Text Analytics

Searching Terms

Ulf Leser
Content of this Lecture

- Searching strings
- Naïve exact string matching
- Boyer-Moore
- BM-Variants and comparisons
Searching Strings in Text

- All IR models require finding occurrences of terms in documents
- Fundamental operation: \(\text{find}(k, D) \rightarrow P_D \)
- **Indexing**: Preprocess docs and use index for searching
 - Apply tokenization; can only find entire words
 - Classical IR technique (inverted files)
- **Online searching**: Consider docs and query as new
 - No preprocessing - slower
 - Usually without tokenization – more “searchable” substrings
 - Classical algorithmic problem: Substring search
Properties

• Advantages of substring search
 – Does not require (erroneous, ad-hoc) tokenization
 • “U.S.”, “35,00=.000”, “alpha-type1 AML-3’ protein”, …
 – Search across tokens / sentences / paragraphs
 • “, that ”, “happen. “, …
 – Searching prefixes, infixes, suffixes, stems
 • “compar”, “ver” (German), …

• Searching substrings is “harder” than searching terms
 – Number of unique terms doesn’t increase much with corpus size
 (from a certain point on)
 • English: ~ 1 Million terms, but 200 Million potential substrings of size 6
 – Need to index all possible substrings
Types of Substring Searching

- **Exact search**: Find all exact occurrences of a pattern (substring) \(p \) in \(D \)
- RegExp matching: Find all matches of a regular exp. \(p \) in \(D \)
- Approximate search: Find all substrings in \(D \) that are “similar” to a pattern \(p \)
 - Phonetically similar (Soundex)
 - Only one typo away (keyboard errors)
 - Strings that can be produced from \(p \) by at most \(n \) operations of type “insert a letter”, “delete a letter”, “change a letter”
 - ...
- Multiple strings: Searching >1 strings at once in \(D \)
Strings

• Definition
A *String S* is a sequential list of symbols from an finite alphabet Σ
 - $|S|$ is the number of symbols in S
 - Positions in S are counted from 1,...,$|S|$
 - $S[i]$ denotes the symbol at position i in S
 - $S[i..j]$ denotes the substring of S starting at position i and ending at position j (including both)
 - $S[..i]$ is the prefix of S until position i
 - $S[i..]$ is the suffix of S starting from position i
 - $S[..i]$ ($S[i..]$) is called a true prefix (suffix) of S if $i \neq 0$ and $i \neq |S|$
Exact Substring Matching

- Given: Pattern P to search for, text T to search in
 - We require $|P| \leq |T|$
 - We assume $|P| \ll |T|$
- Task: Find all occurrences of P in T
 - Where is “GATATC”
How to do it?

- The straight-forward way (naïve algorithm)
 - We use two counter: t, p
 - One (outer, t) runs through T
 - One (inner, p) runs through P
 - Compare characters at position T[t+p] and P[p]

```plaintext
for t = 1 to |T| - |P| + 1
    match := true;
    p := 1;
    while ((match) and (p <= |P|))
        if (T(t + p - 1) <> P(p)) then
            match := false;
        else
            p := p + 1;
        end if;
    end while;
    if (match) then
        -> OUTPUT t
    end if;
end for;
```
Examples

Typical case

<table>
<thead>
<tr>
<th>T</th>
<th>ctgagatcgcgta</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>gagatc</td>
</tr>
<tr>
<td></td>
<td>gataatc</td>
</tr>
<tr>
<td></td>
<td>gataatc</td>
</tr>
<tr>
<td></td>
<td>gataatc</td>
</tr>
</tbody>
</table>

Worst case

<table>
<thead>
<tr>
<th>T</th>
<th>aaaaaaaaaaa</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>aaaaat</td>
</tr>
<tr>
<td></td>
<td>aaaaat</td>
</tr>
</tbody>
</table>

- **How many comparisons do we need in the worst case?**
 - t runs through T
 - p runs through the entire P for every value of t
 - Thus: $|P|*|T|$ comparisons
 - Indeed: The algorithm has worst-case complexity $O(|P|*|T|)$
Other Algorithms

- Exact substring search has been researched for decades
 - Boyer-Moore, Z-Box, Knuth-Morris-Pratt, Karp-Rabin, Shift-AND, …
 - All have WC complexity $O(|P| + |T|)$
 - For many, WC=AC, but empirical performance differs much
 - Real performance depends much on size of alphabet and composition of strings (algs have their strength in certain settings)
 - Better performance possible if T is preprocessed (up to $O(|P|)$)

- In practice, our naïve algorithm is quite competitive for non-trivial alphabets and biased letter frequencies
 - E.g., English text

- But we can do better: Boyer-Moore
 - We present a simplified form
 - BM is among the fastest algorithms in practice
Content of this Lecture

- Searching strings
- Naïve exact string matching
- Boyer-Moore
- BM-Variants and comparisons
Boyer-Moore Algorithm

- Main idea
 - As for the naïve alg, we use two counters (inner loop, outer loop)
 - Inner loop runs from right-to-left
 - If we reach a mismatch, we know
 - The character in T we just haven’t seen
 - This is captured by the bad character rule
 - The suffix in P we just have seen
 - This is captured by the good suffix rule

- Use this knowledge to make longer shifts in T
Bad Character Rule

- **Setting 1**
 - We are at position t in T and compare right-to-left
 - Let i by the position of the first mismatch in P
 - We saw $n-i+1$ matches before
 - Let x be the character at the corresponding pos $(t-n+i)$ in T
 - Candidates for matching x in P
 - **Case 1:** x does not appear in P at all – we can move t such that $t-n+i$ is not covered by P anymore

\[
\begin{array}{c}
T \quad xabxfabzzfabxzzzbz
\end{array}
\]
\[
\begin{array}{c}
P \quad abwxyabzz
\end{array}
\]

\[
\begin{array}{c}
T \quad xabxfabzzabwzzbzzb
\end{array}
\]
\[
\begin{array}{c}
P \quad abwxyabzz
\end{array}
\]
Bad Character Rule 2

- **Setting 2**
 - We are at position \(t \) in \(T \) and compare right-to-left.
 - Let \(i \) by the position of the first mismatch in \(P \).
 - Let \(x \) be the character at the corresponding pos \((t-n+i) \) in \(T \).
 - Candidates for matching \(x \) in \(P \):
 - **Case 1**: \(x \) does not appear in \(P \) at all.
 - **Case 2**: Let \(j \) be the right-most appearance of \(x \) in \(P \) and let \(j < i \) – we can move \(t \) such that \(j \) and \(i \) align.

```
T  xabxkabzzabwzzbzzb
P  abzwyabzz
   ^  ^
   j  i
```

```
T  xabxkabzzabwzzbzzb
P  abzwyabzz
   ^
   What next?
```

```
T  xabxkabzzabwzzbzzb
P  abzwyabzz
   ^
   What next?
```
Bad Character Rule 3

• Setting 3
 - We are at position t in T and compare right-to-left
 - Let i by the position of the first mismatch in P
 - Let x be the character at the corresponding pos $(t-n+i)$ in T
 - Candidates for matching x in P
 • Case 1: x does not appear in P at all
 • Case 2: Let j be the right-most appearance of x in P and let $j<i$
 • Case 3: As case 2, but $j>i$ – we need some more knowledge

\[
\begin{array}{c}
T \quad xabxkabzzabwz\boxed{zb}zzb \\
P \quad abzwyabzz
\end{array}
\]
Preprocessing 1

• In case 3, there are some “x” right from position i
 - For small alphabets (DNA), this will almost always be the case
 - In human languages, this is often the case (e.g. for vowels)
 - Thus, case 3 is a usual one

• These “X” are irrelevant – we need the right-most x left of i

• This can (and should!) be pre-computed
 - Build a two-dimensional array $A[|\Sigma|,|P|]$
 - Run through P from left-to-right (pointer i)
 - If character c appears at position i, set all $A[c,j]:=i$ for all $j>=i$
 - Requested time (complexity?) negligible
 • Because $|P|<<|T|$ and complexity independent from T

• Array: Constant lookup, needs some space (lists …)
(Extended) Bad Character Rule

- EBCR: Shift t by \(i-A[x,i]\) positions
- Simple and effective for larger alphabets
- For random strings over \(\Sigma\), \text{average shift-length is } |\Sigma|/2
 - Thus, \(n\)\# of comparisons down to \(|T|*2/|\Sigma|\)
- Worst-Case complexity does not change
 - Why?
(Extended) Bad Character Rule

- EBCR: Shift t by $i - A[x,i]$ positions
- Simple and effective for larger alphabets
- For random strings over Σ, average shift-length is $|\Sigma|/2$
 - Thus, n# of comparisons down to $|P|*|T|*2/|\Sigma|$
- Worst-Case complexity does not change
 - Why?

![Diagram showing the application of the EBCR algorithm]
Good-Suffix Rule

- Recall: If we reach a mismatch, we know
 - The character in T we just haven’t seen
 - The suffix in P we just have seen

- Good suffix rule
 - We have just seen some matches (let these by S) in P
 - Where else does S appear in P?
 - If we know the right-most appearance S' of S in P, we can immediately align S' with the current match in T
 - If S does not appear anymore in P, we can shift t by $|P|$
Good-Suffix Rule – One Improvement

• Actually, we can do a little better
• Not all S' are of interest to us
Good-Suffix Rule – One Improvement

- Actually, we can do a little better
- Not all S' are of interest to us

We only need S' whose next character to the left is not y
- Why don’t we directly require that this character is x?
 - Of course, this could be used for further optimization
Concluding Remarks

- **Preprocessing 2**
 - For the GSR, we need to find all occurrences of all suffixes of \(P \) in \(P \)
 - This can be solved using our naïve algorithm for each suffix
 - Or, more complicated, in linear time (not this lecture)

- **WC complexity of Boyer-Moore is still \(O(|P|*|T|) \)**
 - But average case is sub-linear
 - WC complexity can be reduced to linear (not this lecture), but this usually doesn’t pay-off on real data
Example

\[
\text{b b c g g b c b a a g g b b a a c a b a a b g b a a c g c a b a a b c a b}
\]
\[
\text{c a b a a b g b a a}
\]

EBCR wins
\[
\text{EBCR wins}
\]
\[
\text{c a b a a b g b a a}
\]

GSR wins
\[
\text{GSR wins}
\]
\[
\text{c a b a a b g b a a}
\]

GSR wins
\[
\text{GSR wins}
\]
\[
\text{c a b a a b g b a a}
\]

Match Good suffix Ext. Bad character
\[
\text{c a b a a b g b a a}
\]

Mismatch
Content of this Lecture

• Searching strings
• Naïve exact string matching
• Boyer-Moore
• BM-Variants and comparisons
Two Faster Variants

• BM-Horspool
 - Drop the good suffix rule – **GSR makes algorithm slower** in practice
 • Rarely shifts longer than EBCR
 • Needs time to compute the shift
 - Instead of looking at the mismatch character x, always look at the symbol in T aligned to the last position of P
 • Generates longer shifts on average (i is maximal)

• BM-Sunday
 - Instead of looking at the mismatch character x, always look at the symbol in T after the symbol aligned to the last position of P
 • Generates even longer shifts on average

• Alternative: Always look at the **least frequent** (in the language of T) symbol of P first
Empirical Comparison

- Shift-OR: Using parallelization in CPU (only small alphabets)
- BNDM: Backward nondeterministic Dawg Matching (automata-based)
- BOM: Backward Oracle Matching (automata-based)
Self Assessment

• Explain the Boyer-Moore algorithm
• Which rule is better – GSR or EBCR?
• How can we efficiently implement EBCR?
• How does the Sunday algorithm deviate from BM?
• How can we use character frequencies to speed up BM? If we do so - which part of the algorithm is sped up?