

Multiple Sequence Alignment Sum-of-Pairs and Clustal-W

Ulf Leser

This Lecture

- Multiple Sequence Alignment
 - The problem
 - Theoretical approach: Sum-of-Pairs
 - Practical approach: Clustal-W

Multiple Sequence Alignment

- We now align multiple (k>2) sequences
 - Note: Also BLAST aligns only two sequences

• Why?

- Imagine k sequences of the promoter region of genes, all regulated by the same transcription factor f. Which subsequence within the k sequences is recognized by f?
- Imagine k sequences of proteins that bind to DNA. Which subsequence of the k sequences code for the part of the proteins that performs the binding?

General

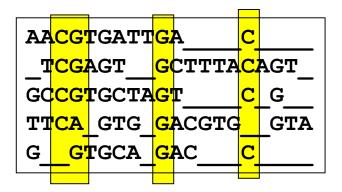
- We want to know the common part(s) in k different sequences
- "common" does not mean identical
- These parts can be anywhere within the sequences

Definition

Definition

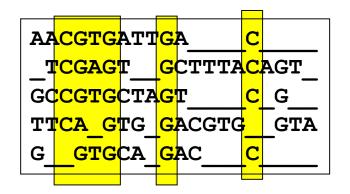
- A multiple sequence alignment (MSA) of k Strings s_i , $1 \le i \le k$, is a table of k rows and l columns ($sum(|s_i|) \ge l \ge max(|s_i|)$) such that
 - Row i contains the sequence of s_i , with an arbitrary number of blanks being inserted at arbitrary positions
 - Every symbol of every s_i stands in exactly one column
 - No column contains only blanks

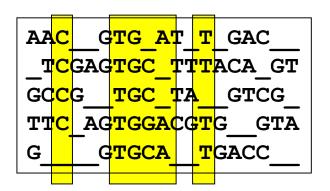
AACGTGATTGAC
TCGAGTGCTTTACAGT
GCCGTGCTAGTCG
TTCAGTGGACGTGGTA
GGTGCAGACC



Good MSA

- We are searching for good (optimal) MSAs
- Defining "optimal" is not as simple as in the k=2 case
- Intuition
 - All sequences had a common ancestor and evolved by evolution
 - We want to assume as few evolutionary events as possible
 - Thus, we want few columns (~ few INSDELs)
 - Thus, we want homogeneous columns (~ few replacements)





This Lecture

- Multiple Sequence Alignment
 - The problem
 - Theoretical approach: Sum-of-Pairs scores
 - Practical approach: Clustal-W

What Should we Count?

- For two sequences
 - We scored each column using a scoring matrix
 - Find the alignment such that the total score is maximal
- But how do we score a column with 5*T, 3*A, 1*_?
 - We would need an exponentially large scoring matrix
- Alternative: Sum-of-Pairs Score
 - We only score the alignment of each pair of the k sequences
 - We aggregate over all O(k²) pairs to score the MSA
 - We still need a clever algorithm to find the MSA with the best score

Formally

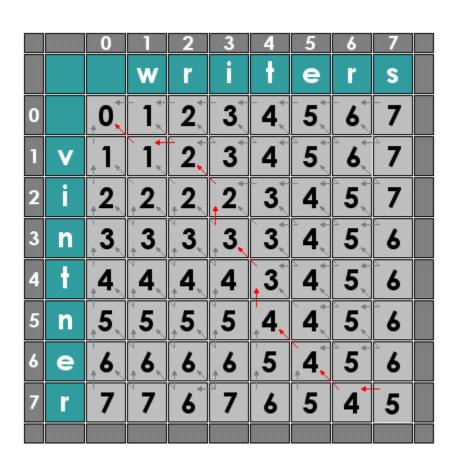
Definition

- Let M be a MSA for the set S of sequences $S = \{s_1, ..., s_k\}$
- The alignment of s_i with s_i induced by M is generated as follows
 - Remove from M all rows except i and j
 - Remove all columns that contain only blanks
- The sum-of-pairs score (sop) of M is the sum of all pair-wise induced alignment scores
- The optimal MSA for S wrt. sop is the MSA with the lowest sopscore over all possible MSAs for S

Example

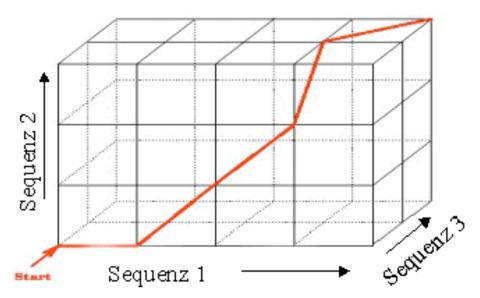
- Given a MSA over k sequences of length I how complex is it to compute its sop-score?
- How do we find the best MSA?

Analogy



- Think of the k=2 case
- Every alignment is a path through the matrix
- The three possible directions (down, right, down-right) conform to the three possible constellations in a column (XX, X_, _X)
- With growing paths, we align growing prefixes of both sequences

Analogy



- Assume k=3
- Think of a 3-dimensional cube with the three sequences giving the values in each dimension
- Now, we have paths aligning growing prefixes of three sequences
 - Every column has seven

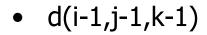
 possible constellations

 (XXX, XX_, X_X, _XX, X__,

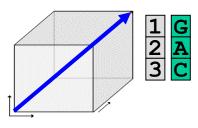
 X , X)

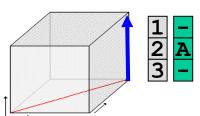


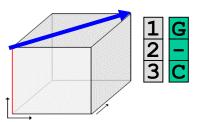
All Possible Steps

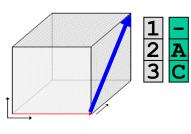


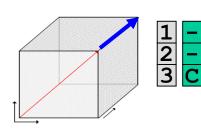
- d(i,j-1,k-1)
- d(i,j,k-1)
- d(i,j-1,k)
- d(i-1,j,k)
- d(i-1,j-1,k)
- d(i-1,j,k-1)

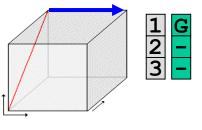


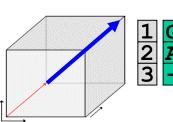






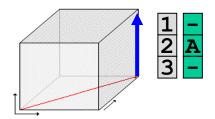






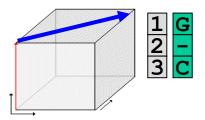
Concrete Examples

$$d(i,j-1,k)$$



- Best sop-score for d(i,j-1,k) is known
- We want to compute d(i,j,k)
- This requires to align one symbol with two blanks (blank/blank does not count)
- d(i,j,k) = d(i,j-1,k) + 2

$$d(i-1,j,k-1)$$



- Best sop-score for d(i-1, j,k-1) is known
- We want to compute d(i,j,k)
- This requires aligning a blank with s₁[i-1] and with s₃[k-1] and to align s₁[i-1] and s₃[k-1]
- $d(i,j,k) = d(i-1,j,k-1) + 2 + c_{ik}$

Dynamic Programming in three Dimensions

- We compute the best possible alignment d(i,j,k) for every triple of prefixes (lengths i,j,k) using the following formula
 - We assume the usual edit costs: I/D/R=+1, M=0

$$d(i-1,j-1,k-1) + c_{ij} + c_{ik} + c_{jk}$$
 Three (mis)matches
$$d(i-1,j-1,k) + c_{ij} + 2$$
 One (mis)match, two ins
$$d(i-1,j,k-1) + c_{ik} + 2$$

$$d(i,j-1,k-1) + c_{jk} + 2$$

$$d(i-1,j,k) + 2$$

$$d(i,j-1,k) + 2$$

Initialization

- Of course, we have d(0,0,0)=0
- Aligning in one dimension: d(i,0,0)=2*i
 - Same for d(0,j,0), d(0,0,k)
- Aligning in two dimensions: d(i,j,0)= ...
 - Let $d_{a,b}(i,j)$ be the alignment score for $S_a[1..i]$ with $S_b[1..j]$
 - $d(i, j, 0) = d_{1,2}(i, j) + (i+j)$
 - $d(i, 0, k) = d_{1,3}(i, k) + (i+k)$
 - $d(0, j, k) = d_{2,3}(j, k) + (j+k)$

Algorithm

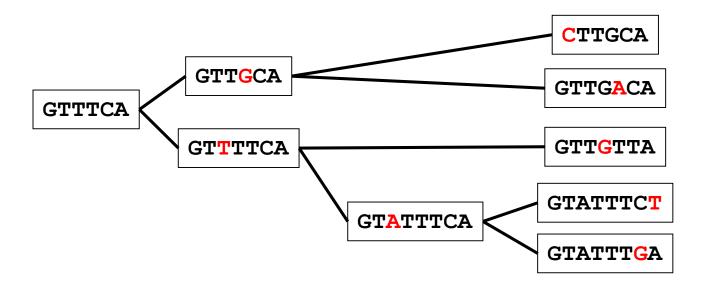
```
initialize matrix d;
for i := 1 to |S_1|
    for j := 1 to |S_2|
         for k := 1 to |S_3|
              if (S_1(i) = S_2(j)) then c_{ij} := 0; else c_{ij} := 1;
              if (S_1(i) = S_3(k)) then c_{ik} := 0; else c_{ik} := 1;
              if (S_2(j) = S_3(k)) then c_{ik} := 0; else c_{ik} := 1;
              d_1 := d[i - 1, j - 1, k - 1] + c_{ij} + c_{ik} + c_{jk};
              d_2 := d[i - 1, j - 1, k] + c_{ij} + 2;
              d_2 := d[i - 1, j, k - 1] + c_{ik} + 2;
              d_4 := d[i,j-1,k-1] + c_{ik} + 2;
              d_s := d[i - 1, j, k) + 2;
              d_6 := d[i, j - 1, k) + 2;
              d_7 := d[i,j,k-1) + 2;
              d[i,j,k] := min(d_1, d_2, d_3, d_4, d_5, d_6, d_7);
        end for:
    end for;
end for;
```

Bad News 1: Complexity

- For 3 sequences of length n
 - There are n³ cells in the cube
 - For each cell (top-left-front corner), we need to look at 7 corners
 - Together: O(7*n³) operations
- For k sequences of length n
 - There are n^k cell corners in the cube
 - For each corner, we need to look at 2^k-1 other corners
 - Together: $O(2^k * n^k)$ operations

Bad News 2: Biological Meaningfulness

Recall our motivation: Measure evolution



- Real number of events: 8
- sop-score: 2+3+6+6+2+...
 - Single mutations are counted multiple times

CT_TGC_A
GT_TGACA
GT_TGTTA
GTATTTCT

This Lecture

- Multiple Sequence Alignment
 - The problem
 - Theoretical approach: Sum-of-Pairs scores
 - Practical approach: Clustal-W

Different Scoring Function

- If we knew the true phylogenetic tree of the k sequences
 - Align every parent node pairwise with its children
 - Aggregate all alignment scores
 - This gives the "real" number of evolutionary operations
- But: Finding the true phylogenetic tree requires a MSA
 - Not covered in this lecture
- Use a heuristic: ClustalW
 - Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). "CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice." *Nucleic Acids Res* 22(22): 4673-80.

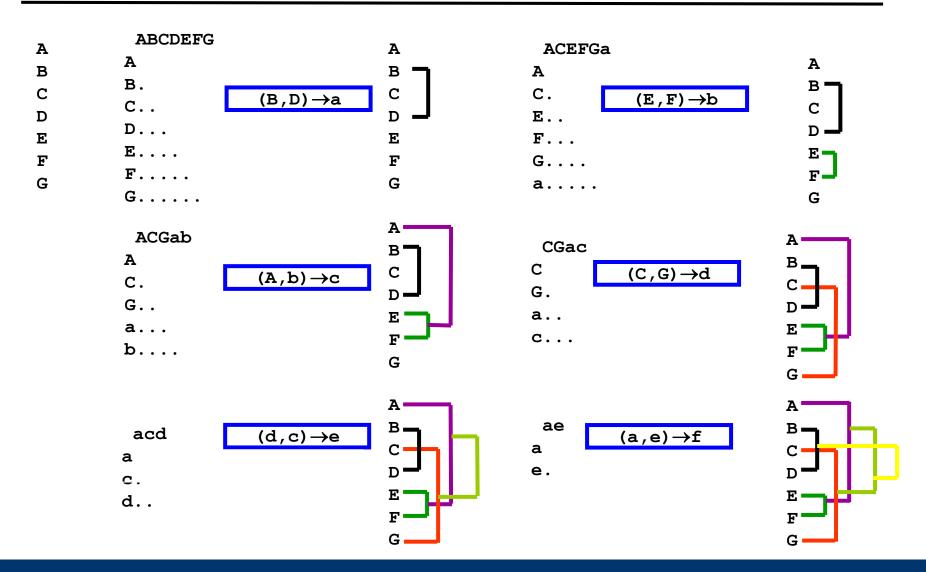
Clustal-W

- Main idea
 - Compute a "good enough" phylogeny the guide tree
 - Use the guide tree to iteratively align small MSA to larger MSA
 - "Progressive" MSA
 - Starting from single sequences
 - Add more and more sequences and turn smaller MSA into bigger MSA
 - Needs a fast method to align two MSAs
- Standard method for a long time
- Many newer (better) proposals
 - DAlign, T-Coffee, HMMT, PRRT, MULTALIGN, ...

Step 1: Compute the Guide Tree

- Compute all pair-wise alignments and store in matrix M
 - $M[i,j] = sim(s_i, s_i)$
- Compute the guide tree using hierarchical clustering
 - Choose the smallest M[i,j]
 - Let s_i and s_i form a new (next) branch of the tree
 - Compute the distance from the ancestor of s_i and s_j to all other sequences as the average of the distances to s_i and s_j
 - Set M' = M
 - Delete rows and columns i and j
 - Add a new column and row (ij)
 - For all $k \neq ij$: M'[ij,k] = (M[i,k] + M[j,k]) / 2
 - Iterate until M' has only one column / row

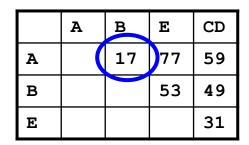
Sketch

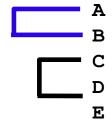


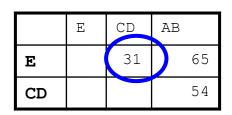
Example

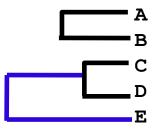
	A	В	С	D	E
A		17	59	59	77
В			37	61	53
C			(13	41
D)	21

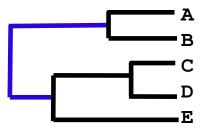
A
В
С
D
E



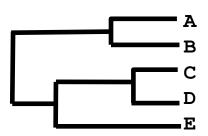








Example



- C PADKTNVKAAWGKVGAHAGEYGA
- D AADKTNVKAAWSKVGGHAGEYGA
- A PEEKSAVTALWGKVNVDEYGG
- B GEEKAAVLALWDKVNEEEYGG
- C PADKTNVKAAWG KVGAHAGEYGA
- D AADKTNVKAAWS KVGGHAGEYGA
- E AA TNVKTAWSSKVGGHAPA A
- A PEEKSAV TALWG KVN VDEYGG
- B GEEKAAV_LALWD_KVN__EEEYGG
- C PADKTNVKAA_WG_KVGAHAGEYGA
- D AADKTNVKAA WS KVGGHAGEYGA
- E AA TNVKTA WSSKVGGHAPA A

Once a gap, always a gap

Step 2: Progressive MSA

- Pair-wise alignment of MSAs in the order of the guide tree
- Aligning a MSA M₁ with a MSA M₂
 - Use the usual (global) alignment algorithm
 - To score a column, compute the average score over all pairs of symbols in each column
- Example

```
A ...P...

B ...G... Score of this column

C ...P... (2*s(P,A)+s(P,Y)+

2*s(G,A)+s(G,Y)+

D ...A... 2*s(P,A)+s(P,Y) ) / 9

E ...A...

F ...Y...
```

Issues

- There is a lot to say about whether hierarchical clustering actually computes the "correct" tree
- Clustal-W actually uses a different, more accurate phylogenetic algorithm called "neighbor-joining"
- Clustal-W is fast: O(k²*n²+k²*log(k))
 - For k sequences of length n
- Idea behind progressive alignment
 - Find strong signals (highly conserved blocks) first
 - Outliers are added last
 - Increases the chances that conserved blocks survive
 - Several improvements to this scheme are known

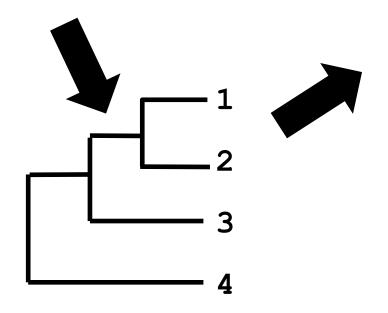
Problems of Progressive MSA

1: MAYFIELD THE LAST FAT RER

2: MAYFIELD THE FAST RAT

3: MAYLEENE IS A FAT RAT

4: MAYROONI THE LAST BIG RAT



Angelehnt: Cedric Notredame, 2001

MAYFIELD THE LAST FAT RER
MAYFIELD THE FAST RAT
MAYLEENE IS A FAT RAT
MAYROONI THE LAST BIG RAT

Besser:

MAYFIELD THE LAST FAT RER
MAYFIELD THE FAST ____ RAT
MAYLEENE IS__A__ FAT RAT
MAYROONI THE LAST BIG RAT

Further Reading

- Merkl & Waack, chapter 13
- Böckenhauer & Bongartz, chapter 5.3