Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
 - kdb Trees
 - R Trees
Multidimensional Indexing

• Access methods so far support access on attribute(s) for
 - **Point query**: Attribute = const (Hashing and B+ Tree)
 - **Range query**: \(\text{const}_1 \leq \text{Attribute} \leq \text{const}_2 \) (B+ Tree)

• What about more complex queries?
 - **Point query** on more than one attribute
 • Combined through AND (intersection) or OR (union)
 - **Range query** on more than one attribute
 - **Queries for objects with size**
 • “Sale” is a point in a multidimensional space
 - Time, location, product, …
 • **Geometric objects** have size: rectangle, cubes, polygons, …
 - **Similarity queries**: Most similar object, closest object, …
Example: Geometric Objects

- Geographic information systems (GIS) store rectangles
 \[
 \text{RECT} \ (X_1, \ Y_1, \ X_2, \ Y_2)
 \]

- Typical queries on a database of rectangles
 - **Box query**: All rectangles containing point (5,6)
 \[
 \text{SELECT * FROM RECT}
 \]
 \[
 \text{WHERE } X_1 \leq 5 \ \text{and} \ Y_1 \leq 6 \ \text{and}
 \]
 \[
 X_2 \geq 5 \ \text{and} \ Y_2 \geq 6
 \]
 - Similar to range query – all points within a given rectangle
 - **Partial match query**: Rectangles containing points with X=3
 \[
 \text{SELECT * FROM RECT}
 \]
 \[
 \text{WHERE } X_1 \leq 3 \ \text{and} \ X_2 \geq 3
 \]
 - All rectangles with *non-empty intersection* with rectangle Q

- Also other shapes: Lines, polygons, 3D, …
Example: 2D objects

- Objects are **points in a 2D space**
- Queries
 - Exact: All objects with coordinates \((X_1, Y_1)\)
 - Box: Find all points in a given rectangle
 - Partial: All points/rectangles with X (Y) coordinate between …

<table>
<thead>
<tr>
<th>Point</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P2</td>
<td>2.5</td>
<td>2</td>
</tr>
<tr>
<td>P3</td>
<td>4.5</td>
<td>7</td>
</tr>
<tr>
<td>P4</td>
<td>4.7</td>
<td>6.5</td>
</tr>
<tr>
<td>P5</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>P6</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>P7</td>
<td>8.3</td>
<td>3</td>
</tr>
</tbody>
</table>
Option 1: Composite Indexes

- Box queries: efficiently supported
- Partial match query
 - All points/rectangles with X coordinate between ...
 - Efficiently supported
 - All points/rectangles with Y coordinate between ...
 - Not efficiently supported

```
CREATE INDEX
ON tab(x,y)
```

<table>
<thead>
<tr>
<th>Point</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>P2</td>
<td>2,5</td>
<td>2</td>
</tr>
<tr>
<td>P3</td>
<td>4,5</td>
<td>7</td>
</tr>
<tr>
<td>P4</td>
<td>4,7</td>
<td>6,5</td>
</tr>
<tr>
<td>P5</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>P6</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>P7</td>
<td>8,3</td>
<td>3</td>
</tr>
</tbody>
</table>
Composite Index

• Usage
 - Prefix of attribute list in index must be present in query
 - The longer the prefix, the more efficient the evaluation

• Alternatives
 - Also build index (Y, X)
 • Combinatorial explosion for more than two attributes
 - Use independent indexes on each attribute
Option 2: Independent Indexes

- Partial match query on one attribute: Supported
- Partial match query on many attributes or box query
 - Compute TID lists for each attribute
 - Intersect

CREATE INDEX ON tab(x)
CREATE INDEX ON tab(y)
Example – Independent versus Composite Index

• Data
 - 3 dimensions of range 1,...,100
 - 1,000,000 points, randomly distributed
 - Index blocks holding 50 keys or records

• Range query: Points with \(40 \leq x \leq 50\), \(40 \leq y \leq 50\), \(40 \leq z \leq 50\)
 - Each of the three indexes has height 4
 - Using x-index, we generate TID-list \(|X| \sim 100,000\)
 - Using y-index, we generate TID-list \(|Y| \sim 100,000\)
 - Using z-index, we generate TID-list \(|Z| \sim 100,000\)
 - For each index, we have \(4 + 100,000/50 = 2004\) IO
 - Hopefully, we can keep the three lists in main memory
 - Intersection yields app. 1,000 points, together \(6012\) IO
Composite Index

Indexes on X

Indexes on Y

Indexes on Z
Using composite index (X,Y,Z)

- **Key length increases** – assume \(k = 30 \)
- Index is higher: height \(\sim 5 \)
 - Worst case – index blocks only 50% filled
- We descend in 5 IO to leaves, read 10 points (1 IO),
 ascend to Y-axis (2 IO – but cached), descend to leaves (2 IO),
 read 10 points (1 IO) ...
- We do this 10*10 times
- Altogether
 - \(k = 30 \Rightarrow \text{app. } 3 + 100 \times (2+1) \sim 305 \text{ IO} \)
 - \(k = 10 \Rightarrow \text{app. } 4 + 100 \times (3+1) \sim 404 \text{ IO} \)
- But: Much random IO
Conclusion

- We want composite indexes: Less IO
 - Benefit grows for low-selectivity queries
 - TID lists don’t fit into main memory – paging, more IO
 - If selectivity is low, scanning of relation might be faster than intersection single-attribute indexes
- For partial match queries, we would need to index all attribute combinations – not feasible
- Solution: Use multidimensional indexes
 - Support partial match queries without a pre-defined priority of dimensions
 - Ideally, we would have nearby points nearby on disk
 - In an ideal world, we would need only 1000/30~33 IO
 - Area of intensive research for decades
Multidimensional Indexes

• All dimensions are equally important
• Specialized MDIS for objects with or without extend
• Critical issues
 - Balancing: Worst case search complexity
 - Size: Amount of space required on disk versus # of objects stored
 - Locality: Neighbors in space are (hopefully) stored on nearby blocks
 • Necessary for range / partial match queries
 • Necessary for nearest neighbor queries
 - The nearest, all within distance k
Caveats

• Things get complicated if data is not uniformly distributed
 - Dependent attributes (age – weight, income, height, …)
 - Clustering of points

• Curse of dimensionality: MDIS degrade for many dims
 - Trees difficult to balance, bad space usage, excessive management cost, expensive insertions/deletions, …

• Alternative (partially): Bitmap indexes
 - Very small memory footprint, only for discrete attribute values, range queries become large disjunctions

• Commercially, MDIS are mostly used for …
 - Geometric objects (spatial extender)
 - Native implementation of multidimensional data model (DWH)
Geographic Information Systems
• Customer, logistic centre, supplier, company division, ...
Multimedia Databases

- Map object into feature vector
 - Here: Tumor images; FV derived from mathematical morphology
- Compute **nearest neighborhood queries in feature space**
 - Common approach: Filters away false positives as fast as possible
 - For instance by using FV at different levels of granularity
 - Often, a final check of temporary results is necessary
Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
 - kdb Trees
- R Trees
Partitioned Hashing

- Let $a_1, a_2, ..., a_d$ be the attributes to be indexed
- Define a hash function h_i for each a_i generating a bitstring
- **Definition**
 - Let $h_i(a_i)$ map each a_i into an integer with b_i bit
 - Let $b = \sum b_i$ (length of global hash key in bits)
 - The global hash function $h(v_1, v_2, \ldots, v_d) \rightarrow [0, \ldots, 2^b-1]$ is defined as $h(v_1, v_2, \ldots, v_d) = h_1(v_1) \oplus h_2(v_2) \oplus \ldots \oplus h_k(v_d)$
- We need $B = 2^b$ buckets
 - Static address space – dynamic structures later
Example

- Data: (3,6),(6,7),(1,1),(3,1),(5,6),(4,3),(5,0),(6,1),(0,4),(7,2)
- Let h_1, h_2 be $(b_1=b_2=1)$

 $h_i(a_i) = \begin{cases}
 0 & \text{if } 0 \leq a_i \leq 3 \\
 1 & \text{otherwise}
 \end{cases}$

- There are four buckets with address 00, 01, 10, 11
Queries with Partitioned Hashing

• Exact point queries: Direct access to bucket

• Partial match queries
 - Only parts of the global hash key are determined
 - Use those as filter; scan all buckets passing the filter
 - Let c be the number of unspecified bits
 - Then 2^c buckets must be searched
 - These are certainly not ordered on disk—random IO

• Range queries
 - Not supported, if hash function doesn’t preserve order
 - Example of order-preserving hash function?
 - Not order preserving: modulo
 - Order preserving: division
Order Preserving Hash Function

- **Example**
 - Suppose \(d=3 \), each dim with range 1..1024 (10 bits)
 - Use three highest bits as hash keys in each dimension
 - **Order preserving**; equal to division by 64 (right-shift 7 times)
 - Global hash key: 9 bit, hence \(2^9=512 \) buckets
 - **Partial range query**: points with \(200<y<300 \) and \(z<600 \)
 - \(h_y(200)=0011001000, h_y(300)=0100101100, h_z(600)=1001011000 \)
 - Scan buckets with
 - X-coordinate: ?
 - Y-coordinate: between 001 and 010 (001, 010)
 - Z-coordinate: less than 100 (000, 001, 010, 011)
 - We need to scan \(8 (x) \times 2 (y) \times 4 (z) = 64 \) buckets

- **Vulnerable to not-uniformly distributed data**
 - Use Modulo instead – and lose order-preservation
Conclusions

• Neighboring points in space or not neighbors on disk
 - (Partial) range queries generate random IO
 - No support for nearest neighbor queries

• **Static address** space (as described here)
 - Problem if buckets overflow
 - Can be combined with extensible/linear hashing
 - Careful: Partitions of the hash function grow independently
 - Directory in extensible hashing can grow quite large
 - Must be buffered; more IO

• No adaptation to **clustered data** – overflow buckets or large directories
Content of this Lecture

- Introduction to multidimensional indexing
- Partitioned Hashing
 - Grid Files
 - kdb Trees
 - R Trees
Grid File

• Classical multidimensional index structure
 - Conceptually simple
 - Can be seen as extensible version of partitioned hashing
 - Good for uniformly distributed data, but for skewed data
 - Numerous variations, we only look at the base form

• Design goals
 - Index point objects
 - Support exact, partial match, and neighbor queries
 - **Guarantee “two IO” access to each point**
 - Under some assumptions
 - **Adapt dynamically** to the number of points
Principle

• Partition each dimension into disjoint intervals (scales)
• Intersection of all intervals defines grid cells
 - Convex d-dimensional hypercubes
• Grid cells are addressed from the grid directory (GD)
Principle

- Partition each dimension into disjoint intervals (scales)
- Intersection of all intervals defines grid cells
 - Convex d-dimensional hypercubes
- Grid cells are addressed from the grid directory (GD)
- Cells are grouped in regions; region = bucket = block
 - When buckets overflows - split region into cells
 - When cells overflow - new scales

- Buckets hold points + TID
Exact Point Search

• Assumption: **GD in main memory**
 - Size: $|S_1| \times |S_2| \times \ldots \times |S_d|$, when S_i is the set of scales for dim i
• 1. Compute grid cell
 - Look-up point coordinate in set of scales gives GD coordinates
 - Cell in GD contain bucket address on disk
 - Bucket contains all data points in this grid cell (maybe more)
• 2. **Load block** and find point(s): 1st IO
 - As usual, we do not count search inside the block
• 3. Access record following TID: 2nd IO
Other Queries

- **Range query**
 - Compute all matching scales
 - Access all corresponding cells in GD
 - Load and search all buckets (*random IO*)

- **Partial match query**
 - Compute partial GD coordinates
 - All GD cells with these coordinates may contain points (*random IO*)

- **Neighborhood search**
 - No specific support
 - Compute all surrounding scale intersections
 - If nearest neighbor is searched, *iteratively increase distance*
Inserting Points

- Search grid cell; if bucket has space: Insert point
- Otherwise (overflow): **Split cells**
 - Assume there were no regions – each cell points to its own block
 - Choose a dimension and point in the interval
 - Split all affected grid cells (generates many new cells)
 - Consider \(n \) dimensions and \(S_i \) intervals in dimension \(i \)
 - Split in dim \(i \) affects increases \(d_1 \times \cdots \times d_{i-1} \times d_{i+1} \times \cdots \times d_n \) cells in GD
 - Example: \(d=3, S_i=4; |GD|=4^3=64; \) any split affects \(4^2 \) cells
 - Problem – Many un-overflown blocks need to be split
 - Many empty cells (NULL pointer) or almost empty blocks
 - Choice of dimension and interval is very difficult and never perfect
 - Optimally, we would like to split as many very full blocks as possible
 - We also want to consider our future expectations
Example

- Imagine one block holds 3 points
 - [Usually scales are unevenly spaced]
- New point causes overflow

- Vertical split
 - Splits 2 (3,4)-point blocks
 - Leaves one 3-point block

- Horizontal split
 - Splits 2 (3,4)-point blocks
 - Leaves one 3-point block
Inserting Points – With Regions

- Regions: Cells pointing to the same block
- Search cell
- Space in block? Yes – insert point
- Otherwise
 - If block is shared
 - Split region into smaller regions (or cells)
 - Possible split dimensions/axes: scales not used for split in this region
 - No local adaptation – decisions from the past have to be obeyed
 - otherwise
 - Choose split as without regions
 - Non-overflowing blocks are untouched – only pointer is “doubled”
 - Split is not performed; regions keep their granularity
- Helps to alleviate the “many almost empty blocks” problem
Assume $k=6$

Grid File Example 1 (from Johannes Gehrke)
Grid File Example 2

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

A	B
1 | 3 |
5 | 7 |
7 | 8 |
8 | 10 |
2 | 4 |
6 | 9 |
12 | 11 |
4 | 12 |
Grid File Example 3
Grid File Example 4
We first must perform this split: immediate new overflow, „almost empty block“ again.
Grid File Example 5

<table>
<thead>
<tr>
<th>y_4</th>
<th>y_3</th>
<th>y_2</th>
<th>y_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>H</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>A</td>
<td>I</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>A</td>
<td>I</td>
<td>G</td>
<td>F</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Deleting Points

• Search point and delete
• If block become "almost empty", try to merge
 - A merge is the removal of a split
 - Must build larger convex regions
 - Or range queries become inefficient
 - This can become very difficult
 - Potentially, more than two regions need to be merged to keep convexity condition
 - Eventually, also scales may be removed

- Example: Where can we merge?
Nearest Neighbor Queries

- Search point
- Search points in same region and choose closest
 - If no point in same region, check surrounding buckets
 - Can we finish if point was found?
Nearest Neighbor Queries

- Search point
- Search points in same region and choose closest
 - If no point in same region, check surrounding buckets
 - Can we finish if point was found??
 - Usually not
 - Compute distance to all scales
 - If point found is closer than all scales, we can finish
 - Otherwise, we need to search neighboring regions
 - Do it iteratively and always adapt radius to current closest points
What’s in a Bucket?

• **Complete tuples**
 - Not compatible with other database structures (indexes, etc.)
 - Few records per data blocks
 - Frequent splits, **fast growing GD**

• **Only TIDs**
 - Many records per data block, few splits, small directory
 - But queries need to **check (load) all tuples referenced in a block to check real coordinates**

• **TIDs and coordinates**
 - Medium number of records per block, moderate growth of GD
 - No access to tuples necessary for checking coordinates
Observations

- Grid files always split at hyperplanes parallel to the dimension axes
 - This is not always optimal
 - Use other than rectangles as cell structure: circles, polygons, etc.
 - More complex- forms might not disjointly fill the space any more
 - Allow overlaps (see R trees)
- There is no guaranteed block fill degree – degeneration
- No local adaptation: GD grows very fast
 - Recall extensible hashing
- Each split finally becomes valid for all covering regions
 - Need not be realized immediately, but restricts later choices
 - Bad adaptation to skewed data