Text Analytics

Searching with Keyword-Trees

Ulf Leser
Content of this Lecture

- **Searching Multiple Pattern: Keyword-Trees**
 - Failure Links
 - Output links
- **Approximate Search with PETER**
Searching Multiple Strings

- Often, we need to search for more than one string
 - Search all gene names from a dictionary in a given text
 - We want to search for the entire dictionary at once
- Let \(P = \{P_1, P_2, ..., P_z\} \), \(n = |P_1| + |P_2| + ... + |P_z| \)
- First attempt
 - Z-box requires \(O(m + |P_i|) \) for searching for pattern \(P_i \)
 - Naïve extension to \(z \) patterns requires \(O(z*m+n) \)
 - There is nothing we can save
- We shall improve this to \(O(m+n+k) \)
 - For same special definition of \(k \) - later
Idea

• Usually, patterns share substrings
• We are especially interested in shared prefixes (because we shall compare from left to right)
• We need to find a data structure to represent common prefixes
• Using the structure, we want to search for all patterns concurrently
Keyword Trees

- **Definition**

 Let P by a set of patterns. The *Keyword Tree* (or *trie*) for P is a tree with

 - Every edge is labeled with exactly one symbol
 - If a node has more than one child, the edges labels are all different
 - A node k represents a pattern P_i iff $\text{label}(k)=P_i$. It must hold that
 - Every leaf represents exactly one P_i
 - Every P_i is represented by exactly one node (inner node or leaf)

- **Remark**

 - Recall that in a tree the path from root to every node is unique
 - If a node k represents a pattern P_i, we say that k is marked with i, i.e., $\text{mark}(k)=i$
Example

- \(P = \{ \text{banane, bohne, bohnern, wohnen, bohren} \} \)
Constructing a Keyword Tree

• Complexity?

• Construction is $O(n)$
 – Start with P_1
 – Constructing the “tree” needs $O(|P_1|)$
 – Take P_2. Traverse the prefix of P_2 in the tree until
 • ... there is a mismatch at position i in P_2. Insert a fork and create the branch for the rest of P_2 in $O(|P_2|-i)$
 • ... P_2 was matched completely
 • This needs $O(|P_2|)$ in either case
 – Repeat for P_3 – P_z

• Since paths are unique, there is no backtracking etc.
Naive Usage – A First Attempt

• Given set P of Patterns and Template T
• Build the Keyword Tree K for P in O(n)
• Run i through the positions in T
 – Traverse the prefix of T[i..] in K
 – When passing by a marked node, report the mark
 – If we cannot match further, restart with i:=i+1 at the root of K
• Complexity: \(O(n+m\times n_{\text{max}})\), with \(n_{\text{max}} = \max(|P_i|)\)
 – Maybe faster than our naïve approach (if \(n_{\text{max}} < z\))
 – Maybe not
 – Problem: We are matching symbols in T more than once
Content of this Lecture

• Searching Multiple Pattern: Keyword-Trees
 – Failure Links
 – Output links

• Approximate Search with PETER
Failure Links

• Definition

Let K be the Keyword Tree for a set P of pattern. Let k be a node of K

- Let $\text{length}(k)$ be the length of the longest true suffix of $\text{label}(k)$ which is also a prefix of any pattern in P
 - If suffix with length >0 exists, set $\text{length}(k)=0$
- Let $\text{fl}(k)$ denote the node with:
 \[
 \text{label}(\text{fl}(k)) = \text{label}(k)[|\text{label}(k)|-\text{length}(k)+1 \ldots |\text{label}(k)|]
 \]
 - If $\text{length}(k)=0$, set $\text{fl}(k)=\text{root}$

• Remarks

- The link $(k, \text{fl}(k))$ is called the Failure Link for k
- $\text{label}(\text{fl}(k))$ is the „longest true suffix“ of $\text{label}(k)$
- $\text{fl}(k)$ must be unique
Example

\[P = \{ \text{banane, nabe, abnahme, na, abgabe} \} \]
Example

\[P = \{\text{banane, nabe, abnahme, na, abgabe}\} \]

FLs to root are not shown
Example

$P = \{ \text{banane, bohne, bohnern, wohnen, bohren} \}$

- All Failure Links point to root
 - Letters b und w are nowhere in a pattern at a position $\neq 1$
 - Thus, no true suffix can be also be a prefix
Searching with Failure Links

- Assume we search at position j in T
- We match substring $T[j..]$ in K
 - If there is a match
 - Traverse down that match and set $j++$
 - If the reached node is marked, report the mark as match
 - If there is a mismatch at position x in T
 - Let k be the last match node
 - All children of k are mismatches for $T[j+x]$
 - Follow the failure link of k to node $fl(k)$
 - We have just seen label($fl(k)$) in T
 - Continue matching at position $j+x$ in T and node $fl(k)$ in K
 - If we reach a leaf k at position $j+x-1$ in T
 - Report the mark of the leaf
 - Follow the failure link to node $fl(k)$
 - Continue matching at position $j+x$ in T and node $fl(k)$ in K
Example

$P = \{\text{banane, nabe, abnahme, na, abgabe}\}$

$T = \text{radnaben}$
Example

\[P = \{ \text{banane, nabe, abnahme, na, abgabe} \} \]

\[T = \text{abnabeln} \]
Algorithm

\[
j := 1; \quad \text{// Next comparison in } T
\]
\[
l := 1; \quad \text{// Start of pattern in } T
\]
\[
k := \text{root}(K); \quad \text{// Current node in keyword tree}
\]
\[
\text{while } (j < |T|)
\]
\[
\quad \text{while exists edge } (k,k') \text{ with label } T(j)
\]
\[
\quad \quad \text{if } \text{mark}(k') \neq \text{NULL} \text{ then}
\]
\[
\quad \quad \quad \text{report } \text{mark}(k') \text{ with start } l;
\]
\[
\quad \quad \text{end if;}
\]
\[
\quad \quad k := k'; \quad \text{// Down the tree}
\]
\[
\quad j := j+1; \quad \text{// Check next character}
\]
\[
\quad \text{end while;}
\]
\[
\text{if } k = \text{root}(K) \text{ then} \quad \text{// Immediate mismatch: move on in } T
\]
\[
\quad j := j+1;
\]
\[
\quad l := l+1;
\]
\[
\text{else}
\]
\[
\quad k := \text{fl}(k); \quad \text{// Follow the failure link}
\]
\[
\quad l := j - \text{len}(k);
\]
\[
\text{end if;}
\]

- **Complexity**: \(O(m)\)
But ...

\[P = \{ \text{knabt, nabe, na} \} \]

\[T = \text{knabenschaft} \]

- Algorithm matches KNAB in T
- B is the last matching symbol, failure link to NAB
- Proceed to NABE, report \(P_2 \)
- Follow fl to root and match on in T with NSCHAFT
- **We missed \(P_3 \) (NA)!**
 - Why?: \(P_2 \) contains \(P_3 \)
 - But hold on a second
Content of this Lecture

- Searching Multiple Pattern: Keyword-Trees
 - Failure Links
 - Output links
- Approximate Search with PETER
Our Problematic Case

- Patterns containing other patterns
- We construct another set of pointers called **Output Links**
- Observation
 - Let P_1 be contained in P_2
 - Then P_1 must be the suffix of a prefix $P_2[1..i]$ for some $i \geq |P_1|$
 - If P_1 is the longest prefix (in P) of $P_2[1..i]$, then $fl(P_2[i]) = P_1$
 - Which doesn’t help – usually, we will not follow this link during search
 - If this is not the case, there **must exist a P'** with
 - P' is the longest suffix of $P_2[1..i]$
 - Thus, $fl(P_2[i]) = P'$
 - Again: P_1 is suffix of P' – but is it the longest?
 - Search recursive using failure links
 - Eventually, we must reach P_1
Example

\[P = \{ \text{knabe, na} \} \]

\[P = \{ \text{eknabe, na, kna} \} \]
Induction

• Starting from a node k ...
 – Following failure links
 – Reaching a marked node k'
 – Then the pattern $\text{mark}(k')$ is contained in T

• The reverse is also true: All patterns contained in T are found through paths of failure links

• Of course, we don’t want to follow all such paths during online search

• Definition: The Output Link of node k, $\text{out}(k)$, points to the node k' with
 – k' is marked
 – k' is the first marked node on the path from k following failure links
Complete Search Algorithm

\[
j := 1; \quad \text{// Next comparison in } T \\
k := \text{root}(K); \quad \text{// Root node of keyword tree} \\
\text{while } (j < |T|) \\
\hspace{1em} \text{while exists edge } (k,k') \text{ with label}(k,k')=T(j) \\
\hspace{2em} \text{if mark}(k') \neq \text{NULL then} \\
\hspace{3em} \text{report mark}(k'); \\
\hspace{2em} \text{end if}; \\
\hspace{2em} z = \text{out}(k'); \\
\hspace{1em} \text{while } (z \neq \text{NULL}) \quad \text{// Check output links} \\
\hspace{2em} \text{report mark}(z); \quad \text{// Found a match} \\
\hspace{2em} z = \text{out}(z); \quad \text{// Recursion} \\
\hspace{1em} \text{end if}; \\
\hspace{1em} k := k'; \quad \text{// Down the tree} \\
\hspace{1em} j := j+1; \quad \text{// Check next character} \\
\hspace{1em} \text{end while;} \\
\hspace{1em} \text{if } k=\text{root}(K) \text{ then} \quad \text{// Mismatch: move on in } T \\
\hspace{2em} j := j+1; \\
\hspace{1em} \text{else} \\
\hspace{2em} k := fl(k); \quad \text{// Follow the failure link} \\
\hspace{1em} \text{end if;} \\
\hspace{1em} \text{end;}
\]
Complexity

- **During search**
 - Let \(k \) by the number of matches of all patterns
 - The inner WHILE-loop is passed at most \(k \) times
 - Thus: \(O(m+k) \)

- **Overall complexity**
 - Build the keyword tree for \(P \) \(O(n) \) (trivial)
 - Compute failure links \(O(n) \) (BF)
 - This includes the output links
 - Algorithm not covered here
 - Search \(O(m+k) \)

- **Total: \(O(n+m+k) \)**
Content of this Lecture

- Searching Multiple Pattern: Keyword-Trees
- **Approximate Search with PETER**
 - Prefix trees for string searching
 - Pruning the search space
 - Evaluation
Approximate Search

- Often, we want to find all occurrences of a term with small deviations
 - E.g., searching with typos or morphological variations
- In the following, we assume tokenization – we are looking for similar terms, not arbitrary substrings
- **Approximate search**
 - Given a doc d converted into a list K of terms and a query q: Find all terms from K that are similar to q
- **Approximate join**
 - Given a doc d converted into a list K of terms K and a list Q of search terms: Find all terms from K that are similar to at least one term from Q
PETER

- PETER: Prefix tree based indexing algorithm
 - Keyword tree = prefix tree

- Exact and similarity (threshold), search and join
- Similarity measures: Hamming and Edit distance
- Uses many tricks for speeding-up searches
- Real software (standalone, library, plug-in for RDBMS)
Searching Prefix-Trees

- To search all approximate occurrence of k in D, we index all words of D in a prefix tree T.

- Search
 - Recursively match k with a path starting from root.
 - If no further match: k $\not\in T$.
 - If matched completely: k $\in T$.

- Search complexity
 - Only depends on depth of T.
 - Independent from |D|.
Compressed Prefix Trees (Patricia Trees)

- Slightly more complex implementation
 - Different kinds of edges/nodes
Large Prefix Trees

- Tree of common prefixes is kept in **main memory**
 - Many (failed) searches never access disc
 - At most one disc access per search

- Unique suffixes are stored (sorted) on disk
 - Minus a short preview-prefix (as fitting into a node structure)
Similarity Search on Prefix-Trees

- In similarity search, a mismatch doesn’t mean that $k \notin T$
- **Several mismatches** are allowed
 - Depending on query threshold

- **Idea**
 - Depth-first search on the tree as usual
 - Keep a **counter for the n# of mismatches** spent in the prefix so far
 - If counter exceeds threshold – stop search in this branch
 - Apply tricks to stop although n# of mismatches not yet too big
Example: Search

Hamming distance search for $k = \text{CTGAAATTGGT}$, $e=1$
Example: Search

Hamming distance search for $t = \text{CTGAAATTGGT}$, $k=1$
Example: Search

Hamming distance search for \(t = \text{CTGAAATTGGT}, k=1 \)
Example: Search

Hamming distance search for $t = \text{CTGAAATTGGT}$, $k=1$

$d(\text{CTGAAATT}, \text{CTGAAATT}) > 1$

Ulf Leser: Text Analytics, Winter Semester 2010/2011
Example: Search

Hamming distance search for $t = \text{CTGAAATTGGT}, k=1$
Example: Search

Hamming distance search for $t = \text{CTGAAATTTGGT}$, $k=1$
Searching with Edit Distance

- Slightly more complicated
- Requires computation of an edit-distance matrix
- Since a node represents a common prefix, all its successors share this part of the matrix
- During DFS, keep growing matrix
- Next letter: Add one col and/or row
- Use k-banded alignment based on n# of allowed mismatches e
(Similarity) Joins on Prefix Trees

• We compare growing prefixes with growing prefixes
• Essentially: Compute intersection of two trees
• Traverse both trees in parallel
 – Upon (sufficiently many) mismatches, entire subtrees are pruned
• Same idea for exact and similarity join
Content of this Lecture

- Searching Multiple Pattern: Keyword-Trees
- Approximate Search with PETER
 - Prefix trees for string searching
 - Pruning the search space
 - Evaluation
Pruning Search Space

• Can we do better?

• What information can we store inside a node that would allow us to stop a search early
 – Although n# of allowed mismatches not yet exceeded
 – We must be sure that finally there will be too many mismatches

• Trade-Off
 – “Information” must not be too big (memory issue)
 – Test must be fast
Filter by String Length

- Consider strings s,t with $d(\text{pref}(s,k)),\text{pref}(t,l))=x$, search threshold y
 - Hamming: No match if: $|(|s|-k) - (|t|-l)| > y-x$
 - Edit: No match if: $|(|s|-k) - (|t|-l)| > y-x$
 - Example: Let $y=4$, Hamming

\[
\begin{align*}
\text{ACCTGTAGAATCTG} & \quad (17-6)-(14-6) > 4-2 \\
\text{ACTTGAXXXXXXXXXXX} & \quad (17-6)-(14-6) > 4-2
\end{align*}
\]

- Test inside prefix trees
 - Store MAX and MIN length of all strings below each node
 - Stop if all strings in this range must incur too many mismatches
 - Needs two bytes per node, very fast test
Filter by Character Frequency [Aghili et al., 2003]

- Example: y=3, Hamming

\[
\begin{align*}
\text{ACCTGTAGAATCTG} \\
\text{ACTTGATTTTGGGG}
\end{align*}
\]

- Count **frequencies of all letters** in the suffixes
 - At given position: \([3,1,2,2]\) and \([0,0,4,4]\)
 - Thus, we must perform \(-3*A, -1*C, +2*G, +2*T\)
 - This requires **at least 4 moves** - prune

- Similar argument for edit distance

- For prefix trees
 - Store **letter frequency ranges** of subtree in each node
 - Prune if threshold will be hurt for certain
 - Needs \(|\Sigma|\) bytes per node, very fast test
Filter by q-Gram [Xiao et al., VLDB, 2008]

- A similar lower bound can be derived from q-grams
- Idea (assume |s|=|t|)
 - Pad s and t with q-1 special characters (#) at start and end
 - Let qg() be the function computing the bag of q-grams for s
 - If s has one I/D/R compared to t, this change can destroy at most q q-grams
 - Thus, if |qg(s) \cap qg(t)| > |qg(s)|-q, then ed(s,t)=0

- General case:
 \[ed(s,t) \leq k \iff |qg(s) \cap qg(t)| \geq \max(|s|, |t|)-1-(k-1)q \]
Implementation

- Makes only sense for edit distance
 - Computing hamming distance is faster than computing q-grams
- Not for free, but mostly cheaper than edit distance
 - K-banded edit distance: $k \times \max(|s|,|t|)$ operations
 - Computing the q-gram bags: $|s| + |t|$ operations
 - Comparing the q-gram bags: sort + merge (linear)

- For prefix trees
 - Storing all q-grams in every node requires too much space
 - Compute q-grams on-the-fly when entering a unique suffix
Content of this Lecture

• Searching Multiple Pattern: Keyword-Trees
• Approximate Search with PETER
 – Prefix trees for string searching
 – Pruning the search space
 – Evaluation
Configurations

- We tested each filter separately using various data sets, various thresholds, hamming and edit distance
- Best configuration: Length + q-gram
 - Q-gram filter very important on our data set
 - >90% of EST have long, unique suffixes
 - Most mismatches occur only in these suffixes
 - Using filter earlier makes little sense
 - Large benefits although q-grams not pre-computed
 - Frequency filter yields almost no improvement
 - DNA: Very small alphabet, high entropy
 - Decreases the sharpness of the lower bound
 - Filter rarely hits
Setup

- Data: Several EST data sets from dbEST
 - Search: All strings of one data set in another data set
 - Join: One data set with another one
 - Varying similarity thresholds
- (Linear) Index creation not included
Effect of Filter on Search / Join

- Length + q-gram works best
- Frequency filter has only negligible influence
 - On this alphabet
- Same for joins
Search: Comparing to GREP + Friends

- PETER an **order of magnitude faster** in all cases
- Comparison is a bit unfair
 - Agrep and nrgrep **do not build an index**
 - But: Indexing amortizes fast (e.g. searches 15 for agrep)
Search: Comparing to Flamingo

- **Flamingo**: Library for approximate string matching
 - Based on an inverted index on q-grams
 - Uses length and charsum filter
Joins

- We are not aware of any available software to perform similarity joins
 - UNIX join: Only exact (always faster if with sorting excluded)
 - Flamingo: Does not include approx. join of same authors
 - BLASTALL: based on local alignment

- Similarity joins in PETER
 - Again, length + q-gram works best
 - Join execution time grows exponentially with similarity threshold
 - Self-join on 10K strings in <1 minute
 - $T_1 \bowtie T_X (~1.500.000.000.000 pairs, hamming, k=3)$ in 13 hours
 - But: $T_1 \bowtie T_X (~1.500.000.000.000 pairs, edit, k=3)$ in 3 days
 - But: $T_1 \bowtie T_X (~1.500.000.000.000 pairs, edit, k=1)$ in 80 minutes
Similarity Search RDBMS

- Peter (behind extensible indexing interface) versus UDF implementing hamming / edit distance calculations
- Difference: 2-3 orders of magnitude, independent of data set, threshold, or search pattern length
(Similarity) Join inside RDBMS

- PETER (behind extensible indexing interface) versus build-in join (exact join, hash and merge) or UDF
- Similarity join
 - Join T3 with T2e, k=2, inside RDBMS: Stopped after 24 h
 - Same join with PETER: 1 minute
- Exact join
 - For long strings, PETER is significantly faster even when compared to commercial join implementations
Conclusions

• Fastest available library for approximate search and join
• Especially good for large databases and long strings
• Currently only available for DNA (4-letter alphabet)
• Available as plugin for RDBMS – much faster than build-in operations
• Index creation time is not negligible, but also not dramatic

• Current work: Move everything into main memory