

PAM and BLAST

This Lecture

- Substitution Matrices
 - PAM distance
 - PAM matrices
- Scaling up Local Alignments
 - BLAST

Substitution Matrices

- Recall
 - A scoring function (substitution matrix) is a function s: $\Sigma' x \Sigma' \rightarrow int$
- DNA: typically symmetric, simple matrices
- Protein sequences are different
 - Different AA have very different properties
 - Substitutions may change the 3D structure completely or just a little bit or not at all

Amino Acids

Exam	n	ام
сханн	μ	

Where do

all

these

numbers

come

from?

	A	R	N	D	С	Q	Е	G	H	I	L	K	М	F	Р	S	Т	W	Y	V	В	Z
A	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-1	-2	-1	1	0	-3	-2	0	-2	-1
R	-1	5	Q	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2	-3	-1	0
N	-2	0	6	Ą	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2	-3	3	0
D	-2	-2	1	6	-3	0	2	-1	-1	-3	-4	-1	-3	-3	-1	0	-1	-4	-3	-3	4	1
С	0	-3	-3	-3`	9	-3	-4	-3	-3	-1	-1	-3	-1	-2	-3	-1	-1	-2	-2	-1	-3	-3
Q	-1	1	0	0	-3	5	२	-2	0	-3	-2	1	0	-3	-1	0	-1	-2	-1	-2	0	3
E	-1	0	0	2	-4	2`	5	-2	0	-3	-3	1	-2	-3	-1	0	-1	-3	-2	-2	1	4
G	0	-2	0	-1	-3	-2	-2	6	-2	-4	-4	-2	-3	-3	-2	0	-2	-2	-3	-3	-1	-2
H	-2	0	1	-1	-3	0	0	-2	8	-3	-3	-1	-2	-1	-2	-1	-2	-2	2	-3	0	0
I	-1	-3	-3	-3	-1	-3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3	-3	-3
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2`	4	-2	2	0	-3	-2	-1	-2	-1	1	-4	-3
ĸ	-1	2	0	-1	-3	1	1	-2	-1	-3	-2`	5	-1	-3	-1	0	-1	-3	-2	-2	0	1
М	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	Q	-2	-1	-1	-1	-1	1	-3	-1
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0`	6	-4	-2	-2	1	3	-1	-3	-3
P	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	-1	-1	-4	-3	-2	-2	-1
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4	Ą	-3	-2	-2	0	0
т	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5	-2	-2	0	-1	-1
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2`	11	2	-3	-4	-3
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2`	7	-1	-3	-2
v	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4	-3	-2
в	-2	-1	3	4	-3	0	1	-1	0	-3	-4	0	-3	-3	-2	0	-1	-4	-3	-3	4	A
Z	-1	0	0	1	-3	3	4	-2	0	-3	-3	1	-1	-3	-1	0	-1	-3	-2	-2	1	4

Is it Really Necessary?

Code	Häufig- keit	Mutier- barkeit
L	0.091	54
А	0.077	100
G	0.074	50
S	0.069	117
v	0.066	98
Е	0.062	77
K	0.059	72
Т	0.059	107
Ι	0.053	103
D	0.052	86
Р	0.051	58
R	0.051	83
N	0.043	104
Q	0.041	84
F	0.040	51
Y	0.032	50
М	0.024	93
Н	0.023	91
С	0.020	44
W	0.014	25

- We count how often a particular AA was replaced by any other AA
 - Using "real" sequence alignments
- Replacement rate of Alanin (A) := 100%
- Obviously no equal distribution
- Even if we assume that mutations happen more or the less at the same rate, they obviously don't survive at the same rate
 - Mutations are suppressed to different degrees
 - W (Tryptophan): Strong suppression
 - S (Serin): Little suppression

Quelle: Jones, Taylor, Thornton (1991). The rapid generation of mutation data matrices from protein sequences. CABIAS

- For proteins, we need app. (20*20)/2=200 values
 - Scoring functions should be symmetric
- Possibility 1: Analytical
 - Capture weight, polarity, size, ...
 - Find a scoring scheme to measure the difference between two AA
 - Needs to produce a single value per AA pair
 - Not used in practice
- Possibility 2: Empirical
 - Count which substitutions survived at which frequency in reality
 - Needs true alignments: Pairs of homologues and aligned sequences
 - Popular option: PAM also considering evolutionary distance

Margaret O. Dayhoff

- Goal: "Deduce evolutionary relationships of the biological kingdoms, phyla, and other taxa from sequence evidence"
- Collection of all known
 protein sequences
 - First edition: 65 proteins
 - Several releases followed
 - Resulted in the Protein
 Information Resource (PIR)
 - ... which was later merged with UniProt / SwissProt

Thanks to Antje Krause

PAM: Point-Accepted Mutations

- Dayhoff, M. O., R. V. Eck, C. M. Park. (1972)
 A model of evolutionary change in proteins.
 in M. O. Dayhoff (ed.), Atlas of Protein Sequence and Structure Vol. 5.
- PAM has two meanings
 - 1 PAM Unit for measuring the similarity of two AA sequences
 - PAM-X matrix Substitution matrix to use when aligning two sequences that are X PAM distant
- Why having diff. scoring matrices for diff evol. distances?
 - Small distance all chances work in isolation, only local effects
 - Larger distances changes start interfering, combined effects
 - Note: The concrete distance is not important

• We show alignments in columns

 ACCCTATCTATA - - GC - TAGAAGCTCGATAATACCGACCAGTAT

 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

- The percentage of M-columns in the optimal alignment is the %-sequence-identity
 - In the example: 17/45 ~ 36%
 - Directly dependent on alignment score, but scaled to [0...1]
- %-sequence-diversity = 1 %-sequence-identity

- Definition
 - Let S_1 , S_2 be two protein sequences with $|S_1| = |S_2|$. We say S_1 and S_2 are x PAM distant, iff S_1 most probably was produced from S_2 with x replacements per 100 AAs
- Remarks
 - PAM is motivated by evolution
 - Assumptions: Mutations happen with the same rate at every position of a sequence
 - If mutation rate is high or time is long, mutations will occur at the same positions
 - PAM ≠ %-sequence-identity

- No InDels, only replacements
- The PAM distance d of two DNA sequences can be derived analytically from their %-sequence-diversity p
 - d = -3/4*ln(1-4/3*p)
 - Derivation skipped
- Pairs with PAM >250 are probably not homologues
 - %-sequence-identity < 20%
 - Twilight zone
 - Which %-sequence-identity will two random protein sequences have?

(Jukes-Cantor model)

- The PAM-X matrix contains measures for the probability that a AA (column) was replaced by another AA (row) in two sequences that are x PAM distant
- Estimated from data
 - Let (S_{1,1}, S_{2,1}), ..., (S_{1,n}, S_{2,n}) be n x-PAM distant pairs of aligned sequences (without InDels)
 - Compute f(i), the relative frequency of AA A_i in all pairs
 - Compute f(i,j), the relative substitution frequency of A_i and A_i
 - Number of positions k in any of the aligned pairs with $S_{1,z}[k]=A_i$ and $S_{2,z}[k]=A_j$ or vice versa
 - Then

$$M_{x}(i,j) = \log\left(\frac{f(i,j)}{f(i)*f(j)}\right)$$

- Log-likelihood ratio combining
 - Observation: observed frequency of this mutation
 - Expectation: chances to generate this mutation by chance given the relative frequencies of the two involved AAs

$$M_{x}(i,j) = \log\left(\frac{f(i,j)}{f(i)*f(j)}\right)$$

- Interpretation
 - M(i,j) = 0: No selection
 - M(i,j) < 0: Negative selection, suppression of mutation
 - M(i,j) > 0: Positive selection, mutation is favored

Example

S 1,1:	ACGTGAC		F	Relative frequencies								
S _{2,1} :	AGG'	FGCC	Z	A: 10/3	8 C:	6/3	38 G:	11/3	8 T: 11	L/38		
S _{1,2} :		AGTA			ł		ł					
S _{2,2} :	TTT	AGTA										
•	S _{1,3} : GGTCA											
S _{2,3} :	AGT	CA										
Mutat	tion rat	tes						Matrix				
	А	С	G	Т			А	С	G	Т		
A	4/19	1/19	1/19	0/19		Α	0,48	0,10	-0,16	-		
C		2/19	1/19	0/19		С		0,63	0,06	-		
G			4/19	1/19		G			0,40	-0,20		
Т				5/19		Т				0,50		

- Depends on predefined alignments
- We need a substitution matrix to find optimal alignments
 - A hen-egg problem
 - Alternative: Do it manually using experience, 3D-structure, ..
- Makes several assumptions
 - Mutations are equally likely at every position in a sequence
 - Mutations are equally likely independent from AA neighbors

— ..

- PAM requires large n for each evolutionary distance X to adequately capture rare mutations
- Dirty trick: Molecular clock assumption
 - Assume that mutations appear with equal rate over time
 - Then the frequencies of PAM-x mutations depend on the frequencies of PAM-1 mutations
 - PAM-x matrices are computed by repeated matrix multiplication of PAM-1 with itself (assuming a linear relationship)
- The complete (highly heuristic) procedure
 - Choose set of n pairs with small PAM distance and align manually
 - Use these alignments to compute M_1
 - Compute $M_x = (M_1)^x$

- PAM is a bit old-fashioned
- BLOSUM: BLOcks SUbstitution Matrix
 - Henikoff and Henikoff, 1993
 - Removes assumption of equal mutation rates across each sequence position by considering conserved blocks
 - Direct estimation for different PAM distances instead of errorpropagating self multiplication

This Lecture

- Substitution Matrices
 - PAM distance
 - PAM matrices
- Scaling up Local Alignments
 - BLAST

Scaling Up Local Alignment

- Searching similar sequences (with a high local alignment score) is a fundamental operation in Bioinformatics
- Sequence databases grow exponentially
- We need faster algorithms, even if they sometimes fail

Similarity Search Problems and their Accuracy

- Task: Given a sequence s and a database D, find all sequences T in D that are sufficiently local-similar to s
 - Often, exactly computing T is not feasible and not necessary (think of the WWW and search engines)
- Assume a method that finds a set X of answers for s
- How good is this method?
 - Some sequences will be in X and T true positives
 - Some will be in X but not T false positives
 - Also called Type I error
 - Some will be in T but not X false negatives Reality
 - Also called Type II error
 - Some will be neither
 in X nor T true negatives

		rtounty	
		+	-
Prediction	+	TruePositive	FalsePositive
		(TP)	(FP)
	-	FalseNegative	TrueNegative
		(FN)	(TN)

Precision and Recall

- Precision = TP/(TP+FP)
 - What is the fraction of correct answers in X?
 - Related to specificity
- Recall = TP/(TP+FN)
 - Which fraction of correct answers from T are also in X?
 - Also called sensitivity
- Trade-Offs
 - Usual methods compute a score per element of D
 - All sequences with a score above a threshold t are returned as X
 - Increasing t : higher precision, lower recall
 - Lowering t: lower precision, higher recall
 - ... if the score correlates with correctness ...

		Reality	
		+	-
Prediction	+	TruePositive	FalsePositive
		(TP)	(FP)
	-	FalseNegative	TrueNegative
		(FN)	(TN)

Example

• Let |DB| = 1000, |X|=15, |T|=20, $|X \cap T|=9$

	Real: Positive	Real: Negative
Alg: Positive	TP = 9	FP = 6
Alg: Negative	FN = 11	TN= 974

- Precision = TP/(TP+FP) = 9/15 = 60%
- Recall = TP/(TP+FN) = 9/20 = 45%
- Assume we increase t: |X|=10, $|X \cap T|=7$

	Real: Positive	Real: Negative
Alg: Positive	TP = 7	FP = 3
Alg: Negative	FN = 13	

- Precision: 70%, recall = 35%

- Altschul, Gish, Miller, Myers, Lipman: "Basic Local Alignment Search Tool", J Mol Bio, 1990
 - A heuristic algorithm for sequence similarity search
 - Very fast, high recall, not perfect
 - Very successful: You "blast" a sequence
 - NCBI runs thousands of BLAST searches every day
- A family of tools
 - Gapped-BLAST, PSI-BLAST, MegaBlast, BLAST-ALL, PATHBLAST, Name-BLAST, ...
 - BLAST for DNA, protein, DNA-protein, protein-DNA, ...
 - We only look at the simple DNA-DNA version
 - We skip several heuristic and domain-specific tricks

- Fundamental idea : If two sequences have a good local alignment, then the matching area contains, with very high probability, a sub-area where the match is even better (or even exact)
- These sub-areas are called seeds

TTGACTCGATTATAGTCGCGGATATACTATCG CCTATCACAAGAATATAGTCCCTGATCCAGC

TTGACTC GATTATAGTCGCGGAT ATACTATCG CCTATCACAA GAATATAGTCCCTGAT CCAGC

TTGACTC GATTATAGTCGCGGAT ATACTATCG CCTATCACAA GAATATAGTCCCTGAT CCAGC

Algorithm

- Given query sequence s and sequence database D={d_i}
- 1. Compute all substrings s_i of s of length q
 - Also called q-grams
 - How many?
- 2. Find all approximate occurrences of all s_i in all d_i
 - Gap-free alignment with matrix; score must be above threshold t
 - Hits are called seeds approx. occurrences of some s_i in d_j
- 3. Extend seeds to left and right in s_i and d_i until
 - [Constantly update the similarity score]
 - ... the score drops sharply
 - $\dots s_i$ or d_j ends
 - ... the score gets too bad compared to other hits found earlier

Example

Properties

- Finding seeds efficiently requires more work
 - Pre-compute all q-grams of all d_i
 - Group by q-gram
 - Called a hash-index (should be kept in main memory)
 - Lookup: Given s, find all matching q-grams (as seeds)
- Exclusion method
 - Vast majority of all sequences in DB are never looked at because they do not contain a seed
 - The "seed" idea is the basis of nearly all fast alignment methods
- Where it fails
 - Sensitive to t: Too high missing hits; too low slow
 - Does not consider gaps

• Increasing t

- Higher requirements for any seed
- Less seeds, less extensions
- Lower recall, higher speed, precision stays
- Increasing q (and adapting t)
 - Higher requirements for any seed
 - Less seeds, less extensions
 - Lower recall, higher speed, precision stays

BLAST Screenshots

NCBI Blast:gi 124806265 (3279 lette	ers) - Mozilla Firefox		
Datei Bearbeiten	306265 (3279 letters) - Mazilla Firefox		
Contracting 1246			
	Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe		
🗅 Nachsehen 🗀 Fr 🧼 🗸 📄 🗸 🥑 🤅			
S NCBI Blast:gi 1	🔎 👻 👘 👻 🚱 http://www.ncbi.nlm.nih.gov/mapview/map_search.cgi?taxid=96068RID=7J14JBRC012&CLIENT=web&QL	▼ ▶ Google	Q
Job Title: gi 1248 S NCBI Blast:gi 1248	n 🗁 Nachsehen 🗁 Frequent Ġ Google 🖂 WBI 🔄 Lehre 🗁 News 🗁 Suchen 🗁 Buecher kaufen 🗁 Paper suchen 🗁 Reisen 🗁 MyStuf	ff	
BLASTN 2.2.1 Legend for links	S NCBI Blast:gi 124806265 (3279 letters) 🔄 S metja - CoreNucleotide Results 💽 S Entrez Genome view 💽	S The Statistics of Sequen	ce Similarity S 🔝 🔹
Reference: Altschul, St. Jinghui Zhan (1997), "Gapi protein datal Transcripts	S NCBI		
RID: 7J14JBR(NM 022726.2	PubMed Nucleotide Protein Genome Gene Structure PopSet		Help
Genomic sequences Database: hur NT 007933.14 assemblies. NW 923640.1	Search for on chromosome(s) assembly All V Find	4	dvanced Search
4f NT 072556.2 F NT 072556.2 NW 921618.1 NW 921618.1 please refer NT 011786.15 NW 9227721.1 Genome NT 015354.18 NW 922217.1 MW 922217.1 NT 00536.15 NW 922217.1 protein, cont NW 9223184.1 NT 006576.15 Query= gi 12 NW 92252.1 NT 005576.15 NT 01630.14 NT 01630.14 NT 025028.13 NT 01630.14 NT 025028.13 NT 025028.13 NT 025028.13 NT 025028.13 NT 025028.14 NT 025028.13 NT 025028.13 NT 025028.13 NT 027761.14 NT 022771.14 NT 022771.14	Homo sapiens (human) genome view Build 36.2 statistics 1	BLAST search the	: human genome
<u>NW 927106.1</u> <u>NW 925918.1</u>	Color key for scores: < < 40 40-50 50-80 80-200 >= 200	Back to BLAST	alignments page
NW 925561.1 H NW 923907.1 H	BLAST search results: 100 BLAST hits found		
NW 923240.1 H NT 079592.2 H	Query gi 124806265 ref XM_001350639.1 Plasmodium falciparum 3D7 hypothetical protein, conserved (PFL1345c) mRN	A, complete cds	
NW 923095.1		DI A CI	results 🛛
NW 921585.1	Chr 🗸 Assembly Map element		results ② core ✿ E value
Suchen: compre	1 reference NT 032977	CONTIG 2 42	
Fertig	1 Celera all matches		
Trup://130.14.29.110/DEA5	🔀 Suchen: compre 😽 Ab <u>w</u> ärts 🎓 <u>A</u> ufwärts 📄 <u>H</u> ervorheben 🔲 <u>G</u> roß-/Kleinschreibung		
	Fertig		

BLAST-2

- Altschul, Madden, Schaffer, Zhang, Zhang, Miller, Lipman: "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", NAR, 1997
- Faster
 - BLAST: 90% of time spend in extensions
 - BLAST2: Two seeds in short distance
 - Needs a decrease in t
- Higher recall
 - BLAST didn't even consider gaps in the extension phase
 - BLAST2: Full local alignment starting from seeds
 - Allows an increase of t

- Substitution matrixes: Krane & Raymer, Chapter 3
- BLAST, BLAST2: Merkl & Waack, Chapter 12