

Maschinelle Sprachverarbeitung

Assignment 4: Rule-Based Dictionary gene NER

Ulf Leser

Assignment

- Perform dictionary-based gene named entity recognition
- Input
 - Training corpus (with gene names tagged) and a test corpus (only text, no annotations)
 - IOB format
 - All multi-token entities have been removed
 - Dictionary (processing is allowed)
- Output: Annotated test corpus
- You must not apply ML (SVM, HMM, CRF, ...)
- Feel free to use a IE-framework
 - Or write your own fuzzy dictionary matching algorithm

We Provide

- "dictionary_genenames.txt": ~100.000 human gene names
 - Excerpt from Entrez Gene, all single token
 - All lower case, no duplicates
- "english_stop_words.txt" ~500 stop words
- "training_annotated.iob": A gold standard corpus
 - Only in B-Protein (single token)
- "test_no_annotation.iob": Evaluation texts
 - Only B-Protein (single token)
- "eval.scala": Evaluation script
 - Run with<scala eval.scala goldstandard.iob predict.iob>

Your Task: Tag all genes in the test corpus

- Only rule-based / dictionary methods allowed
 - Edit-distance matching, n-gram overlap, stemming, regex, ...
 - No classification: CRF, HMM, SVM, Naïve Bayes, ...
- Rules may be derived from the training data
 - OK: Count POS-n-Grams around matches and turn into rule
 - Not OK: Count POS-n-Grams and turn frequencies into features
- If you want to do something fancy, ask for approval first
- Test method using our evaluation script on the test data
- May use IE-framework: LingPipe, OpenNLP, NLTK, GATE
 - Process the corpus: Load corpus and remove stop words
 - Tag all occurrences of terms from the gene list [in the corpus]
 - Do whatever is necessary with the tool you have chosen

Example

Number	0
of	0
glucocorticoid	B-protein
receptors	0
in	0
lymphocytes	0
and	0
their	0
sensitivity	0
to	0
hormone	0
action	0
•	0
The	0
study	0
demonstrated	0
a	0

Competition

- Best F-measure on strict comparison wins
 - See evaluation script
 - scala eval.scala goldstandard.iob goldstandard.predict

• Precision: 0,40

• Recall: 0,44

• F1 Score: 0,42

Submission by Mail to Ulf Leser

- Results due on 24.1.2016
- Must run on gruenau2
- Performance (F1) must be better than 35% on test data
- Submit one JAR file called groupX.jar
 - java –jar groupX.jar test_file_name new_file
 - new_file is the IOB-tagged version of test_file_name
 - Include source code and results of evaluation on training data
 - Use our evaluation script
 - Precision, Recall, F1