

PAM and BLAST

Ulf Leser

This Lecture

- Substitution Matrices
- PAM distance
- PAM matrices
- Scaling up Local Alignments
- BLAST

Substitution Matrices

- Recall
- A scoring function (substitution matrix) is a function s: $\Sigma^{\prime} x \Sigma^{\prime} \rightarrow$ int
- DNA: typically symmetric, simple matrices
- Protein sequences are different
- Different AA have very different properties
- Substitutions may change the 3D structure completely or just a little bit or not at all

Amino Acids

	Small		Nucleophilic			
Klein, leicht	 Glycine (Gly, G) MW: 57.05	 Alanine (Ala, A) MW: 71.09	 Serine (Ser, S) MW: 87.08, $\mathrm{pK}_{\mathrm{a}} \sim 16$	 Threonine (Thr, T) MW: 101.11, $\mathrm{pK}_{\mathrm{a}} \sim 16$	 Cysteine (Cys, C) MW: 103.15, $\mathrm{pK}_{\mathrm{a}}=8.35$	
	Hydrophobic Valine (Val, V) MW: 99.14	 Leucine (Leu, L) MW: 113.16	 Isoleucine (Ile, I) MW: 113.16	 Methionine (Met, M) MW: 131.19	 Proline (Pro, P) MW: 97.12	GrO
	Aromatic		H	Acidic		
	Phenylalanine (Phe, F) MW: 147.18	Tyrosine (Tyr, Y) MW: 163.18	Tryptophan (Trp, W) MW: 186.21	Aspartic Acid (Asp, D) MW: 115.09, $\mathrm{pK}_{\mathrm{a}}=3.9$	Glutamic Acid (Glu, E) MW: 129.12, $\mathrm{pK}_{\mathrm{a}}=4.07$	
	Amide		Basic			
	Asparagine (Asn, N) MW: 114.11	Glutamine (Gln, Q) MW: 128.14	Histidine (His, H) MW: 137.14, $\mathrm{pK}_{\mathrm{a}}=6.04$	Lysine (Lys, K) MW: 128.17, $\mathrm{pK}_{\mathrm{a}}=10.79$	Arginine (Arg, R) MW: $156.19, \mathrm{pK}_{\mathrm{a}}=12.48$	

Example

Where do all
these numbers come from?

Is it Really Necessary?

Code	Häufig- keit	Mutier- barkeit
L	0.091	54
A	0.077	100
G	0.074	50
S	0.069	117
V	0.066	98
E	0.062	77
K	0.059	72
T	0.059	107
I	0.053	103
D	0.052	86
P	0.051	58
R	0.051	83
N	0.043	104
Q	0.041	84
F	0.040	51
Y	0.032	50
M	0.024	93
H	0.023	91
C	0.020	44
W	0.014	25

- We count how often a particular AA was replaced by any other AA
- Using "real" sequence alignments
- Replacement rate of Alanin (A) := 100%
- Obviously no equal distribution
- Even if we assume that mutations happen more or the less at the same rate, they obviously don't survive at the same rate
- Mutations are suppressed to different degrees
- W (Tryptophan): Strong suppression
- S (Serin): Little suppression

Quelle: Jones, Taylor, Thornton (1991). The rapid generation of mutation data matrices from protein sequences. CABIAS

Sensible Substitution Matrices

- For proteins, we need app. $(20 * 20) / 2=200$ values
- Scoring functions should be symmetric
- Possibility 1: Analytical
- Capture weight, polarity, size, ...
- Find a scoring scheme to measure the difference between two AA
- Needs to produce a single value per AA pair
- Not used in practice
- Possibility 2: Empirical
- Count which substitutions survived at which frequency in reality
- Needs true alignments: Pairs of homologues and aligned sequences
- Popular option: PAM - also considering evolutionary distance

Margaret O. Dayhoff

- Goal: "Deduce evolutionary relationships of the biological kingdoms, phyla, and other taxa from sequence evidence"
- Collection of all known protein sequences
- First edition: 65 proteins
- Several releases followed
- Resulted in the Protein Information Resource (PIR)
- ... which was later merged with UniProt / SwissProt

Thanks to Antje Krause

PAM: Point-Accepted Mutations

- Dayhoff, M. O., R. V. Eck, C. M. Park. (1972) A model of evolutionary change in proteins. in M. O. Dayhoff (ed.), Atlas of Protein Sequence and Structure Vol. 5.
- PAM has two meanings
- 1 PAM - Unit for measuring the similarity of two AA sequences
- PAM-X matrix - Substitution matrix to use when aligning two sequences that are X PAM distant
- Why having diff. scoring matrices for diff evol. distances?
- Small distance - all chances work in isolation, only local effects
- Larger distances - changes start interfering, combined effects
- Note: The concrete distance is not important

Preliminaries

- We show alignments in columns

- The percentage of M-columns in the optimal alignment is the \%-sequence-identity
- In the example: 17/45 ~ 36\%
- Directly dependent on alignment score, but scaled to [0...1]
- \%-sequence-diversity = 1 - \%-sequence-identity

PAM as Distance Measure

- Definition

Let S_{1}, S_{2} be two protein sequences with $\left|S_{1}\right|=\left|S_{2}\right|$. We say S_{1} and S_{2} are x PAM distant, iff S_{1} most probably was produced from S_{2} with x replacements per 100 AAs

- Remarks
- PAM is motivated by evolution
- Assumptions: Mutations happen with the same rate at every position of a sequence
- If mutation rate is high or time is long, mutations will occur at the same positions
- PAM $=\%$-sequence-identity

PAM as Distance Measure

- No InDels, only replacements
- The PAM distance d of two DNA sequences can be derived analytically from their \%-sequence-diversity p
$-d=-3 / 4 * \ln \left(1-4 / 3^{*} p\right)$ (Jukes-Cantor model)
- Derivation skipped
- Pairs with PAM > 250 are probably not homologues
- \%-sequence-identity < 20\%
- Twilight zone
- Which \%-sequence-identity will two random protein sequences have?

PAM Matrices

- The PAM-X matrix contains measures for the probability that a AA (column) was replaced by another AA (row) in two sequences that are x PAM distant
- Estimated from data
- Let $\left(\mathrm{S}_{1,1}, \mathrm{~S}_{2,1}\right), \ldots,\left(\mathrm{S}_{1, \mathrm{n}}, \mathrm{S}_{2, n}\right)$ be $\mathrm{n} x$-PAM distant pairs of aligned sequences (without InDels)
- Compute $f(i)$, the relative frequency of $A A A_{i}$ in all pairs
- Compute $f(i, j)$, the relative substitution frequency of A_{i} and A_{j}
- Number of positions k in any of the aligned pairs with $\mathrm{S}_{1,2}{ }^{1}[\mathrm{k}]=\mathrm{A}_{\mathrm{i}}$ and $\mathrm{S}_{2, \mathrm{z}}{ }^{\prime}[\mathrm{k}]=\mathrm{A}_{\mathrm{j}}$ or vice versa
- Then

$$
M_{x}(i, j)=\log \left(\frac{f(i, j)}{f(i)^{*} f(j)}\right)
$$

Some Explanations

- Log-likelihood ratio combining
- Observation: observed frequency of this mutation
- Expectation: chances to generate this mutation by chance given the relative frequencies of the two involved AAs

$$
M_{x}(i, j)=\log \left(\frac{f(i, j)}{f(i)^{*} f(j)}\right)
$$

- Interpretation
$-M(i, j)=0$: No selection
- $M(i, j)<0$: Negative selection, suppression of mutation
- $M(i, j)>0$: Positive selection, mutation is favored

Example

$\mathrm{S}_{1,1}$: ACGTGAC Relative frequencies
$S_{2,1}: \quad$ AGGTGCC
$\mathrm{S}_{1,2}$: GTTAGTA
$S_{2,2}$: TTTAGTA
$S_{1,3}$: GGTCA
$S_{2,3}$: AGTCA
Mutation rates

$$
\begin{array}{|l|l|l|l|}
\hline \text { A: 10/38 } & \text { C: 6/38 } & \text { G: 11/38 } & \text { T: } 11 / 38 \\
\hline
\end{array}
$$

Matrix

	A	C	G	T
A	0,48	0,10	$-0,16$	-
C		0,63	0,06	-
G			0,40	$-0,20$
T				0,50

Problems

- Depends on predefined alignments
- We need a substitution matrix to find optimal alignments
- A hen-egg problem
- Alternative: Do it manually using experience, 3D-structure, ..
- Makes several assumptions
- Mutations are equally likely at every position in a sequence
- Mutations are equally likely independent from AA neighbors
- ...

Real Substitution Matrices

- PAM requires large n for each evolutionary distance X to adequately capture rare mutations
- Dirty trick: Molecular clock assumption
- Assume that mutations appear with equal rate over time
- Then the frequencies of PAM-x mutations depend on the frequencies of PAM-1 mutations
- PAM-x matrices are computed by repeated matrix multiplication of PAM-1 with itself (assuming a linear relationship)
- The complete (highly heuristic) procedure
- Choose set of n pairs with small PAM distance and align manually
- Use these alignments to compute M_{1}
- Compute $M_{x}=\left(M_{1}\right)^{x}$

BLOSUM

- PAM is a bit old-fashioned
- BLOSUM: BLOcks SUbstitution Matrix
- Henikoff and Henikoff, 1993
- Removes assumption of equal mutation rates across each sequence position by considering conserved blocks
- Direct estimation for different PAM distances instead of errorpropagating self multiplication

This Lecture

- Substitution Matrices
- PAM distance
- PAM matrices
- Scaling up Local Alignments
- BLAST

Scaling Up Local Alignment

- Searching similar sequences (with a high local alignment score) is a fundamental operation in Bioinformatics
- Sequence databases grow exponentially
- We need faster algorithms, even if they sometimes fail

Similarity Search Problems and their Accuracy

- Task: Given a sequence s and a database D, find all sequences T in D that are sufficiently local-similar to s
- Often, exactly computing T is not feasible and not necessary (think of the WWW and search engines)
- Assume a method that finds a set X of answers for s
- How good is this method?
- Some sequences will be in X and T - true positives
- Some will be in X but not T - false positives
- Also called Type I error
- Some will be in T but not X - false negatives

Reality

- Also called Type II error
- Some will be neither in X nor T - true negatives

Prediction

Precision and Recall

- Precision = TP/(TP+FP)
- What is the fraction of correct answers in X ?
- Related to specificity

Prediction

- Recall = TP/(TP+FN)
- Which fraction of correct answers from T are also in X?
- Also called sensitivity
- Trade-Offs
- Usual methods compute a score per element of D
- All sequences with a score above a threshold t are returned as X
- Increasing t : higher precision, lower recall
- Lowering t: lower precision, higher recall
- ... if the score correlates with correctness ...

Example

- Let $|D B|=1000,|X|=15,|T|=20,|X \cap T|=9$

	Real: Positive	Real: Negative
Alg: Positive	$\mathrm{TP}=9$	$\mathrm{FP}=6$
Alg: Negative	$\mathrm{FN}=11$	$\mathrm{TN}=974$

- Precision $=T P /(T P+F P)=9 / 15=60 \%$
- Recall $=$ TP/(TP+FN) $=9 / 20=45 \%$
- Assume we increase $t:|X|=10,|X \cap T|=7$

	Real: Positive	Real: Negative
Alg: Positive	$\mathrm{TP}=7$	$\mathrm{FP}=3$
Alg: Negative	$\mathrm{FN}=13$	

- Precision: 70\%, recall $=35 \%$

BLAST

- Altschul, Gish, Miller, Myers, Lipman: „Basic Local Alignment Search Tool", J Mol Bio, 1990
- A heuristic algorithm for sequence similarity search
- Very fast, high recall, not perfect
- Very successful: You "blast" a sequence
- NCBI runs thousands of BLAST searches every day
- A family of tools
- Gapped-BLAST, PSI-BLAST, MegaBlast, BLAST-ALL, PATHBLAST, Name-BLAST, ...
- BLAST for DNA, protein, DNA-protein, protein-DNA, ...
- We only look at the simple DNA-DNA version
- We skip several heuristic and domain-specific tricks

Fundamental Idea

- Fundamental idea : If two sequences have a good local alignment, then the matching area contains, with very high probability, a sub-area where the match is even better (or even exact)
- These sub-areas are called seeds

TTGACTCGATTATAGTCGCGGATATACTATCG ССТАTCACAAGAATATAGTCCCTGATCCAGC

TTGACTC GATTATAGTCGCGGAT ATACTATCG CCTATCACAA GAATATAGTCCCTGAT CCAGC

TTGACTC GATTATAGTCGCGGAT ATACTATCG CCTATCACAA GAATATAGTCCCTGAT CCAGC

Algorithm

- Given query sequence s and sequence database $D=\left\{d_{i}\right\}$
- 1. Compute all substrings s_{i} of s of length q
- Also called q-grams
- How many?
- 2. Find all approximate occurrences of all s_{i} in all d_{j}
- Gap-free alignment with matrix; score must be above threshold t
- Hits are called seeds - approx. occurrences of some s_{i} in d_{j}
- 3. Extend seeds to left and right in s_{i} and d_{j} until
- [Constantly update the similarity score]
- ... the score drops sharply
- ... s_{i} or d_{j} ends
- ... the score gets too bad compared to other hits found earlier

Example

```
q=5, t= 3, Matrix: M=+1, R=-1
s=ACGTGATA
d=GATTGACGTGACTGCTAGTGATACTATAT
```

$$
\begin{aligned}
& s_{1}=\mathrm{ACGTG} \\
& s_{2}=\mathrm{CGTGA} \\
& s_{3}=\mathrm{GTGAT} \\
& \mathrm{~s}_{4}=\mathrm{TGATA}
\end{aligned}
$$

GATTGACGTGACTGCTAGTGATACTATAT GATTGACGTGACTGCTAGTGATACTATAT GATTGACGTGACTGCTAGTGATACTATAT GATTGACGTGACTGCTAGTGATACTATAT

GATTGACGTGACTGCAAGTGATACTATAT	
ACGTGATA	5
ACGTGATA	$5+1=6$
ACGTGATA	$6-1=5$
. .	\ldots

Properties

- Finding seeds efficiently requires more work
- Pre-compute all q-grams of all d_{i}
- Group by q-gram
- Called a hash-index (should be kept in main memory)
- Lookup: Given s, find all matching q-grams (as seeds)
- Exclusion method
- Vast majority of all sequences in DB are never looked at because they do not contain a seed
- The "seed" idea is the basis of nearly all fast alignment methods
- Where it fails
- Sensitive to t: Too high - missing hits; too low - slow
- Does not consider gaps

Speed - Precision - Recall

- Increasing t
- Higher requirements for any seed
- Less seeds, less extensions
- Lower recall, higher speed, precision stays
- Increasing q (and adapting t)
- Higher requirements for any seed
- Less seeds, less extensions
- Lower recall, higher speed, precision stays

BLAST Screenshots

Ulf Leser: Introduction to Bioinformatics

BLAST-2

- Altschul, Madden, Schaffer, Zhang, Zhang, Miller, Lipman: „Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", NAR, 1997

- Faster
- BLAST: 90\% of time spend in extensions
- BLAST2: Two seeds in short distance
- Needs a decrease in t
- Higher recall
- BLAST didn't even consider gaps in the extension phase
- BLAST2: Full local alignment starting from seeds
- Allows an increase of t

Further Reading

- Substitution matrixes: Krane \& Raymer, Chapter 3
- BLAST, BLAST2: Merkl \& Waack, Chapter 12

