PAM and BLAST

Ulf Leser
This Lecture

• **Substitution Matrices**
 - PAM distance
 - PAM matrices

• **Scaling up Local Alignments**
 - BLAST
Substitution Matrices

- **Recall**
 - A *scoring function* is a function $s: \Sigma \times \Sigma' \rightarrow \text{Integer}$
 - We also call s a substitution matrix
 - Direct similarity
 $$sim'(A, B) = \sum_{i=1}^{n} s(A[i], B[i])$$

- **DNA**: symmetric, simple matrices

- **Protein sequences** are different
 - Very heterogeneous properties
 - Very different impact on folding
 - Substitutions *may change the 3D structure completely* or not at all
Amino Acids

Small
- **Glycine** (Gly, G) MW: 72.06
- **Alanine** (Ala, A) MW: 89.09
- **Serine** (Ser, S) MW: 97.08, $pK_a = 16$
- **Threonine** (Thr, T) MW: 101.11, $pK_a = 16$
- **Cysteine** (Cys, C) MW: 121.15, $pK_a = 8.36$

Hydrophobic
- **Valine** (Val, V) MW: 99.14
- **Leucine** (Leu, L) MW: 113.16
- **Isoleucine** (Ile, I) MW: 113.16
- **Methionine** (Met, M) MW: 131.19
- **Proline** (Pro, P) MW: 87.12

Aromatic
- **Phenylalanine** (Phe, F) MW: 147.18
- **Tyrosine** (Tyr, Y) MW: 163.18
- **Tryptophan** (Trp, W) MW: 186.21

Acidic
- **Aspartic Acid** (Asp, D) MW: 115.09, $pK_a = 3.9$
- **Glutamic Acid** (Glu, E) MW: 129.12, $pK_a = 4.87$

Amide
- **Asparagine** (Asn, N) MW: 114.11
- **Glutamine** (Gln, Q) MW: 128.14
- **Histidine** (His, H) MW: 137.14, $pK_a = 6.04$
- **Lysine** (Lys, K) MW: 128.17, $pK_a = 10.79$
- **Arginine** (Arg, R) MW: 156.10, $pK_a = 12.48$
Example

	A	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V	B	Z	
A	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-1	-1	-2	-1	1	0	-3	-2	0	-2	-1
R	-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2	-3	-1	0	
N	-2	0	6	1	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2	-3	3	0	
D	-2	-2	1	6	-3	0	2	-1	-1	-3	-4	-1	-3	-3	-1	0	-1	-4	-3	-3	4	1	
C	0	-3	-3	-3	9	-3	-4	-3	-3	-1	-1	-3	-1	-2	-3	-1	-1	-2	-2	-1	-3	-3	
Q	-1	1	0	0	-3	5	2	-2	0	-3	-2	1	0	-3	-1	0	-1	-2	-1	-2	0	3	
E	-1	0	0	2	-4	2	5	-2	0	-3	-3	1	-2	-3	-1	0	-1	-3	-2	-2	1	4	
G	-2	0	0	-1	-3	-2	-2	6	-2	-4	-4	-2	-3	-3	-2	0	-2	-2	-3	-3	-1	-2	
H	-2	0	1	-1	-3	0	0	-2	8	-3	-3	-1	-2	-1	-2	-1	-2	-2	2	-3	0	0	
I	-1	-3	-3	-3	-1	-3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3	-3	-3	
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4	-2	2	0	-3	-2	-1	-2	-1	1	-4	-3	
K	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5	-1	-3	-1	0	-1	-3	-2	-2	0	1	
M	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	0	-2	-1	-1	-1	-1	1	-3	-1	
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6	-4	-2	-2	1	3	-1	-3	-3	
P	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	-1	-1	-4	-3	-2	-2	-1	
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4	1	-3	-2	-2	0	0	
T	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-1	-2	-1	1	5	-2	-2	0	-1	-1
W	-3	-3	-4	-4	-2	-2	-3	-2	-3	-2	-3	-1	1	-4	-3	-2	11	2	-3	-4	-3		
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	-7	-1	-3	-2	
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4	-3	-2	
B	-2	-1	3	4	-3	0	1	-1	0	-3	-4	0	-3	-3	-2	0	-1	-4	-3	-3	4	1	
Z	-1	0	0	1	-3	3	4	-2	0	-3	-3	1	-1	-3	-1	0	-1	-3	-2	-2	1	4	

Where do all these numbers come from?
Is it Really Necessary?

- Let’s count how often a particular AA was replaced by any other AA
 - Using “sure” sequence alignments
- Replacement rate of Alanin (A) := 100%
- Obviously no equal distribution
- Even if we assume that mutations happen more or the less at the same rate
- ... they obviously don’t survive with the same probability
 - Mutations are suppressed to different degrees
 - A-W (Tryptophan): Strong suppression
 - A-S (Serin): Little suppression

<table>
<thead>
<tr>
<th>Code</th>
<th>Häufigkeit</th>
<th>Mutierbarkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>0.091</td>
<td>54</td>
</tr>
<tr>
<td>A</td>
<td>0.077</td>
<td>100</td>
</tr>
<tr>
<td>G</td>
<td>0.074</td>
<td>50</td>
</tr>
<tr>
<td>S</td>
<td>0.069</td>
<td>117</td>
</tr>
<tr>
<td>V</td>
<td>0.066</td>
<td>98</td>
</tr>
<tr>
<td>E</td>
<td>0.062</td>
<td>77</td>
</tr>
<tr>
<td>K</td>
<td>0.059</td>
<td>72</td>
</tr>
<tr>
<td>T</td>
<td>0.059</td>
<td>107</td>
</tr>
<tr>
<td>I</td>
<td>0.053</td>
<td>103</td>
</tr>
<tr>
<td>D</td>
<td>0.052</td>
<td>86</td>
</tr>
<tr>
<td>P</td>
<td>0.051</td>
<td>58</td>
</tr>
<tr>
<td>R</td>
<td>0.051</td>
<td>83</td>
</tr>
<tr>
<td>N</td>
<td>0.043</td>
<td>104</td>
</tr>
<tr>
<td>Q</td>
<td>0.041</td>
<td>84</td>
</tr>
<tr>
<td>F</td>
<td>0.040</td>
<td>51</td>
</tr>
<tr>
<td>Y</td>
<td>0.032</td>
<td>50</td>
</tr>
<tr>
<td>M</td>
<td>0.024</td>
<td>93</td>
</tr>
<tr>
<td>H</td>
<td>0.023</td>
<td>91</td>
</tr>
<tr>
<td>C</td>
<td>0.020</td>
<td>44</td>
</tr>
<tr>
<td>W</td>
<td>0.014</td>
<td>25</td>
</tr>
</tbody>
</table>
Filling a Substitution Matrix

• We need **app. 400 values**
 – Matrix need not be symmetric

• **Possibility 1: Analytical**
 – Capture weight, polarity, size, ...
 – Find a scoring scheme to measure the difference between two AA
 – Needs to produce a single value per AA pair
 – Every scheme would be very hard to justify
 – Not used in practice

• **Possibility 2: Empirical**
 – See and count which substitutions survived at which frequency
 – Therefore, we need examples: *Pairs of homologues and aligned protein sequences*
 – Problem: Discern short-term from long-term effects
Margaret O. Dayhoff

- “Deduce evolutionary relationships of the biological kingdoms, phyla, and other taxa from sequence evidence”

- Collection of all known protein sequences
 - First edition: 65 proteins
 - Several releases followed
 - Resulted in the Protein Information Resource (PIR)

Thanks to Antje Krause
PAM: Point-Accepted Mutations

- PAM has two meanings
 - 1 PAM – Unit for measuring the similarity of two AA sequences
 - PAM-X matrix – Substitution matrix to use when aligning two sequences that are X PAM distant
PAM as Distance Measure

• Definition
Let S_1, S_2 be two protein sequences with $|S_1|=|S_2|$. We say S_1 and S_2 are x PAM distant, iff. S_1 most probably was produced from S_2 with x single mutations per 100 AAs

• Remarks
− PAM is motivated by evolution
− Assumptions: Mutations happen with the same rate at every position of a sequence
− If mutation rate is high, mutations will occur again and again at the same position
− PAM ≠ %-sequence-identity
PAM as Distance Measure

- PAM does not deal with INSDELS – only replacements
- The PAM distance of two sequences can be estimated easily from their \%-sequence-similarity
 - Jukes-Cantor model
 - Method skipped
- Sequences with a PAM distance of 250 and above (\%-sequence-identity < 20\%) are probably not homologues
 - Twilight zone
 - Which \%-sequence-identity will two random protein sequences have?
Generating a PAM Matrix

- The PAM-X matrix contains a measure for the probability that a given AA was replaced by another given AA in two sequences that are x PAM distant.

- Estimated from data
 - Let \((S_{1,1}, S_{2,1}), \ldots, (S_{1,n}, S_{2,n})\) by \(n\) pairs of aligned sequences, each \(x\) PAM distant
 - Compute \(f(i)\), the relative frequency of AA \(A_i\) in all pairs
 - Compute \(f(i,j)\), the relative replacement frequency from \(A_i\) to \(A_j\)
 - Number of positions \(k\) in the alignments with \(S_{1,z}[k]=A_i\) and \(S_{2,z}[k]=A_j\) or vice versa
 - Then

\[
M_x(i, j) = \log \left(\frac{f(i, j)}{f(i) \times f(j)} \right)
\]
Some Explanations

• Again: A log-likelihood ratio, combining
 – chances to generate this mutation by chance given the relative frequencies of the two involved AAs
 – observed frequency of this mutation

\[
M_x(i, j) = \log \left(\frac{f(i, j)}{f(i) \cdot f(j)} \right)
\]

• Meaning
 – M(i,j) = 0: No selection
 – M(i,j) < 0: Negative selection, suppression of mutation
 – M(i,j) > 0: Positive selection, mutation is favored
Example

\begin{align*}
S_{1,1}: & \quad \text{ACGGTGAC} \\
S_{2,1}: & \quad \text{AGG_TGCC} \\
S_{1,2}: & \quad \text{GTT_AGCTA} \\
S_{2,2}: & \quad \text{TTTCAG_TA} \\
S_{1,3}: & \quad \text{GGTCAA} \\
S_{2,3}: & \quad \text{AGTC_A}
\end{align*}

Relative frequencies

\begin{align*}
A: & \quad 11/42 \\
C: & \quad 8/42 \\
G: & \quad 12/42 \\
T: & \quad 11/42
\end{align*}

Mutation rates

\begin{array}{|c|c|c|c|}
\hline
 & A & C & G \\
\hline
A & 4/19 & 1/19 & 0/19 \\
C & 2/19 & 1/19 & 0/19 \\
G & 4/19 & 1/19 & \\
T & 5/19 & & \\
\hline
\end{array}

Matrix

\begin{array}{|c|c|c|c|}
\hline
 & A & C & G \\
\hline
A & 0,48 & 0,02 & -0,15 \\
C & 0,46 & -0,01 & - \\
G & 0,41 & -0,15 & \\
T & 0,58 & & \\
\hline
\end{array}
Problems

• Depends on predefined alignments
 – Hard to define uniquely

• For larger x values, we need a substitution matrix to find optimal alignments
 – A hen-egg problem

• Several assumptions
 – Mutations are equally likely at all positions in a sequence
 – Mutation probabilities are independent from sequence neighbors

• Requires large n for each x to adequately capture rare mutations
 – Impossible
Real Substitution Matrices

• One more assumption: **Molecular clock**
 – Assume that mutations appear with equal rate over time
 – PAM-x matrices can be computed by iterated application of PAM-1

• Complete procedure
 – Choose set of \(n \) pairs with small distance and align manually
 – Use these alignments to compute \(M_1 \)
 – Compute \(M_x = (M_1)^x \)

• **BLOSUM: BLOcks SUbstitution Matrix**
 – Henikoff and Henikoff, 1993
 – Removes assumption of equal mutation rates across each sequence
 by only considering **conserved blocks**
 – Direct estimation for different PAM distances instead of error-
 propagating self multiplication
This Lecture

- Substitution Matrices
 - PAM distance
 - PAM matrices
- Scaling up Local Alignments
 - BLAST
Scaling Up Local Alignment

- Searching similar sequences (with a high local alignment score) is a fundamental operation in Bioinformatics
- Sequence databases grow exponentially
- Naïve method does not scale at all
- We need faster algorithms, even if they sometimes fail
Similarity Search Problems and their Accuracy

• Task: Given a sequence s and a database D, find all sequences T in D that are sufficiently similar to s
 – Often, exactly computing T is not feasible and not necessary (think of the WWW)
 – Assume a method that finds a set X of answers for s

• How good is this method?
 – Some sequences will be in X and T – true positives
 – Some will be in X but not T – false positives
 – Some will be in T but not X – false negatives
 – Some will be neither in X nor T – true negatives

<table>
<thead>
<tr>
<th>Prediction</th>
<th>Reality</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>TruePositive (TP)</td>
<td>FalsePositive (FP)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>FalseNegative (FN)</td>
<td>TrueNegative (TN)</td>
</tr>
</tbody>
</table>
Precision and Recall

- **Precision** = \(TP/(TP+FP) \)
 - What is the fraction of correct answers in \(X \)?
 - Related to specificity

- **Recall** = \(TP/(TP+FN) \)
 - Which fraction of correct answers from \(T \) are also in \(X \)?
 - Also called sensitivity

- **Trade-Offs**
 - Usual methods compute a score per element of \(D \)
 - All sequences with a score above a threshold \(t \) are returned as \(X \)
 - Increasing \(t \): higher precision, lower recall
 - Lowering \(t \): lower precision, higher recall
 - ... if the score correlates with correctness ...

\begin{table}
\begin{tabular}{|c|c|c|}
\hline
Reality & Prediction & Reality \\
\hline
+ & TruePositive (TP) & FalsePositive (FP) \\
- & FalseNegative (FN) & TrueNegative (TN) \\
\hline
\end{tabular}
\end{table}
Example

• Let $|DB| = 1000$, $|X| = 15$, $|T| = 20$, $|X \cap T| = 9$

<table>
<thead>
<tr>
<th></th>
<th>Real: Positive</th>
<th>Real: Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alg: Positive</td>
<td>TP = 9</td>
<td>FP = 6</td>
</tr>
<tr>
<td>Alg: Negative</td>
<td>FN = 11</td>
<td>TN = 974</td>
</tr>
</tbody>
</table>

- Precision = $\frac{TP}{TP+FP} = \frac{9}{15} = 60\%$
- Recall = $\frac{TP}{TP+FN} = \frac{9}{20} = 45\%$

• Assume we increase t: $|X| = 10$, $|X \cap T| = 7$

<table>
<thead>
<tr>
<th></th>
<th>Real: Positive</th>
<th>Real: Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alg: Positive</td>
<td>TP = 7</td>
<td>FP = 3</td>
</tr>
<tr>
<td>Alg: Negative</td>
<td>FN = 13</td>
<td></td>
</tr>
</tbody>
</table>

- Precision: 70%, recall = 35%
BLAST

• Altschul, Gish, Miller, Myers, Lipman: „Basic Local Alignment Search Tool“, J Mol Bio, 1990
 – A heuristic algorithm for sequence similarity search
 – Much faster than the naïve way
 – High recall, but not perfect
 – Very successful: You “blast” a sequence
 – NCBI runs thousands of BLAST searches every day

• A family of tools
 – Gapped-BLAST, PSI-BLAST, MegaBlast, BLAST-ALL, PATHBLAST, Name-BLAST, ...
 – BLAST for DNA, protein, DNA-protein, protein-DNA, ...
 – We only look at the simple DNA-DNA version
 – We skip several small and dirty tricks
Fundamental Idea

- **Seeds**: If two sequences have a good local alignment, then this area contains, with very high probability, a smaller area where the match is even better (or even exact)

```
TTGACTCGATTATAGTCGCGGATATACTATCG
CCTATCACAAGAATATAGTCCCTGATCCAGC

TTGACTC  GATTTATAGTCGCGGAT  ATACTATCG
CCTATCAACA  GAATATAGTCCCTGAT  CCAGC

TTGACTC  GATTTATAGTCGCGGAT  ATACTATCG
CCTATCAACA  GAATATAGTCCCTGAT  CCAGC
```
Algorithm

• Given \(s \) and \(DB = \{d_i\} \)
• 1. Compute all substrings \(s_i \) of \(s \) of length \(w \)
 – Also called \(w \)-grams
 – How many?
• 2. Find all approximate occurrences of all \(s_i \) in all \(d_j \)
 – Gapfree alignment using a matrix; score must be above threshold \(t \)
 – Hits are called \textit{seeds} – approx. occurrences of some \(s_i \) in some \(d_j \)
• 3. Extend \textit{seeds} to left and right in \(s_i \) and \(d_j \) until
 – Constantly update the similarity score
 – ... the score drops too sharply
 – ... \(s_i \) or \(s_j \) ends
 – ... the score gets too bad compared to other hits found earlier
Example

\[w=5, \ t=3, \ Matrix: \ M=+1, \ R=-1\]
\[s=ACGTGATA\]
\[d=GATTGACGTGACTGCTAGTGATACTATAT\]
\[s_1=ACGTG\]
\[s_2=CGTGA\]
\[s_3=GTGAT\]
\[s_4=TGATA\]
Visualization
Properties

- **Finding seeds efficiently** requires more work
 - Pre-compute all w-grams of all D
 - Group by w-gram
 - Called a **hash-index** (should be kept in main memory)
 - Lookup: Given w, find all matching w-grams, then all seeds

- **Exclusion method**
 - Vast majority of all sequences are never looked at because they do not contain a seed
 - This “seed” idea is used in essentially all fast alignment methods

- **Where it fails**
 - **Sensitive to t**: Too high – missing hits; too low – too slow
 - Does not consider gaps
BLAST Screenshots
BLAST-2

- Faster
 - BLAST: 90% of time spend in extensions
 - BLAST2: Two seeds in short distance
 - Needs a decrease in t

- Higher sensitivity
 - BLAST didn’t even consider gaps in the extension phase
 - BLAST2: Full local alignment starting from seeds
 - Allows an increase of t
Further Reading

- Substitution matrixes: Krane & Raymer, Chapter 3
- BLAST, BLAST2: Merkl & Waack, Chapter 12