of occurrences of \(k \) in \(D \)
 - Both definitions are valid and both are used

 - The **inverse document frequency** is defined as \(idf_k = \frac{|D|}{df_k} \)
 - In practice, one usually uses \(idf_k = \log(\frac{|D|}{df_k}) \)
Ranking with TF scoring

\[sim(d, q) = \frac{\sum (v_q[i]*v_d[i])}{\sqrt{\sum v_d[i]^2}} \]

- \(sim(d_1, q) = (1*0+1*1+1*1+0*1+0*1+0*0+0*1) / \sqrt{3} \) \approx 1.15
- \(sim(d_2, q) = (1+1+1) / \sqrt{3} \) \approx 1.73
- \(sim(d_3, q) = (1+3) / \sqrt{10} \) \approx 1.26
- \(sim(d_4, q) = (1+2) / \sqrt{5} \) \approx 1.34
- \(sim(d_5, q) = (1+1+1) / \sqrt{4} \) \approx 1.5

Q: Wir wollen ein Haus mit Garten in Italien mieten

<table>
<thead>
<tr>
<th>Rg</th>
<th>Q: Wir wollen ein Haus mit Garten in Italien mieten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(d_2: \text{Häuser mit Gärten zu vermieten})</td>
</tr>
<tr>
<td>2</td>
<td>(d_5: \text{Der Garten in unserem italienischen Haus blüht})</td>
</tr>
<tr>
<td>3</td>
<td>(d_4: \text{Die italienischen Gärtners sind im Garten})</td>
</tr>
<tr>
<td>4</td>
<td>(d_3: \text{Häuser: In Italien, um Italien, um Italien herum})</td>
</tr>
<tr>
<td>5</td>
<td>(d_1: \text{Wir verkaufen Häuser in Italien})</td>
</tr>
</tbody>
</table>

\[\sum_{i=1}^{iv} \sum_{j=1}^{ivq} d_{ivd ivq dsim} \]
Alternative Scoring: TF*IDF

• **1st problem:** The longer a doc, the higher the probability of matching query terms by pure chance (it has more terms)
 - Solution: Normalize TF values on document length (yields $0 \leq w_{dk} \leq 1$)

 $$tf''_{dk} = \frac{tf_{dk}}{|d|} = \frac{tf_{dk}}{\sum_{j=1..k} tf_{dj}}$$

 - Note: Longer docs also get down-ranked by normalization on doc-length in similarity function. Use only one measure!

• **2nd problem:** Some terms are everywhere in D, don’t help to discriminate, and should be scored less
 - Solution: Also use IDF scores

 $$w_{dk} = \frac{tf_{dk}}{|d_d|} \times idf_k$$
TF*IDF in Short

• Give terms in a doc d high weights which are …
 – frequent in d and
 – infrequent in D

• IDF deals with the consequences of Zipf’s law
 – The few very frequent (and unspecific) terms get lower scores
 – The many infrequent (and specific) terms get higher scores

• Interferes with stop word removal
 – If stop words are removed, IDF might not be necessary any more
 – If IDF is used, stop word removal might not be necessary any more
Shortcomings

• No treatment of synonyms (query expansion, …)
• No treatment of homonyms
 – Different senses = different dimensions
 – We would need to disambiguate terms into their senses (later)
• Term-order independent
 – But order carries semantic meaning
• Assumes that all terms are independent
 – Clearly wrong: some terms are semantically closer than others
 • Their co-appearance doesn’t mean more than only one appearance
 • The appearance of “red” in a doc with “wine” doesn’t mean much
 – Extension: Topic-based Vector Space Model
 • Latent Semantic Indexing (see IR lecture)
Content of this Lecture

• Information Retrieval Models
 – Boolean Model
 – Vector Space Model
• Inverted Files
Full-Text Indexing

• Fundamental operation for all IR models: \texttt{find(k, D)}
 – Given a query term \(k \), find all docs from \(D \) containing it

• Can be implemented using online search
 – Boyer-Moore, Keyword-Trees, etc.

• But
 – We generally assume that \(D \) is stable (compared to \(k \))
 – We only search for discrete terms (after tokenization)
 – \(|K|\) does not grow much with growing \(D \) after a swing-in phase

• Consequence: Better to pre-compute a term index over \(D \)
 – Also called “full-text index”
Inverted Files (or Inverted Index)

• Simple and effective index structure for terms
• Builds on the Bag of words approach
 – We give up the order of terms in docs (see positional index later)
 – We cannot reconstruct docs based on index only
• Start from “docs containing terms” (~ “docs”) and invert to “terms appearing in docs” (~ “inverted docs”)

| d1: t1, t3 |
| d2: t1 |
| d3: t2, t3 |
| d4: t1 |
| d5: t1, t2, t3 |
| d6: t1, t2 |
| d7: t2 |
| d8: t2 |

| t1: d1, d2, d4, d5, d6 |
| t2: d3, d5, d6, d7, d8 |
| t3: d1, d3, d5 |
Building an Inverted File [Andreas Nürnberger, IR-2007]

Doc1:
Now is the time for all good men to come to the aid of their country.

Doc2:
It was a dark and stormy night in the country manor. The time was past midnight.

<table>
<thead>
<tr>
<th>Term</th>
<th>Doc ID</th>
<th>Term</th>
<th>Doc ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>now</td>
<td>1</td>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>is</td>
<td>1</td>
<td>aid</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
<td>all</td>
<td>1</td>
</tr>
<tr>
<td>time</td>
<td>1</td>
<td>and</td>
<td>2</td>
</tr>
<tr>
<td>for</td>
<td>1</td>
<td>come</td>
<td>1</td>
</tr>
<tr>
<td>all</td>
<td>1</td>
<td>country</td>
<td>1</td>
</tr>
<tr>
<td>good</td>
<td>1</td>
<td>country</td>
<td>2</td>
</tr>
<tr>
<td>men</td>
<td>1</td>
<td>dark</td>
<td>2</td>
</tr>
<tr>
<td>to</td>
<td>1</td>
<td>for</td>
<td>1</td>
</tr>
<tr>
<td>come</td>
<td>1</td>
<td>good</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>1</td>
<td>in</td>
<td>2</td>
</tr>
<tr>
<td>the</td>
<td>1</td>
<td>is</td>
<td>1</td>
</tr>
<tr>
<td>aid</td>
<td>1</td>
<td>it</td>
<td>2</td>
</tr>
<tr>
<td>of</td>
<td>1</td>
<td>manor</td>
<td>2</td>
</tr>
<tr>
<td>their</td>
<td>1</td>
<td>men</td>
<td>1</td>
</tr>
<tr>
<td>country</td>
<td>1</td>
<td>midnight</td>
<td>1</td>
</tr>
<tr>
<td>it</td>
<td>2</td>
<td>night</td>
<td>2</td>
</tr>
<tr>
<td>was</td>
<td>2</td>
<td>now</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td>of</td>
<td>1</td>
</tr>
<tr>
<td>dark</td>
<td>2</td>
<td>past</td>
<td>2</td>
</tr>
<tr>
<td>and</td>
<td>2</td>
<td>stormy</td>
<td>2</td>
</tr>
<tr>
<td>stormy</td>
<td>2</td>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>night</td>
<td>2</td>
<td>the</td>
<td>1</td>
</tr>
<tr>
<td>in</td>
<td>2</td>
<td>the</td>
<td>2</td>
</tr>
<tr>
<td>the</td>
<td>2</td>
<td>their</td>
<td>1</td>
</tr>
<tr>
<td>country</td>
<td>2</td>
<td>time</td>
<td>1</td>
</tr>
<tr>
<td>manor</td>
<td>2</td>
<td>time</td>
<td>2</td>
</tr>
<tr>
<td>the</td>
<td>2</td>
<td>to</td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>2</td>
<td>to</td>
<td>1</td>
</tr>
<tr>
<td>their</td>
<td>1</td>
<td>was</td>
<td>2</td>
</tr>
<tr>
<td>time</td>
<td>2</td>
<td>was</td>
<td>2</td>
</tr>
<tr>
<td>was</td>
<td>2</td>
<td>was</td>
<td>2</td>
</tr>
</tbody>
</table>

Sort

Merge
Boolean Retrieval

• For each query term k_i, look-up doc-list D_i containing k_i

• Evaluate query in the usual order
 - $k_i \land k_j : D_i \cap D_j$
 - $k_i \lor k_j : D_i \cup D_j$
 - $\text{NOT } k_i : D \setminus D_i$

• Example

(time AND past AND the) OR (men)
 = $(D_{time} \cap D_{past} \cap D_{the}) \cup D_{men}$
 = $(\{1,2\} \cap \{2\} \cap \{1,2\}) \cup \{1\}$
 = $\{1,2\}$
Necessary and Obvious Tricks

• How do we efficiently look-up doc-list D_i?
 - Bin-search on inverted file: $O(\log(|K|))$
 - Inefficient: Random access on IO
 - Better solutions: Later

• How do we support union and intersection efficiently?
 - Naïve algorithm requires $O(|D_i|*|D_j|)$
 - Better: Keep doc-lists sorted
 - Intersection $D_i \cap D_j$: Sort-Merge in $O(|D_i| + |D_j|)$
 - Union $D_i \cup D_j$: Sort-Merge in $O(|D_i| + |D_j|)$
 - If $|D_i| << |D_j|$, use binsearch in D_j for all terms in D_i
 • Whenever $|D_i| + |D_j| > |D_i|^*\log(|D_j|)$
Adding Frequency

- VSM with TF*IDF requires term frequencies
- Split up inverted file into dictionary and posting list
Searching in VSM

• Assume we want to retrieve the top-\(r\) docs

• Algorithm
 – Initialize an empty doc-list \(S\) (as hash table or priority queue)
 – Iterate through query terms \(k_i\)
 • Walk through posting list (elements \((docID, TF)\))
 – If \(docID \in S\): \(S[docID] = + IDF[k_i]*TF\)
 – else: \(S = S.append((docID, IDF[k_i]*TF))\)
 • Length-normalize value and compute cosine
 – Return top-\(r\) docs in \(S\)

• \(S\) contains all and only those docs containing at least one \(k_i\)
Space Usage

• **Size of dictionary:** $O(|K|)$
 - Zipf’s law: From a certain corpus size on, new terms appear only very infrequently
 • But there are always new terms, no matter how large D
 • Example: 1GB text (TREC-2) generates only 5MB dictionary
 - **Typically:** <1 Million
 • Many more in multi-lingual corpora, web corpora, etc.

• **Size of posting list**
 - Theoretic worst case: $O(|K| \times |D|)$
 - Practical: $O(\text{avg}(|d_i|) \times |D|)$

• **Implementation**
 - Dictionary kept in **main memory**
 - Posting lists remains on disk
Dictionary as Array

- Dictionary as array (keyword, DF, ptr)
- Since keywords have different lengths: Implementation will be (ptr1, DF, ptr2)
 - ptr1: To string (the keyword)
 - ptr2: To posting list
- Search: Compute \(\log(|K|) \) memory addresses, follow ptr1, compare strings: \(O(\log(|K|) \times |k|) \)
- Construction: Essentially for free

<table>
<thead>
<tr>
<th>Term</th>
<th>DF</th>
<th>ptr</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>ptr</td>
</tr>
<tr>
<td>aid</td>
<td>1</td>
<td>ptr</td>
</tr>
<tr>
<td>all</td>
<td>1</td>
<td>ptr</td>
</tr>
<tr>
<td>and</td>
<td>1</td>
<td>ptr</td>
</tr>
<tr>
<td>come</td>
<td>1</td>
<td>ptr</td>
</tr>
<tr>
<td>country</td>
<td>2</td>
<td>ptr</td>
</tr>
<tr>
<td>dark</td>
<td>1</td>
<td>ptr</td>
</tr>
<tr>
<td>for</td>
<td>1</td>
<td>ptr</td>
</tr>
<tr>
<td>good</td>
<td>1</td>
<td>ptr</td>
</tr>
<tr>
<td>in</td>
<td>1</td>
<td>ptr</td>
</tr>
<tr>
<td>is</td>
<td>1</td>
<td>ptr</td>
</tr>
<tr>
<td>it</td>
<td>1</td>
<td>ptr</td>
</tr>
<tr>
<td>manor</td>
<td>1</td>
<td>ptr</td>
</tr>
<tr>
<td>men</td>
<td>1</td>
<td>ptr</td>
</tr>
<tr>
<td>midnight</td>
<td>1</td>
<td>ptr</td>
</tr>
<tr>
<td>night</td>
<td>1</td>
<td>ptr</td>
</tr>
<tr>
<td>now</td>
<td>1</td>
<td>ptr</td>
</tr>
</tbody>
</table>
Prefix Tree (or Information ReTRIEval)

<table>
<thead>
<tr>
<th>Term</th>
<th>IDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>aid</td>
<td>1</td>
</tr>
<tr>
<td>all</td>
<td>1</td>
</tr>
<tr>
<td>and</td>
<td>1</td>
</tr>
<tr>
<td>come</td>
<td>1</td>
</tr>
<tr>
<td>country</td>
<td>2</td>
</tr>
<tr>
<td>dark</td>
<td>1</td>
</tr>
<tr>
<td>for</td>
<td>1</td>
</tr>
<tr>
<td>good</td>
<td>1</td>
</tr>
<tr>
<td>in</td>
<td>1</td>
</tr>
<tr>
<td>is</td>
<td>1</td>
</tr>
<tr>
<td>it</td>
<td>1</td>
</tr>
<tr>
<td>manor</td>
<td>1</td>
</tr>
<tr>
<td>men</td>
<td>1</td>
</tr>
<tr>
<td>midnight</td>
<td>1</td>
</tr>
<tr>
<td>night</td>
<td>1</td>
</tr>
<tr>
<td>now</td>
<td>1</td>
</tr>
</tbody>
</table>

Posting file
Storing the Posting File

- Posting file is usually kept on disk
- Thus, we need an **IO-optimized data structure**
- **Static**
 - Store posting lists **one after the** other in large file
 - Posting-ptr is (large) offset in this file
- **Prepare for inserts**
 - Reserve additional space per posting
 - Good idea: Large initial posting lists get large extra space
 - Many inserts can be handled internally
 - Upon **overflow**, append entire posting list at the end of the file
 - Place **pointer at old position** – at most two access per posting list
 - Can lead to many holes – requires regular **reorganization**
Positional Information

- What if we search for phrases: “Bill Clinton”, “Ulf Leser”
 - ~10% of web searches are phrase queries
- What if we search by proximity “car AND rent/5”
 - “We rent cars”, “cars for rent”, “special care rent”, “if you want to rent a car, click here”, “Cars and motorcycles for rent”, ...
- We need positional information

Doc1:
Now is the time for all good men to come to the aid of their country.

Doc2:
It was a dark and stormy night in the country manor. The time was past midnight.

Table:

<table>
<thead>
<tr>
<th>Doc #</th>
<th>TF</th>
<th>Pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

Word frequencies:
- night: 6
- now: 1
- of: 1
- past: 2
- stormy: 2
- the: 1,2
- their: 1
- time: 1,2
- to: 1,2
- was: 1,2

Diagram:

<Diagram showing positional information with word frequencies and their positions in the text.>
Answering Phrase Queries

- Search posting lists of all query terms
- During intersection, also positions must fit
Effects

- Dictionary is not affected
- Posting lists get much larger
 - Store many $<\text{docID},\text{pos}>,\text{TF}>$ instead of few $<\text{docID},\text{TF}>$
 - Index with positional information typically 30-50% larger than the corpus itself
 - Especially frequent words require excessive storage
- Use compression
Self Assessment

- Explain the vector space model
- How is the size of K (vocabulary) influenced by pre-processing?
- Describe some variations of deducing term weights
- How could we extend the VSM to also consider the order of terms (to a certain degree)?
- Explain idea and structure of inverted files?
- What are possible data structures for the dictionary? Advantages / disadvantages?
- What decisions influence the size of posting lists?