Text Analytics
Modeling Information Retrieval 2

Ulf Leser
Content of this Lecture

- IR Models
- Boolean Model
- Vector Space Model
- Relevance Feedback in the VSM
- **Probabilistic Model**
- Latent Semantic Indexing
- Other IR Models
A Probabilistic Interpretation of Relevance

• We want to compute the probability that a doc d is relevant to query q

• The probabilistic model determines this probability iteratively using user (or automatic) feedback
 – Similar to VSM with relevance feedback
 – But different (and more principled) way of incorporating feedback

• Assume there is a subset $R \subseteq D$ which contains all (and only) relevant documents for q, and $N=D\setminus R$

• For each document, we want to compute the probability $p(R|d)$ that d belongs to R (for q)

• This is based on the words in d, i.e., we represent d as the set of words contained in $d=\{k_i\}$
A Probabilistic Interpretation of Relevance

- Since words k_i appear both in relevant and in irrelevant docs, we need to look at the influence of both.
- We use odds-scores

\[
rel(d, q) \sim sim(d, q) = \frac{p(R | d)}{p(N | d)}
\]

- Assuming statistical independence of words, we get
 - Clearly wrong

\[
rel(d, q) \sim sim(d, q) = \frac{p(R | k_1, \ldots, k_n)}{p(N | k_1, \ldots, k_n)} = \frac{p(R | k_1) \ast \ldots \ast p(R | k_n)}{p(N | k_1) \ast \ldots \ast p(N | k_n)}
\]
Binary Independence Model I

- **Using Bayes Theorem**

\[
sim(d, q) = \frac{p(R | d)}{p(N | d)} = \frac{p(d | R) \times p(R) \times p(d)}{p(d | N) \times p(N) \times p(d)} \sim \frac{p(d | R)}{p(d | N)}
\]

- \(p(R) (p(N))\): relative frequency of relevant (irrelevant) docs in \(D\)
 - A-Priori probability of a doc to be (ir-)relevant
- \(p(R)\) and \(p(N)\) are independent from \(d\) and \(q\) – thus, both are constant for \(q\) and irrelevant for ranking documents
- \(p(d | R)\) is the probability of drawing the combination of words forming \(d\) when drawing words at random from \(R\)
Binary Independence Model II

- $p(d|R)$: Drawing the words from d means two things
 - Drawing the words from d, and
 - not drawing the words not in d

- **BIN** considers both plus independence of terms

\[
\text{sim}(d, q) = \frac{p(d \mid R)}{p(d \mid N)} = \frac{\prod_{k \in d} p(k \mid R) \ast \prod_{k \notin d} p(-k \mid R)}{\prod_{k \in d} p(k \mid N) \ast \prod_{k \notin d} p(-k \mid N)}
\]

- Properties
 - Having words that are frequent in R raises the similarity to q
 - Not having words that are frequent in N raises the similarity to q

- Why is no q in the formula?
Continuation

- Rephrasing using q

\[
\text{sim}(d, q) = \prod_{k \in d \cap q} p(k \mid R) \prod_{k \notin d \cap q \mid d \cap q} p(k \mid N) \prod_{k \notin d \cap q} p(k \mid R) \prod_{k \in d \cap q \mid d \cap q} p(k \mid N) \prod_{k \notin d \cap q} p(k \mid R) \prod_{k \notin d \cap q} p(k \mid N)
\]

- Focusing on the query terms
 - In a real setting we are not sure about R and N – give less weight to terms not in the query
 - Drastically increases performance

... \approx \prod_{k \in d \cap q} \frac{p(k \mid R)}{p(k \mid N)} \prod_{k \notin d \cap q} \frac{p(-k \mid R)}{p(-k \mid N)} = \prod_{k \in d \cap q} \frac{p(k \mid R)}{p(k \mid N)} \prod_{k \notin d \cap q} \frac{1 - p(k \mid R)}{1 - p(k \mid N)}
Last Step

\[
\prod_{k \in d \cap q} \frac{p(k \mid R)}{p(k \mid N)} \ast \prod_{k \in q \setminus d} \frac{1 - p(k \mid R)}{1 - p(k \mid N)}
\]

All matching terms \quad All non-matching terms

- Some reformulating (duplicating the terms in q)

\[
= \prod_{k \in d \cap q} \frac{p(k \mid R) \ast (1 - p(k \mid N)) \ast (1 - p(k \mid R)) \ast \prod_{k \in q \setminus d} \frac{1 - p(k \mid R)}{1 - p(k \mid N)}}{p(k \mid N) \ast (1 - p(k \mid R) \ast (1 - p(k \mid N)) \ast \prod_{k \in q \setminus d} \frac{1 - p(k \mid R)}{1 - p(k \mid N)}}
\]

All matching terms \quad All query terms
Continuation 2

- Obviously, the last term is identical for all docs. Thus

\[\text{sim}(d, q) \approx \prod_{k \in d \cap q} \frac{p(k \mid R) \ast (1 - p(k \mid N))}{p(k \mid N) \ast (1 - p(k \mid R))} \]

- \(\text{sim}(d, q) \) = probability of a document comprising the terms of \(d \) being relative to query \(q \)
- But: Computing \(\text{sim}(d, q) \) requires knowledge of \(R \) and \(N \)
 - If \(R \) and \(N \) were known, we can estimate \(p(k \mid R) / p(k \mid N) \) using maximum likelihood
 - This means: Computing relative frequencies of terms in \(R/N \)
- In reality, we actually want to find \(R \) and \(N \)
Back to Reality

• Idea: Approximation using an iterative process
 – Start with some “educated guess” for R (and set N=D\R)
 • E.g. retrieve all docs containing at least one word from q
 – Compute probabilistic ranking of all docs wrt q based on first guess
 • Here it is important to focus on terms in q
 – Chose relevant docs (by user feedback) or hopefully relevant docs
 (by selecting the top-r docs)
 – This gives new sets R and N
 • If top-r docs are chosen, we may chose to only change probabilities of
 terms in R (and disregard the questionable negative information)
 – Compute new term scores and new ranking
 – Iterate until satisfied

• [Variant of the Expectation Maximization Algorithm (EM)]
Initialization

- **Typical simplifying assumptions** for the start
 - Terms in non-relevant docs are equally distributed: \(p(k|N) \sim \frac{df_k}{|D|} \)
 - \(p(k|R) \) is constant, e.g., \(p(k|R)=0.5 \)
 - Much less computation, less weight to presumably unstable first values

- **Iterations**: Assume we have a new \(R/N \)

\[
P(k \mid R) = \frac{|\{d \mid k \in d, d \in R\}|}{|R|}
\]

\[
P(k \mid N) = \frac{df_k - |\{d \mid k \in d, d \in R\}|}{|D| - |R|}
\]
Example Data

<table>
<thead>
<tr>
<th>Text</th>
<th>verkauf</th>
<th>haus</th>
<th>italien</th>
<th>gart</th>
<th>miet</th>
<th>blüh</th>
<th>woll</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Wir verkaufen Häuser in Italien</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Häuser mit Gärten zu vermieten</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Häuser: In Italien, um Italien, um Italien herum</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Die italienischen Gärtner sind im Garten</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Um unser italiensches Haus blüht's</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6 Wir verkaufen Blühendes</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Q Wir wollen ein Haus mit Garten in Italien mieten</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Example:
Initialization:

\[\text{sim}(d,q) \approx \prod_{k \in d \cap q} \frac{p(k \mid R) \ast (1 - p(k \mid N))}{p(k \mid N) \ast (1 - p(k \mid R))} \]

- All docs with at least one word from q
 - \(R = \{1, 2, 3, 4, 5\}, \ N = \{6\} \)
- Start with initial estimations
 - \(p(k \mid R) = 0.5, \ p(k \mid N) = \frac{df_k}{|D|} \rightarrow p(\text{verkauf} \mid N) = p(\text{blüh} \mid N) = 2/6 \)
 - **Smoothing**: If \(p(k \mid X) = 0 \), set \(p(k \mid X) = 0.01 \)
- Compute initial ranking
 - \(\text{sim}(1,q) = \frac{p(\text{haus} \mid R) \ast (1 - p(\text{haus} \mid N)) \ast p(\text{italien} \mid R) \ast (1 - p(\text{italien} \mid N))}{p(\text{haus} \mid N) \ast (1 - p(\text{haus} \mid R)) \ast p(\text{italien} \mid N) \ast (1 - p(\text{italien} \mid R))} = 0.01 \ast (1 - 0.5) \ast 0.01 \ast (1 - 0.5) = 9801 \)
 - \(\text{sim}(2,q) = 970299 \)
 - \(\text{sim}(3,q) = \text{sim}(4,q) = \text{sim}(5,q) = 9801 \)
 - \(\text{sim}(6,q) = 0 \)
Example: Adjustment

- Let’s use the **top-2 docs** as new R
 - Second chosen arbitrarily among 1,3,4,5
 - R={1,2}, N={3,4,5,6}

- Adjust scores
 - \(p(\text{verkauf}|R) = .5 \), \(p(\text{verkauf}|N) = (2-1)/(6-2) = 1/4 \)
 - \(p(\text{haus}|R) = 1\sim.99 \), \(p(\text{haus}|N) = (4-2)/(6-2) = 2/4 \)
 - \(p(\text{italien}|R) = .5 \), \(p(\text{italien}|N) = (4-1)/(6-2) = 3/4 \)
 - \(p(\text{gart}|R) = .5 \), \(p(\text{gart}|N) = (2-1)/(6-2) = 1/4 \)
 - \(p(\text{miet}|R) = .5 \), \(p(\text{miet}|N) = (1-1)/(6-2) = 0\sim0.01 \)
Example: Re-Ranking

\[\text{sim}(d,q) \approx \prod_{k \in d \cap q} \frac{p(k \mid R) \cdot (1 - p(k \mid N))}{p(k \mid N) \cdot (1 - p(k \mid R))} \]

- New ranking
 - \(\text{sim}(1,q) = p(\text{haus} \mid R) \cdot (1 - p(\text{haus} \mid N)) \cdot p(\text{italien} \mid R) \cdot (1 - p(\text{italien} \mid N)) \cdot p(\text{haus} \mid N) \cdot (1 - p(\text{haus} \mid R)) \cdot p(\text{italien} \mid N) \cdot (1 - p(\text{italien} \mid R)) \)

 \[= \ldots \]
 - \(\text{sim}(2,q) = \ldots \)
 - \(\text{sim}(3,q) = \ldots \)
 - \(\ldots \)
Pros and Cons

• Advantages
 – **Sound probabilistic framework**
 • Note that VSM is strictly heuristic – what is the justification for those distance measures?
 – Results *converge* to most probable docs
 • Under the assumption that relevant docs are similar by sharing term distributions that are different from distributions in irrelevant docs

• Disadvantages
 – First guesses often are pretty bad – slow convergence
 – Terms cannot be weighted ($w_{ij} \in \{0,1\}$)
 – Assumes statistical independence of terms (as most methods)
 – “Has *never worked convincingly better* in practice” [MS07]
Probabilistic Model versus VSM with Rel. Feedback

- Published 1990 by Salton & Buckley
- **Comparison** based on various corpora
- Improvement after 1 feedback iteration
- Probabilistic model (BIR) in general **worse than VSM+rel feedback (IDE)**
 - Probabilistic model does not weight terms in documents
 - Probabilistic model does not allow to weight terms in queries
Content of this Lecture

- IR Models
- Boolean Model
- Vector Space Model
- Relevance Feedback in the VSM
- Probabilistic Model
- Latent Semantic Indexing
- Other IR Models
Latent Semantic Indexing

- We so-far ignored **semantic relationships** between terms
 - Homonyms: bank (money, river)
 - Synonyms: House, building, hut, villa, ...
 - Hyperonyms: officer – lieutenant

- **Idea of Latent Semantic Indexing (LSI)**
 - >5000 citations!
 - Map (many) terms into (fewer) **semantic concepts**
 - Which are hidden (or “latent”) in the docs
 - Compare docs and query in **concept space** instead of term space

- One **big advantage**: Can find docs that don’t even contain the query terms
Terms and Concepts

- Concepts are **more abstract** than terms
- Concepts are (more or less) related to terms and to docs
- LSI finds “concepts” automatically by **matrix manipulations**
 - A concept will be a set of frequently co-occurring terms
 - Concepts from LSI cannot be “spelled out”, but are matrix columns

Quelle: K. Aberer, IR
Term-Document Matrix

- Definition

The term-document matrix M for docs D and terms K has $n=|D|$ columns and $m=|K|$ rows. $M[i,j]=1$ iff document d_j contains term k_i.

- Works equally well for TF or TF*IDF values

<table>
<thead>
<tr>
<th>Begriff</th>
<th>Dokument 1</th>
<th>Dokument 2</th>
<th>Dokument 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Document</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Retrieval</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Information</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Theory</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Database</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Indexing</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Computer</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Term-Document Matrix and VSM

- The matrix we used in VSM was a transposed document-term matrix \((=M^t)\)
- Having \(M\), we can compute the vector \(v\) containing the VSM-scores of all docs given \(q\) as \(v=M^t \cdot q\)
 - Ignoring score normalization
What to do with a Term-Document Matrix

• M is not just a comfortable way of representing the term vectors of all documents
 – M is a matrix
 – Linear Algebra offers many ways to manipulate matrices

• In the following, we approximate M by a M’
 – M’ should be smaller than M (in a certain sense)
 • Less dimensions; faster computations
 – M’ should abstract from terms to concepts
 • The less dimensions capture the least frequent co-occurrences
 – M’ should be such that \(M^t * q \approx M' * q \)
 • Produce the least error among all M’ of the same dimension

• Note: We only sketch LSI
Term and Document Correlation

- $M \cdot M^t$ is called the term correlation matrix
 - Has $|K|$ columns and $|K|$ rows
 - "Similarity" of terms: how often do they co-occur in a doc?

- $M^t \cdot M$ is called the document correlation matrix
 - Has $|D|$ columns and $|D|$ rows
 - "Similarity" of docs: how many terms do they share?

- Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

M

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

M^t

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Term correlation matrix
Some Lineare Algebra to Remember

- Let M be a matrix
- The **rank** of M (r) is the maximal number of linear independent rows of M (its dimension)
- If we have $M\lambda - \lambda x = 0$ for $x \neq 0$, then λ is called an **Eigenwert** of M and x is his associated **Eigenvector**
 - Eigenvectors/-werte are useful for many things
 - In particular, one can show that a matrix M can be transformed into a **diagonal matrix** L with $L=U^{-1}M*U$ with U formed from the Eigenvectors of M, but only iff M has “enough” Eigenvectors
 - Such L is called **similar to** M; L represents M in another vector space, based on another basis
 - L can be used in many cases instead of M and is easier to handle
 - However, our M usually will **not have** “enough” Eigenvectors
Singular Value Decomposition (SVD)

• SVD is a method to decompose any matrix in the following way: \(M = X \cdot S \cdot Y^t \)

 – S is the diagonal matrix of the singular values of M in descending order and has size \(r \times r \)

 – X is the matrix of Eigenvectors of \(M \cdot M^t \)

 – Y is the matrix of Eigenvectors of \(M^t \cdot M \)

 – This decomposition is unique and can be computed in \(O(r^3) \)
Example

- Assume for now M is quadratic and has full rank
 - Example for $r = |K| = |D| = 3$

$$
\begin{bmatrix}
M_{11} & M_{12} & M_{13} \\
M_{21} & \ldots & \ldots \\
M_{31} & \ldots & M_{33}
\end{bmatrix} =
\begin{bmatrix}
x_{11} & \ldots & \ldots \\
\ldots & \ldots & \ldots \\
\ldots & \ldots & x_{33}
\end{bmatrix}
\cdot
\begin{bmatrix}
s_{11} & 0 & 0 \\
0 & s_{22} & 0 \\
0 & 0 & s_{33}
\end{bmatrix}
\cdot
\begin{bmatrix}
y_{11} & \ldots & \ldots \\
\ldots & \ldots & \ldots \\
\ldots & \ldots & y_{33}
\end{bmatrix}
$$

- $M_{11} = (x_{11} * s_{11} + x_{12} * s_{12} + x_{13} * s_{13}) * y_{11} +$
 $(x_{11} * s_{21} + x_{12} * s_{22} + x_{13} * s_{23}) * y_{21} +$
 $(x_{11} * s_{31} + x_{12} * s_{32} + x_{13} * s_{33}) * y_{31}$
 $= x_{11} * s_{11} * y_{11} + x_{12} * s_{22} * y_{21} + x_{13} * s_{33} * y_{31}$
- $M_{12} = \ldots$
General Case

- M not quadratic; $r < \min(|K|, |R|)$
 - All sums range from 1 to r

- LSI idea: What if we stop the sums earlier, at some $s<r$?
 - s_{ii} are sorted by descending value
 - Aggregating only over the first s s_{ii}-values captures “most” of M
Approximating M

- S can be used to approximate M
- Fix some $s<r$; Compute $M_s = X_s \cdot S_s \cdot Y_s^t$
 - X_s: First s columns in X
 - S_s: First s columns and first s rows in S
 - Y_s: First s rows in Y
- M_s has the same size as M, but different values
 - For LSI, we don’t need to compute M_s, but only need X_s, S_s and Y_s
s-Approximations

- Since the s_{ii} are sorted in decreasing order
 - The approximation is the better, the larger s
 - The computation is the faster, the smaller s

- LSI: Only consider the top-s singular values
 - s must be small enough to filter out noise and to provide “semantic reduction”
 - s must be large enough to represent the diversity in the documents
 - Typical value: 200-500

- Optimality: After SVD, M' is the matrix where $||M-M'||_2$ is the smallest
Geometric Interpretation of SVD

- M is a linear transposition in a vector space
- X,Y can be seen as coordination transformations, S is a linear scaling
- X transforms M into a vector space where its transposition can be represented as a linear scaling (and Y transforms it back into the vector space of M)
- s-approximation
 - M is transformed into a vector space of lower dimension such that the new dimensions capture the most important variations in M
 - Distances between vectors are preserved as much as possible
- Universal method: LSI has many more applications than IR
LRI for Information Retrieval

- We map document vectors from a m-dimensional space into a s-dimensional space
 - Approximated docs (still) are represented by columns in Y_s^t
- Variations between document vectors are determined by the number of terms they have in common
 - The more terms in common, the smaller the distance
- SVD tries to preserve these distances
- To this end, it (in a way) maps frequently co-occurring terms to the same dimensions
 - Because frequently co-occurring terms have little impact on distance
- Frequently co-occurring terms can be interpreted as concepts
 - But they cannot easily be “named”
 - Also, we cannot simply determine the terms that are mapped into a new dimension – it is always a bit of everything (a linear combination)
Query Evaluation

- After LSI, docs are represented by columns in Y_s^t
- How can we compute the distance between a query and a doc in concept space?
 - We first need to represent q in concept space
 - Assume q as a new column in M
 - Of course, we can transform M offline, but need to transform q online
 - This would generate a new column in Y_s^t
 - To only compute this column, we apply the same transformations to q as we did to all other columns of M
 - With a little algebra, we get: $q' = q^t \cdot X_s \cdot S_s^{-1}$
 - This vector is compared to the doc vectors as usual
Example: Term-Document Matrix

- Taken from Mi Islita: “Tutorials on SVD & LSI”
 - Who took it from the Grossman and Frieder book

<table>
<thead>
<tr>
<th>Terms</th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>arrived</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>damaged</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>delivery</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>fire</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gold</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>in</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>of</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>shipment</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>silver</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>truck</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Query: „gold silver truck“
Singular Value Decomposition

\[M = X \cdot S \cdot Y^t \]

\[X = \begin{bmatrix}
-0.4201 & 0.0748 & -0.0460 \\
-0.2995 & -0.2001 & 0.4078 \\
-0.1206 & 0.2749 & -0.4538 \\
-0.1576 & -0.3046 & -0.2006 \\
-0.1206 & 0.2749 & -0.4538 \\
-0.2626 & 0.3794 & 0.1547 \\
-0.4201 & 0.0748 & -0.0460 \\
-0.4201 & 0.0748 & -0.0460 \\
-0.2626 & 0.3794 & 0.1547 \\
-0.3151 & -0.6093 & -0.4013 \\
-0.2995 & -0.2001 & 0.4078
\end{bmatrix} \]

\[S = \begin{bmatrix}
4.0989 & 0.0000 & 0.0000 \\
0.0000 & 2.3616 & 0.0000 \\
0.0000 & 0.0000 & 1.2737
\end{bmatrix} \]

\[Y = \begin{bmatrix}
-0.4945 & 0.6492 & -0.5780 \\
-0.6458 & -0.7194 & -0.2556 \\
-0.5817 & 0.2469 & 0.7750
\end{bmatrix} \]

\[Y^t = \begin{bmatrix}
-0.4945 & -0.6458 & -0.5817 \\
0.6492 & -0.7194 & 0.2469 \\
-0.5780 & -0.2556 & 0.7750
\end{bmatrix} \]
A Two-Approximation (s=2)

\[
X_2 = \begin{bmatrix}
-0.4201 & 0.0748 \\
-0.2996 & -0.2001 \\
-0.1206 & 0.2749 \\
-0.1576 & -0.3046 \\
-0.1206 & 0.2749 \\
-0.2626 & 0.3794 \\
-0.4201 & 0.0748 \\
-0.4201 & 0.0748 \\
-0.2626 & 0.3794 \\
-0.3151 & -0.6093 \\
-0.2996 & -0.2001
\end{bmatrix}
\]

\[
S_2 = \begin{bmatrix}
4.0989 & 0.0000 \\
0.0000 & 2.3616
\end{bmatrix}
\]

\[
Y_2 = \begin{bmatrix}
-0.4945 & 0.6492 \\
-0.6458 & 0.7194 \\
-0.5817 & 0.2469
\end{bmatrix}
\]

\[
Y_2^t = \begin{bmatrix}
-0.4945 & -0.6458 & -0.5817 \\
0.6492 & -0.7194 & 0.2469
\end{bmatrix}
\]

\[\uparrow \quad \uparrow \quad \uparrow \]

\[d_1 \quad d_2 \quad d_3\]
Transforming the Query

\[q' = q^t \cdot X_2 \cdot S_2^{-1} \]

\[
q' = \begin{bmatrix}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
-0.4201 & 0.0748 \\
-0.2995 & -0.2001 \\
-0.1206 & 0.2749 \\
-0.1576 & -0.3046 \\
-0.1206 & 0.2749 \\
-0.2626 & 0.3794 \\
-0.4201 & 0.0740 \\
-0.4201 & 0.0746 \\
-0.2626 & 0.3794 \\
-0.3151 & -0.6083 \\
-0.2995 & -0.2001
\end{bmatrix}
\begin{bmatrix}
1 \\
\frac{1}{0.0000} \\
\frac{1}{2.3616}
\end{bmatrix}
\]

\[= \begin{bmatrix}
-0.2140 \\
-0.1021
\end{bmatrix} \]
Computing the Cosine of the Angle

\[
\text{sim}(q, d) = \frac{q \cdot d}{\|q\| \cdot \|d\|}
\]

\[
\text{sim}(q, d_1) = \frac{(-0.2140) \cdot (-0.4945) + (-0.1821) \cdot (0.6492)}{\sqrt{(-0.2140)^2 + (-0.1821)^2} \cdot \sqrt{(-0.4945)^2 + (0.6492)^2}} = 0.0541
\]

\[
\text{sim}(q, d_2) = \frac{(-0.2140) \cdot (-0.6458) + (-0.1821) \cdot (-0.7194)}{\sqrt{(-0.2140)^2 + (-0.1821)^2} \cdot \sqrt{(-0.6458)^2 + (-0.7194)^2}} = 0.9910
\]

\[
\text{sim}(q, d_3) = \frac{(-0.2140) \cdot (-0.5817) + (-0.1821) \cdot (0.2469)}{\sqrt{(-0.2140)^2 + (-0.1821)^2} \cdot \sqrt{(-0.5817)^2 + (0.2469)^2}} = 0.4478
\]
Visualization of Results in 2D

<table>
<thead>
<tr>
<th>Terms</th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>arrived</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>damaged</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>delivery</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>fire</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gold</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>in</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>of</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>shipment</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>silver</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>truck</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

\[M = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} \quad q = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \]

![Diagram showing visualization of results in 2D](image-url)
Pros and Cons

• **Pro**
 – *Made it into practice*, used by real search engines
 – Speed-up through computation with less dimensions
 – Increases recall (and usually decreases precision)

• **Contra**
 – Computing SVD is expensive
 • *Fast approximations* exist, especially for extremely sparse matrices
 • Use stemming, stop-word removal etc. to shrink the original matrix
 – Ranking requires less dimensions than |D|, but more than |q|
 • Every query needs to be mapped first – turns a few keywords into a s-dimensional vector
 • We **cannot simply index** the “concepts” of Ms using inverted files etc.
 • Thus, LSI needs other techniques than indexing (read: *lots of memory*)
Content of this Lecture

- IR Models
- Boolean Model
- Vector Space Model
- Relevance Feedback in the VSM
- Probabilistic Model
- Latent Semantic Indexing
- Other IR Models
Extended Boolean Model

• One critique to the Boolean Model: If one term out of 10 is missing, the result is the same as if 10 were missing

• Idea: Measure “distance” for each conjunctive / disjunctive subterm of the query expression to the document
 – Example: X-ary AND: use a projection into x-dim space
 – Query expression is \((1,1,1,...,1)\)
 – Doc is \((a_1,a_2,...,a_x)=(0/1?,0/1?,...)\)
 – Similarity is distance between these two points
 – Similar formulas for OR and NOT

• Using the appropriate definition of distance, the extended Boolean model may mimic both the Boolean and the VSM
Generalized Vector Space Model

• One critique to the VSM: Terms are not independent
• Thus, term vectors cannot be assumed to be orthogonal
• Generalized Vector Space Model
 – Build a much larger vector space with $2^{|K|}$ dimensions
 – Each dimension (“minterm”) stands for all docs containing a particular set of terms
 – Minterms are not orthogonal but correlated by term co-occurrences
 – Convert query and docs into minterm space
 – Finally, $\text{sim}(q, d)$ is the cosine of the angel in minterm space
• Nice theory, includes term co-occurrence, much more complex than ordinary VSM, no proven advantage