

Sequence Alignment

Ulf Leser

This Lecture

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Gene Function

- A fundamental principle of bioinformatics
- The function of a protein depends on its physical structure
- The physical structure depends on the protein sequence
- The protein sequence depends on the gene sequence
- If the sequence of two genes is only slightly different, so will be the protein sequence
- If the sequence of two proteins is only slightly different, so will be their structure
- If the structure of two proteins is only moderately different, they likely have the same (or at least share some) function
- Studying the sequence of genes allows the generation of hypotheses about the function of the proteins they encode

How Genes Evolve

- Evolution, sequences, and function
- Any two species X_{1}, X_{2} have a common ancestor A
- Any gene G from A will undergo independent evolution in X_{1} and X_{2}, leading to genes G_{1} and G_{2}
- The more similar G_{1} and G_{2} are, the more likely do they still have the same function (that of G)
- For any two genes of non-trivial length, the chance that they have a very similar sequence by chance is extremely small
- Corollary: If genes G_{1} and G_{2} from species X_{1} and X_{2} today are very similar, they most likely derive from the same ancestor A and most likely have the same function
- How can we quantify this?

AGGTTGATAGCCGA G

AGGTTTATAGCTCGA
AGCTTGAT_GCCGA

Basic Evolutionary Events

- The simplest model: Single bases can be replaced (R), inserted (I), or deleted (D) (or kept (M))
- Any changes must be explained by sequences of I, D, R
- I.e., by singular evolutionary events accumulating over time
- We call this an edit script
- Very simple yet quite powerful model
- One more simplification

Example: Eyeless (ey)

- Family of genes identified first in Drosophila
- When activated in arbitrary cells, non-functional eyes start to grow at various places of the body
- ey is a "master gene" - controls a cascade of activations of other genes eventually leading to eye development
- Also inflicted with several other neural developments
- Zitat [NCBI Gene]
- Enables DNA-binding transcription factor activity, ... Involved in several processes, including adult walking behavior; nervous system development; and regulation of insulin-like growth factor receptor signaling pathway... expressed in several structures, including central nervous system; embryonic head; eyeantennal disc; neuroblasts; and photoreceptor. Human ortholog(s) of this gene implicated in bilateral optic nerve hypoplasia; eye disease (multiple); glucose intolerance; and paranoid schizophrenia...

Eyes

D

Red: Only shadow Blue: Lenses etc. Green: Mirrors

Oval: Compound eyes Rectangle: Single chamber

Source: Treisman (2004).

- Eyes probably are an example of convergent evolution
- However, genes controlling eye development are highly conserved across a wide range of species

Homologues of "eyeless isoform D" (DM)

```
(3) job:201105063F73IVJYOG in UniProtKB by taxonomy - Mozilla Firefox
Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe
8 eyeless uniprot drosophila - Google-Suche x .. job:201105063F73IVJYOG in UniProtKB b... x
& \
% Meistbesuchte Seiten \square Nachsehen \square Frequent 啕 wBi Lehre s% Google \square News
    Protein Knowledgebase (UniProtKB)\vee iob:201105063F73|JJY0G
```

229 results for job:201105063F73IVJY0G in UniProtKB browsing bytaxonomy
国 View result list

+ Ceractinomorpha (4)
- Eumetazoa (225) Bilateria (224)
- Coelomata (213)
- Deuterostomia (135)

Chordata (129)

+ Branchiostoma
${ }^{+}$Branchiostoma (10)
+ Urochordata (8)
- vertebrata (111)
- Euteleostomi (109)
+ Clupeocephala (30)
- Tetrapoda (79)

Amniota (56)

+ Neognathae (8)
- Theria (48)
- Eutheria
\& Euarchontoglires (41)

Saccoglossus kowalevskii (Acorn worm)
Protostomia (78)

+ Annelida
+ Arthropoda
+ Decapodiformes
Lineus sanguineus (Ribbon worm) (1)
- Platyhelminthes (5)

Dugesiidae (3)
Schistosoma manson
Brachionus plicatilis (Marine rotifer) (Brachionus muelleri)
(1)

Nematoda (roundworms)
Caenorhabditis (3)
MFTLQPTPTAIGTVVPPWSAGTLIERLPSLEDMAHKDNVIAMRNLPCLGTAGGSGLG GIAGKPSPTMEAVEASTASHPHSTSSYFATTYYHLTDDECHSGVNQLGGVFVGGRPL PDSTRQKIVELAHSGARPCDISRILQVSNGCVSKILGRYYETGSIRPRAIGGSKPRVAT AEVVSKISQYKRECPSIFAWEIRDRLLQENVCTNDNIPSVSSINRVLRNLAAQKEQQST GSGSSSTSAGNSISAKVSVSIGGNVSNVASGSRGTLSSSTDLMQTATPLNSSESGGAS NSGEGSEQEAIYEKLRLLNTQHAAGPGPLEPARAAPLVGQSPNHLGTRSSHPQLVHG NHQALQQHQQQSWPPRHYSGSWYPTSLSEIPISSAPNIASVTAYASGPSLAHSLSPP NDIESLASIGHQRNCPVATEDIHLKKELDGHQSDETGSGEGENSNGGASNIGNTEDD QARLILKRKLQRNRTSFTNDQIDSLEKEFERTHYPDVFARERLAGKIGLPEARIQVWFS NRRAKWRREEKLRNQRRTPNSTGASATSSSTSATASLTDSPNSLSACSSLLSGSAGG PSVSTINGLSSPSTLSTNVNAPTLGAGIDSSESPTPIPHIRPSCTSDNDNGRQSEDCRR VCSPCPLGVGGHQNTHHIQSNGHAQGHALVPAISPRLNFNSGSFGAMYSNMHHTAL SMSDSYGAVTPIPSFNHSAVGPLAPPSPIPQQGDLTPSSLYPCHMTLRPPPMAPAHHH IVPGDGGRPAGVGLGSGQSANLGASCSGSGYEVLSAYALPPPPMASSSAADSSFSAAS SASANVTPHHTIAQESCPSPCSSASHFGVAHSSGFSSDPISPAVS..

- 250 most similar protein sequences in UniProt
- Sequence identities all >50\%,
- All p-Values < 1E-50

This Lecture

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Edit Scripts and Edit Distances

- Definition
- Let A, B $\in \Sigma^{*}=\Sigma \cup^{\prime \prime}$ "
- An edit script e is a sequence of operations I, D, R, M
- e is an edit script for A and B iff $e(A)=B$
- Slightly underdetermined - which replacement? Which base to insert?
- The length of an edit script is the number of I, D, R it contains
- The edit distance between A and B is the length of the shortest edit script for A and B
- Remarks
- If we know $e(A)=B$, determining e^{\prime} with $e^{\prime}(B)=A$ is trivial
- The shortest edit script is not unique, but its length is
- MIMMMR

A_TGTA
AGTGTC

IRMMMDI
ATGTA
AGTGT_ $\overline{\mathbf{C}}$

Alignment

- Edit scripts are intuitive from an evolutionary point-of-view, but somewhat clumsy from a computational point-of-view
- Definition
- A (global) alignment of strings A, B is an arrangement of A and B, enriched with „_" at arbitrary positions, under each other such that no column contains two "_"
- The score of an alignment is the number of "_" plus the number of mismatching columns it contains
- The alignment distance between A and B is the minimal score of any alignment of A and B
- Edit distance and alignment distance are essentially identical
- Examples
$-{ }_{-}^{\text {AGTGTC }}$
Score:

5

2

2

A Visual Approach: Dotplots

- A dotplot of two strings A, B is a matrix M with
- The i'th character in A is represented by the ith column
- The j'th character in B is represented by the j'th row
- M[i,j]=1 (blue) iff $A[i]=B[j]$

	A	T	G	C	G	G	T	G	C	A	A	T	G
A													
T													
G													
G													
T													
G													
C													
A													
T													

Dotplot and Identical Substrings

- How do identical substrings look like in a dotplot?

	A	T	G	C	G	G	T	G	C	A	A	T	G
A													
T													
G													
G													
T													
G													
C													
A													
T													

	A	T	G	C	G	G	T	G	C	A	A	T	G
A													
T													
G													
G													
T													
G													
C													
A													
T													

- Diagonals from up-left to down-right
- Longest diagonal is the longest common substring

Alignments and Dotplots

- Every alignment of A, B can be uniquely mapped into a path through M
- The path starts in the upper-left corner (coord: 0,0)
- Go through the alignment column by column
- Next column is " X, _" - move to the right
- Next column is " $_, X^{\prime \prime}$ - move down
- Next column is " X, Y " - move right-down

ATG_CGGTG_CAATG
ATGG_TGCA_T

ATGCGGTGCAATG
ATGGTGCCAT

Examples

> ATGCGGTGCAATG ATG_GTGCA__T

- Clearly, the number $c(P)$ of 1's (blue cells) crossed in a diagonal step by a path P is the same as $|\mathrm{P}|-\mathrm{e}(\mathrm{A}, \mathrm{B})$
- Finding the path that minimizes $|\mathrm{P}|-\mathrm{c}(\mathrm{P})$ (or maximizes $c(P)$) solves the problem of computing the edit distance

This Lecture

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Algorithm

- How do we compute the edit distance of two strings?
- Naïve: Enumerate all paths, compute $c(P)$ for each

- Bad news: There exist $>3^{\min (m, n)}$ paths
- Good news: We can compute e(A,B) with ~3*m*n operations

Enumerating all Paths Recursively

The naïve (recursive) Way

- Observation
- Let $|A|=n,|B|=m$
- Let $d(i, j)=e(A[\ldots i], B[\ldots j])$ for $0 \leq i \leq n$ and $0 \leq j \leq m$ with $d(i, 0)=i$ and $d(0, j)=j$
- We can compute $e(A, B)=d(n, m)$ recursively as follows

$$
d(i, j)=\min \left\{\begin{array}{c}
d(i, j-1)+1 \\
d(i-1, j)+1 \\
d(i-1, j-1)+t(i, j)
\end{array}\right.
$$

$$
t(i, j)=\left\{\begin{array}{l}
1: \text { if } \quad A[i] \neq B[j] \\
0: \text { else }
\end{array}\right.
$$

Algorithm

```
function d(i,j) {
    if (i = 0) return j;
    else if (j = 0) return i;
    else
\[
\begin{aligned}
\text { return min }( & d(i, j-1)+1, \\
& d(i-1, j)+1, \\
& d(i-1, j-1)+t(A[i], B[j])) ;
\end{aligned}
\]
}
function t(c)
    if (c
    else
}
```


What is Happening?

Much Redundant Computation

There are only $\sim n * m$ different parameter combinations

Dynamic Programming - Using a Table

- Instead of computing top-down (from n, m), we compute all different values for $\mathrm{d}(\mathrm{i}, \mathrm{j})$ bottom-up
- We store all values in a table
- We can immediately "compute" $\mathrm{d}(\mathrm{i}, 0)$ and $\mathrm{d}(0, \mathrm{j})$
- Which values can we compute next?

Example

$$
d(i, j)=\min \left\{\begin{array}{c}
d(i, j-1)+1 \\
d(i-1, j)+1 \\
d(i-1, j-1)+t(i, j)
\end{array}\right\}
$$

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1							
T	2							
G	3							
G	4							

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1	0						
T	2							
G	3							
G	4							

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
T	2							
G	3							
G	4							

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
T	2	1	0	1	2	3	4	5
G	3							
G	4							

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
T	2	1	0	1	2	3	4	5
G	3	2	1	0	1	2	3	4
G	4							

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
T	2	1	0	1	2	3	4	5
G	3	2	1	0	1	2	3	4
G	4	3	2	1	1	1	2	3

Finding the (an) optimal Alignment(s)

- Traceback
- We find the path from back to front
- Start at cell (n,m)
- See which cells were used to compute d(n,m)
- Walk any of these - finds one optimal path
- Walking all means finding all optimal paths
- Alternative: Store pointers while filling the table

		A	T	G	C	G	G	T
	Q	1	2	3	4	5	G	7
A	1	0	1	2	3	4	5	6
T	2	1	0	1	2	3	4	5
G	3	2	1	0	1	2	3	4
G	4	3	2	1	1	1	2	3

		A	T	G	C	G	G	T
	Q	1	2	3	4	5	6	7
A	1	Q	1	2	3	4	5	6
T	2	1	0	1	2	3	4	5
G	3	2	1	0	1	2	3	4
G	4	3	2	1	1	1	2	3

		A	T	G	C	G	G	T
	Q	1	2	3	4	5	6	7
A	1	Q	1	2	3	4	5	6
T	2	1	0	1	2	3	4	5
G	3	2	1	0	1	2	3	4
G	4	3	2	1	1	1	2	3

Complexity

- Building the table
- For every $\mathrm{d}(\mathrm{i}, \mathrm{j})$, we need to access three other cells and make some (constantly many) additions and comparisons
- There are $(m+1) *(n+1)$ cells
- Thus: ~3*m*n=0(m*n) operations
- Finding one optimal alignment
- We must walk from (n, m) to $(1,1)$
- Such a path can have at most length m+n
- We cannot go wrong!
- Together: approximately m+n operations
- Together: $\mathrm{O}\left(\mathrm{m}^{*} \mathrm{n}\right)$ (for $\mathrm{m}{ }^{*} \mathrm{n}>\mathrm{m}+\mathrm{n}$)

This Lecture

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Eyeless Again - a Closer Look

Filter - Overview Results • Job information Customize order
Graphical overview

- The similar regions in the different homologues are not distributed randomly
- Actually, a single stretch of 128 AA, the PAX domain, is virtually unchanged in all homologues
- Controls binding to DNA and hence regulatory effects
- Typical: Only some parts of a sequence are conserved, and these carry function

Example

Coincidence?

No coincidence!

> IIIIIIIII

Distance or Similarity

- Given two sequences A, B
- Until now, we computed a global distance
- The higher $e(A, B)$, the less similar are A and B
- The longer A and B, the higher their distance in general
- Different lengths are punished: $e(A, B) \geq||A|-|B||$
- Often, we want a local similarity instead
- Illustration: If we don't compare two defined genes (exons), but two strings presumably containing each one gene (exon)
- Local: We need to search for substrings $A^{\prime} \in A, B^{\prime} \in B$ which are very similar to each other
- A^{\prime} and B^{\prime} also should have a certain length to be interesting
- e($\left.A^{\prime}, B^{\prime}\right)$ does not help - optimal distance is 0 for $A^{\prime}=B^{\prime}=" "$

Aligned Sequences

- Assume we have an alignment L of two sequences A, B
- Let $A^{L}\left(B^{L}\right)$ be the aligned version of $A(B)$
- A^{L} and B^{L} are strings over the alphabet Σ^{*}
- Example
- A=ATTAG, B=TTCAA
- L=

ATT_AG
_TTCAA

- Then $A^{L}=A T T _A G, B L=_T T C A A$
- Note that $\left|A^{L}\right|=\left|B^{L}\right|$

Aligned Sequence Similarity

- A scoring function is a function s: $\Sigma^{*} x \Sigma^{*} \rightarrow$ Integer
- We also call s a substitution matrix
- (High) positive scores: "good" pairs; (low) negative sc.: "bad" pairs
- The similarity sim' of two aligned sequences A^{L}, B^{\downarrow} wrt. s with $\left|A^{L}\right|=\left|B^{\perp}\right|=n$ is defined as

$$
\operatorname{sim}^{\prime}\left(A^{L}, B^{L}\right)=\sum_{i=1}^{n} s\left(A^{L}[i], B^{L}[i]\right)
$$

Example

$$
\Sigma^{\prime}=\left\{A, C, G, T,{ }^{\prime}\right\}
$$

	\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}	-
\mathbf{A}	4	-2	-2	-1	-3
\mathbf{C}		4	-1	-2	-3
\mathbf{G}			4	-2	-3
\mathbf{T}				4	-3

$$
\begin{array}{ll}
\begin{array}{l}
\text { AC_GTC } \\
\text { AGGT_C }
\end{array} & =\mathbf{- 1} \\
\begin{array}{ll}
\text { ACGTC } \\
\text { AGGTC }
\end{array} & =\mathbf{1 5} \\
\text { A_CGTC } & =\mathbf{1 0}
\end{array}
$$

Sequence Similarity

- The similarity sim of two sequences A, B (wrt. s) is the highest similarity score sim' over all alignments of A and B

$$
\operatorname{sim}(A, B)=\max _{L=\operatorname{align}(A, B)} \operatorname{sim}^{\prime}\left(A^{L}, B^{L}\right)
$$

- We are not yet there: This still is a global similarity score

Computing $\operatorname{sim}(\mathrm{A}, \mathrm{B})$

- Same ideas as for edit distance
- But: We want a high similarity, not a low distance
- But: We have individual scores per pair, not only $1 / 0$
- We can compute $\operatorname{sim}(|\mathrm{A}|,|\mathrm{B}|)$ with

$$
\begin{array}{r}
\operatorname{sim}(i, 0)=\sum_{k=1 . . i} s\left(A[k],{ }_{2}\right) \quad \operatorname{sim}(0, j)=\sum_{k=1 . . j} s\left(_, B[k]\right) \\
\operatorname{sim}(i, j)=\left\{\begin{array}{c}
\operatorname{sim}(i, j-1)+\begin{array}{l}
\left(_, B[j]\right) \\
\operatorname{sim}(i-1, j)+\left(A[i], _\right) \\
\operatorname{sim}(i-1, j-1)++(A[i], B[j])
\end{array}
\end{array}\right)
\end{array}
$$

Example

	A	G	T	C
A	4	-1	-1	-1
G		4	-1	-1
T			4	-1
C				4
-	-3	-3	-3	-3

Edit Distance

		A	G	G	T	C
	0	1	2	3	4	5
A	1	0	1	2	3	4
G	2	1	0	1	2	3
T	3	2	1	1	1	2
C	4	3	2	2	2	1
C	5	4	3	3	3	2

		A	G	G	T	C
	0	-3	-6	-9	-12	-15
A	-3	4	1	-2	-5	-8
G	-6	1	8	5		
T	-9					
C	-12					
C	-15					

Lokal Similarity = Local Alignment

- Definition
- The local similarity score sim* of A, B is defined as

$$
\operatorname{sim}^{*}(A, B)=\max _{\forall A^{\prime} \text { substringOf } A, B^{\prime} \text { substringOf } B}\left(\operatorname{sim}\left(A^{\prime}, B^{\prime}\right)\right)
$$

- Remark
- Inequality in length of A and B does not matter any more
- Sounds terribly complex, but there is a neat trick


```
    IIIIIIII
```


Example

Match: +1
I/R/D: -1

| | | A | T | G | T | G | G |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0 | -1 | -2 | -3 | -4 | -5 | -6 |
| G | | | | -1 | | | |
| T | | | | | 0 | | |
| G | | | | | | 1 | |
| A | | | | | | | 0 |

Smith-Waterman Algorithm

- Smith, Waterman: „Identification of common molecular subsequences", J. Mol. Bio 147, 1981
- Idea
- Note: Local paths need not span the entire strings
- Look at a single path
- A series of matches (positive values for scoring function s) creates a series of increasing similarity values
- Any step with $\mathrm{s}<0$ lowers the score
- Whenever the cumulative score falls below 0 , we drop this prefix
- Instead of carrying on, we conceptually start a new local path
- To this end, we simply set true_score=max(0,score)
- The highest value in the matrix is the end of the best local path

Computation

- The same ideas as before
- We compute sim* (A, B) using a similar recurrence as for global alignments
- $\operatorname{sim} *[A, B]$ eventually is the maximal value in S

$$
S(i, 0)=\sum_{k=1 . . i} s\left(A[k],{ }_{c}\right) \quad S(0, j)=\sum_{k=1 . . j} s(, B[k])
$$

$$
S(i, j)=\max \left\{\begin{array}{c}
S(i, j-1)+s\left(_, B[j]\right) \\
S(i-1, j+s \nmid[i],-) \\
S(i-1, j-\underbrace{+s(4[i], B[j])}
\end{array}\right.
$$

		A	T	G	T	C	G
	0	-1	-2	-3	-4	-5	-6
A	-1	1	0	-1	-2	-3	-4
T	-2	0	2	1	0	-1	-2
G	-3	-1	1	3	2	1	0

ATGTCG
ATG \qquad
ATGTCG
AT \qquad G

ATGTCG
A_T_G

		A	T	G	T	C	G
	0	0	0	0	0	0	0
A	0	1	0	0	0	0	0
T	0	0	2	1	1	0	0
G	0	0	1	3	2	1	1

ATGTCG
ATG \qquad

Local versus global Alignment

- Global Alignment
- Comparison of two entire sequences
- Use when you think the entire sequences are related
- Interest: The differences; assumption: Relatedness
- Example: Proteins of the same family
- Local Alignment
- Compare uncharacterized sequences
- Use when comparing "randomly sampled" sequences
- Interest: Similar regions; assumptions: None
- Often a first step before global alignment
- Example: Find similar genes in other species genomes

Beware: Not all Events are Equal

Wildtype

CTT	A G T	G A	T A		A A A	DNA Protein
Leu	Ser	Asp	Tyr	Gly	Lys	
C ${ }^{\text {I }}$			-		A	DNA
Leu	Ser	Asp	Stop-Codon			Protein
CTTAGTGAACTACGGTAAA						DN
eu	Ser	His	Asp	Leu	Th	Protein
CTTTAGCGACTACGGTA A A						DNA
Leu	Ser	Asp	Tyr	Gly	Lys	Protein
CTTAGTGAATACGGTAAA						DNA
Leu	Ser	Glu	Tyr	Gly	Lys	Protein

Further Reading

- Everywhere
- Relaxed: Christianini \& Hahn, Chapter 3
- Step by step: Waack, Chapter 9

