Multiple Sequence Alignment
Sum-of-Pairs and ClustalW

Ulf Leser
This Lecture

- Multiple Sequence Alignment

- The problem
- Theoretical approach: Sum-of-Pairs scores
- Practical approach: ClustalW
Multiple Sequence Alignment

- We now align multiple (n>2) sequences
 - Note: Also BLAST aligns only two sequences
- Why?
 - Imagine k sequences of the promoter region of genes, all regulated by the same transcription factor f. Which subsequence within the k sequences is recognized by f?
 - Imagine k sequences of proteins that bind to DNA. Which subsequence of the k sequences code for the part of the proteins that performs the binding?
- General
 - We want to know the common part(s) in k sequences
 - “common” does not mean identical
 - This part can be anywhere within the sequences
Definition

- A **multiple sequence alignment (MSA)** von k Strings s_i, $1 \leq i \leq k$, is a table of k rows and l columns ($l \geq \max(|s_k|)$), such that
 - Row i contains the sequence of s_i with an arbitrary number of blanks being inserted at arbitrary positions
 - Every symbol of every s_i stands in exactly one column
 - No column contains only blanks

<table>
<thead>
<tr>
<th>AACGTGATTGAC</th>
<th>AACGTGATTGAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCGAGTCTTTTACAGT</td>
<td>TCGAGT GCTTTACAGT</td>
</tr>
<tr>
<td>GCCGTGCTAGTCG</td>
<td>GCCGTGCTAGT</td>
</tr>
<tr>
<td>TTCAGTGACGTGGTA</td>
<td>TTCA GTG GACGTG GTA</td>
</tr>
<tr>
<td>GGTGCAGACC</td>
<td>G GTGCA GAC</td>
</tr>
</tbody>
</table>
Good MSA

- We are searching for good (optimal) MSAs
- Defining „optimal“ here is not as simple as in the n=2 case
- Intuition
 - All sequences had a common ancestor and evolved by evolution
 - We want to assume as few evolutionary events as possible
 - Thus, we want few columns (~ few INSDELs)
 - Thus, we want homogeneous columns (~ few replacements)
This Lecture

- Multiple Sequence Alignment
- The problem
- **Theoretical approach:** Sum-of-Pairs scores
- **Practical approach:** ClustalW
What Should we Count?

• For two sequences
 – We scored each column using a scoring matrix
 – Find the alignment such that the total score is maximal

• But – how do we score a column with 5*T, 3*A, 1*_?
 – We would need an exponentially big scoring matrix

• Alternative: Sum-of-Pairs Score
 – We score an entire MSA
 – We score the alignment of each pair of sequences in the usual way
 – We aggregate over all pairs to score the MSA
 – We need a clever algorithm to find the MSA with the best score
Formally

- **Definition**
 - *Let M be a MSA for the set S of k sequences S={s₁,...,sₖ}*
 - *The alignment of \(s_i \) with \(s_j \) induced by M is generated as follows*
 - Remove from M all rows except \(i \) and \(j \)
 - Remove all columns that contain only blanks
 - *The sum-of-pairs score (sop) of M is the sum of all pair-wise induced alignment scores*
 - *The optimal MSA for S wrt. to sop is the MSA with the highest sop score over all possible MSA for S*
• Given a MSA over k sequences of length l – how complex is it to compute its sop-score?
• How do we find the best MSA?
Analogy

- Think of the $n=2$ case again
- Every alignment is a path through the matrix
- The **three possible directions** (up, let, up-left) conform to the **three possible constellations** in a column (XX, X_-, $-_X$)
- With growing paths, we align **growing prefixes** of both sequences
Analogy

• Assume \(n=3 \)
• Think of a 3-dimensional cube with the three sequences giving the values in each dimension
• Now, we have paths aligning growing prefixes of three sequences
• Every column has seven possible constellations (XXX, XX_, X_X, _XX, X__, _X_, __X)
Dynamic Programming in two Dimensions

- We compute the best possible alignment $d(i,j)$ for every pair of prefixes (lengths i,j) using the following formula

$$d(i, j) = \min \begin{cases}
 d(i, j-1) + 1 & \text{Insertion in one seq} \\
 d(i-1, j) + 1 & \text{Insertion in the other seq} \\
 d(i-1, j-1) + t(i,j) & \text{Match or mismatch}
\end{cases}$$
Dynamic Programming in three Dimensions

- We compute the best possible alignment \(d(i,j,k) \) for every triple of prefixes (lengths \(i,j,k \)) using the following formula:

\[
d(i,j,k) = \min \begin{cases}
 d(i-1,j-1,k-1) + c_{ij} + c_{ik} + c_{jk} & \text{Three (mis)matches} \\
 d(i-1,j-1,k) + c_{ij} + 2 & \text{One (mis)match, two ins} \\
 d(i-1,j,k-1) + c_{ik} + 2 & \\
 d(i,j-1,k-1) + c_{jk} + 2 & \\
 d(i-1,j,k) + 2 & \\
 d(i,j-1,k) + 2 & \\
 d(i,j,k-1) + 2 & \\
 d(i-1,j,k) + 2 & \\
 d(i,j-1,k) + 2 & \\
 d(i,j,k-1) + 2 &
\end{cases}
\]

Let \(c_{ij} = 0 \), if \(S_1(i) = S_2(j) \), else 1

Let \(c_{ik} = 0 \), if \(S_1(i) = S_3(k) \), else 1

Let \(c_{jk} = 0 \), if \(S_2(j) = S_3(k) \), else 1
All Possible Steps

- \(d(i-1,j-1,k-1) \)
- \(d(i,j-1,k-1) \)
- \(d(i,j,k-1) \)
- \(d(i,j-1,k) \)
- \(d(i-1,j,k) \)
- \(d(i-1,j-1,k) \)
- \(d(i-1,j,k-1) \)
- \(d(i-1,j-1,k-1) \)
Concrete Examples

- Best sop-score for $d(i,j-1,k)$ is known
- We want to compute $d(i,j,k)$
- This requires to align one symbol with two blanks (blank/blank does not count)
- $d(i,j,k) = d(i,j-1,k) + 2$

- Best sop-score for $d(i-1,j,k-1)$ is known
- We want to compute $d(i,j,k)$
- This requires aligning a blank with $s_1[i-1]$ and with $s_3[k-1]$ and to align $s_1[i-1]$ and $s_3[k-1]$
- $d(i,j,k) = d(i-1,j,k-1) + 2 + c_{ik}$
Initialization

- We need to start somewhere

- Of course, we have \(d(0,0,0)=0 \)

- Aligning in **one direction**: \(d(i,0,0)=2*i \)
 - Dito for \(d(0,j,0), d(0,0,k) \)

- Aligning in **two directions**: \(d(i,j,0)= \ldots \)
 - Let \(d_{a,b}(i,j) \) be the alignment score for \(S_a[1..i] \) with \(S_b[1..j] \)
 - \(d(i, j, 0) = d_{1,2}(i, j) + (i+j) \)
 - \(d(i, 0, k) = d_{1,3}(i, k) + (i+k) \)
 - \(d(0, j, k) = d_{2,3}(j, k) + (j+k) \)
Algorithm

initialize matrix d;
for i := 1 to \(|S_1|\)
 for j := 1 to \(|S_2|\)
 for k := 1 to \(|S_3|\)
 if \((S_1(i) = S_2(j))\) then \(c_{ij} := 0\); else \(c_{ij} := 1\);
 if \((S_1(i) = S_3(k))\) then \(c_{ik} := 0\); else \(c_{ik} := 1\);
 if \((S_2(j) = S_3(k))\) then \(c_{jk} := 0\); else \(c_{jk} := 1\);
 \(d_1 := d[i - 1,j - 1,k - 1] + c_{ij} + c_{ik} + c_{jk}\);
 \(d_2 := d[i - 1,j - 1,k] + c_{ij} + 2\);
 \(d_3 := d[i - 1,j,k - 1] + c_{ik} + 2\);
 \(d_4 := d[i,j - 1,k - 1] + c_{jk} + 2\);
 \(d_5 := d[i - 1,j,k] + 2\);
 \(d_6 := d[i,j - 1,k] + 2\);
 \(d_7 := d[i,j,k - 1] + 2\);
 \(d[i,j,k] := \min(d_1, d_2, d_3, d_4, d_5, d_6, d_7)\);
 end for;
 end for;
end for;
Bad News – Complexity

- For 3 sequences of length \(n \), we have to perform
 - There are \(n^3 \) cell corners in the cube
 - For each corner, we need to look at 7 other corners
 - Together: \(O(7 \times n^3) \) computations

- For \(k \) sequences of length \(m \)
 - There are \(n^k \) cell corners in the cube
 - For each corner, we need to look at \(2^k - 1 \) other corners
 - Together: \(O(2^k \times n^k) \) computations

- Actually, the problem is NP-complete
This Lecture

- Multiple Sequence Alignment
- The problem
- Theoretical approach: Sum-of-Pairs scores
- Practical approach: ClustalW
Scoring a MSA

- Let’s take one step back
- What happened during evolution?

- Real number of events: 8
 - sop-score: $2 + 3 + 6 + 6 + 2 + \ldots$
 - Everything is counted multiple times 🙄
Different Scoring Function

- If we knew the **phylogenetic tree** of the k sequences
 - Align every parent with all its children
 - Aggregate all alignment scores
 - This gives the “real” number of evolutionary operations
- But: Finding the true phylogenetic **tree requires a MSA**
 - Believe me; will not be covered here
- Use a heuristic: **ClustalW**
Clustal-W

• Main idea
 – Compute a “good enough” phylogeny – the guide tree
 – Use the guide tree to iteratively align small MSA to larger MSA
 • Starting from single sequences
 – Thus, escape the curse of dimensionality: Compute MSA iteratively
 • “Progressive” MSA
 • Does not necessarily find the best solution
 • Needs a fast method to align two MSA

• Works quite well in practice
• But many other, newer (better) proposals
 – DAlign, T-Coffee, HMMT, PRRT, MULTALIGN, ...
Step 1: Compute the Guide Tree

- Compute all pair-wise alignments and store in similarity matrix M
 - $M[i,j] = \text{sim}(s_i, s_j)$
- Compute the guide tree by hierarchical clustering
 - Choose the smallest $M[i,j]$
 - Let s_i and s_j form a new (next) branch of the tree
 - Compute the distance from the ancestor of s_i and s_j to all other sequences as the average of the distances to s_i and s_j
 - Set $M' = M$
 - Delete rows and columns i and j
 - Add a new column and row (ij)
 - For all $k \neq ij$: $M'[ij,k] = (M[i,k] + M[j,k]) / 2$
 - Iterate until M' has only one column / row
Example

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17</td>
<td>59</td>
<td>59</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>37</td>
<td>61</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>13</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>E</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17</td>
<td>77</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>53</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>CD</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>31</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>CD</td>
<td></td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>
Step 2: Progressive MSA

- Perform **pair-wise alignment** in the order of the guide tree
- Aligning a MSA M_1 with a MSA M_2
 - Use the usual (global) alignment algorithm
 - To score a column, compute the **average score over all pairs of symbols in this columns**
- Example

 | A | ...P... |
 | B | ...G... | Score of this column
 | C | ...P... | $(2 \times s(P, A) + s(P, Y) + 2 \times s(G, A) + s(G, Y) + 2 \times s(P, A) + s(P, Y)) / 9$
 | D | ...A... |
 | E | ...A... |
 | F | ...Y... |
Bei
er

C PADKTNVKAAWGKVGAHAGEYGA
D AADKTNVKAAWSKVGGHAGEYGA

A PEEKSAVTALWGKVNVDEYGG
B GEEKAVALALWDKVNEEEYGG

C PADKTNVKA_AWG_KVG_AHAGEYGA
D AADKTNVKAA_WS_KVGG_HAGEYGA
E AA_TNVKTA_WSSKVGG_HAPA__A

A PEEKSAV_TALWG_KV_VDEYGG
B GEEKAAV_LALWD_KV_EEEYGG
C PADKTNVKAA_WG_KVG_HAGEYGA
D AADKTNVKAA_WS_KVGG_HAGEYGA
E AA_TNVKTA_WSSKVGG_HAPA__A

Once a gap, always a gap
Issues

• There is a lot to say about whether hierarchical clustering actually computes the correct tree
 – See phylogenetic algorithms, „Algorithms in Bioinformatics“
 – Clustal-W actually uses a different, more accurate algorithm called “neighbor-joining”

• Clustal-W is fast – complexity?

• Idea behind progressive alignment
 – Find strong signals (highly conserved blocks) first
 – Outliers are added last
 – Increases the chances that conserved blocks survive
 – Several improvements to this scheme are known
Problems with progressive MSA

Source: Cedric Notredame, 2001

CLUSTALW (Score=20, Gop=-1, Gep=0, M=1)

SeqA GARFIELD THE LAST CAT
SeqB GARFIELD THE FAST CAT
SeqC GARFIELD THE VERY FAST CAT
SeqD THE FAT CAT

CORRECT (Score=24)

SeqA GARFIELD THE LAST CAT
SeqB GARFIELD THE FAST CAT
SeqC GARFIELD THE VERY FAST CAT
SeqD THE FAT CAT
Further Reading

- Merkl & Waack, chapter 13
- Böckenhauer & Bongartz, chapter 5.3