

Sequence Alignment

Ulf Leser

This Lecture

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Gene Function

- A fundamental principle of bioinformatics
 - The function of a protein depends on its physical structure
 - The physical structure depends on the protein sequence
 - The protein sequence depends on the gene sequence
 - If the sequence of two genes is only slightly different, so will be the protein sequence
 - If the sequence of two proteins is only slightly different, so will be their structure
 - If the structure of two proteins is only moderately different, they likely have the same (or at least share some) function
- Studying the sequence of genes allows the generation of hypotheses about the function of the proteins they encode

How Genes Evolve

- Evolution, sequences, and function
 - Any two species X₁, X₂ have a common ancestor A
 - Any gene G from A will undergo independent evolution in X₁ and X₂, leading to genes G₁ and G₂
 - The more similar G₁ and G₂ are, the more likely do they still have the same function (that of G)
 - For any two genes of non-trivial length, the chance that they have a very similar sequence by chance is extremely small
 - Corollary: If genes G₁ and G₂ from species X₁ and X₂ today are very similar, they most likely derive from the same ancestor A and most likely have the same function
 - How can we quantify this?

 AGGTTGATAGCCGA

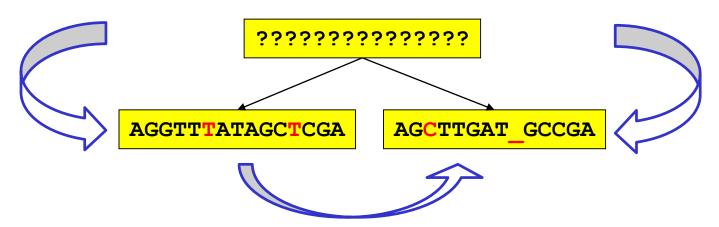
 G

 AGCTTGAT_GCCGA

 AGCTTGAT_GCCGA

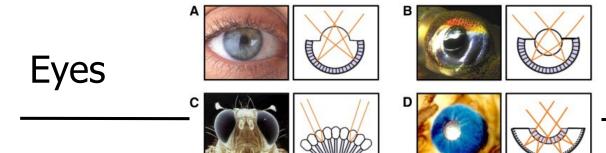
Basic Evolutionary Events

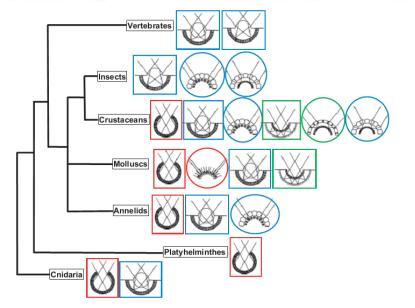
- The simplest model: Single bases can be replaced (R), inserted (I), or deleted (D) (or kept (M))
- Any changes must be explained by sequences of I, D, R
 - I.e., by singular evolutionary events accumulating over time
 - We call this an edit script
- Very simple yet quite powerful model
- One more simplification



Example: Eyeless (ey)

- Family of genes identified first in Drosophila
- When activated in arbitrary cells, non-functional eyes start to grow at various places of the body
- ey is a "master gene" controls a cascade of activations of other genes eventually leading to eye development
- Also inflicted with several other neural developments
- Zitat [NCBI Gene]
 - Enables DNA-binding transcription factor activity, ... Involved in several processes, including adult walking behavior; nervous system development; and regulation of insulin-like growth factor receptor signaling pathway... expressed in several structures, including central nervous system; embryonic head; eye-antennal disc; neuroblasts; and photoreceptor. Human ortholog(s) of this gene implicated in bilateral optic nerve hypoplasia; eye disease (multiple); glucose intolerance; and paranoid schizophrenia...





Red: Only shadow Blue: Lenses etc.

Green: Mirrors

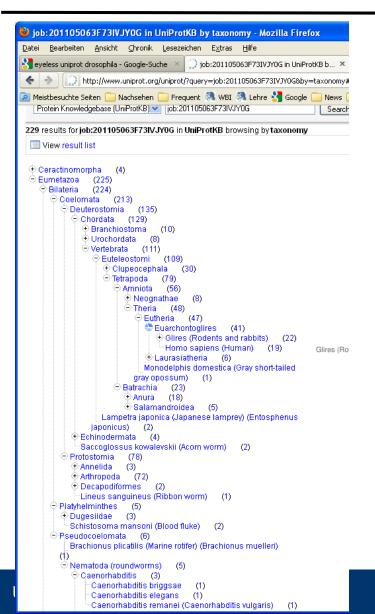
Oval: Compound eyes

Rectangle: Single chamber

Source: Treisman (2004).

- Eyes probably are an example of convergent evolution
- However, genes controlling eye development are highly conserved across a wide range of species

Homologues of "eyeless isoform D" (DM)



MFTLQPTPTAIGTVVPPWSAGTLIERLPSLEDMAHKDNVIAMRNLPCLGTAGGSGLG GIAGKPSPTMEAVEASTASHPHSTSSYFATTYYHLTDDECHSGVNQLGGVFVGGRPL PDSTRQKIVELAHSGARPCDISRILQVSNGCVSKILGRYYETGSIRPRAIGGSKPRVAT AEVVSKISQYKRECPSIFAWEIRDRLLQENVCTNDNIPSVSSINRVLRNLAAQKEQQST GSGSSSTSAGNSISAKVSVSIGGNVSNVASGSRGTLSSSTDLMQTATPLNSSESGGAS NSGEGSEQEAIYEKLRLLNTQHAAGPGPLEPARAAPLVGQSPNHLGTRSSHPQLVHG NHQALQQHQQQSWPPRHYSGSWYPTSLSEIPISSAPNIASVTAYASGPSLAHSLSPP NDIESLASIGHQRNCPVATEDIHLKKELDGHQSDETGSGEGENSNGGASNIGNTEDD QARLILKRKLQRNRTSFTNDQIDSLEKEFERTHYPDVFARERLAGKIGLPEARIQVWFS NRRAKWRREEKLRNQRRTPNSTGASATSSSTSATASLTDSPNSLSACSSLLSGSAGG PSVSTINGLSSPSTLSTNVNAPTLGAGIDSSESPTPIPHIRPSCTSDNDNGRQSEDCRR VCSPCPLGVGGHQNTHHIQSNGHAQGHALVPAISPRLNFNSGSFGAMYSNMHHTAL SMSDSYGAVTPIPSFNHSAVGPLAPPSPIPQQGDLTPSSLYPCHMTLRPPPMAPAHHH IVPGDGGRPAGVGLGSGQSANLGASCSGSGYEVLSAYALPPPPMASSSAADSSFSAAS SASANVTPHHTIAQESCPSPCSSASHFGVAHSSGFSSDPISPAVS...

- 250 most similar protein sequences in UniProt
 - Sequence identities all >50%,
 - All p-Values < 1E-50

This Lecture

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Edit Scripts and Edit Distances

Definition

- Let A, B $\in \Sigma^* = \Sigma \cup ''$
- An edit script e is a sequence of operations I, D, R, M
- e is an edit script for A and B iff e(A)=B
 - Slightly underdetermined which replacement? Which base to insert?
- The length of an edit script is the number of I,D,R it contains
- The edit distance between A and B is the length of the shortest edit script for A and B

Remarks

- If we know e(A)=B, determining e' with e'(B)=A is trivial
- The shortest edit script is not unique, but its length is

MIMMMR IRMMMDIA_TGTA __ATGTA_AGTGTC AGTGT C

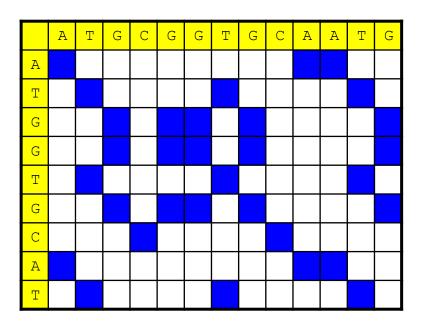
Alignment

- Edit scripts are intuitive from an evolutionary point-of-view, but somewhat clumsy from a computational point-of-view
- Definition
 - A (global) alignment of strings A, B is an arrangement of A and B, enriched with "_" at arbitrary positions, under each other such that no column contains two "_"
 - The score of an alignment is the number of "_" plus the number of mismatching columns it contains
 - The alignment distance between A and B is the minimal score of any alignment of A and B
- Edit distance and alignment distance are essentially identical
- Examples

_	A_TGT_A	A_T_GTA	_AGAGAG	AGAGAG_
	AGTGTC_	_AGTGTC	GAGAGA_	_GAGAGA
Score:	3	5	2	2

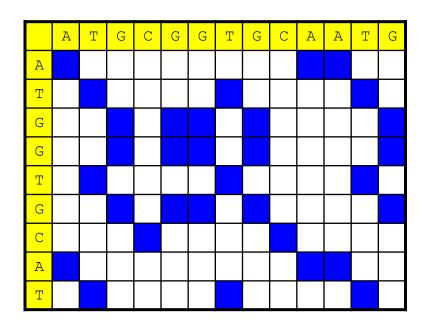
A Visual Approach: Dotplots

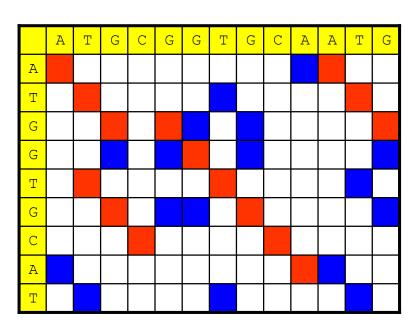
- A dotplot of two strings A, B is a matrix M with
 - The i'th character in A is represented by the i'th column
 - The j'th character in B is represented by the j'th row
 - -M[i,j]=1 (blue) iff A[i]=B[j]



Dotplot and Identical Substrings

How do identical substrings look like in a dotplot?

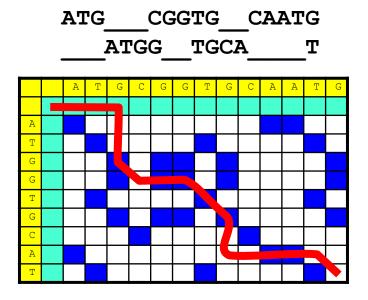


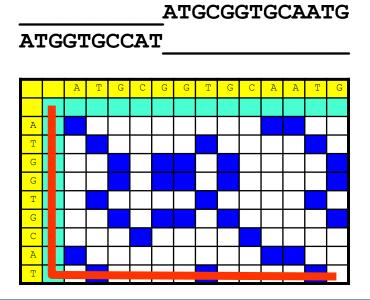


- Diagonals from up-left to down-right
 - Longest diagonal is the longest common substring

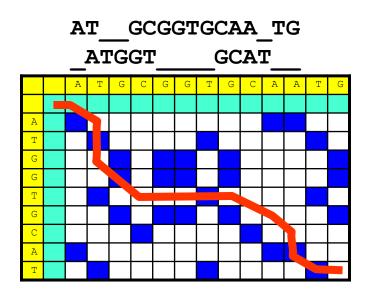
Alignments and Dotplots

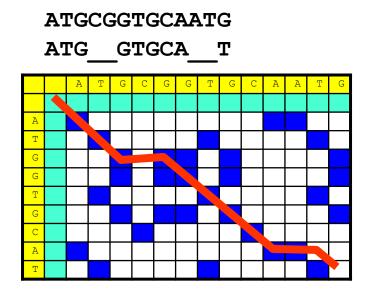
- Every alignment of A, B can be uniquely mapped into a path through M
 - The path starts in the upper-left corner (coord: 0,0)
 - Go through the alignment column by column
 - Next column is "X,_" move to the right
 - Next column is "_, X" move down
 - Next column is "X, Y" move right-down





Examples





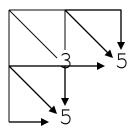
- Clearly, the number c(P) of 1's (blue cells) crossed in a diagonal step by a path P is the same as |P|-e(A,B)
- Finding the path that minimizes |P|-c(P) (or maximizes c(P)) solves the problem of computing the edit distance

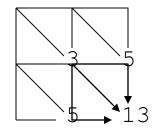
This Lecture

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Algorithm

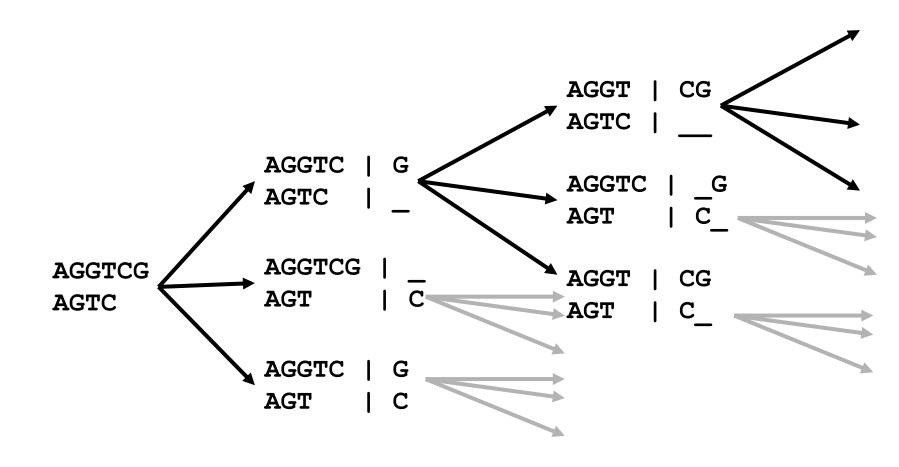
- How do we compute the edit distance of two strings?
- Naïve: Enumerate all paths, compute c(P) for each





- Bad news: There exist >3^{min(m,n)} paths
- Good news: We can compute e(A,B) with ~3*m*n operations

Enumerating all Paths Recursively



The naïve (recursive) Way

Observation

- Let |A|=n, |B|=m
- Let d(i,j)=e(A[...i], B[...j]) for $0 \le i \le n$ and $0 \le j \le m$ with d(i, 0)=i and d(0,j)=j
- We can compute e(A,B) = d(n,m) recursively as follows

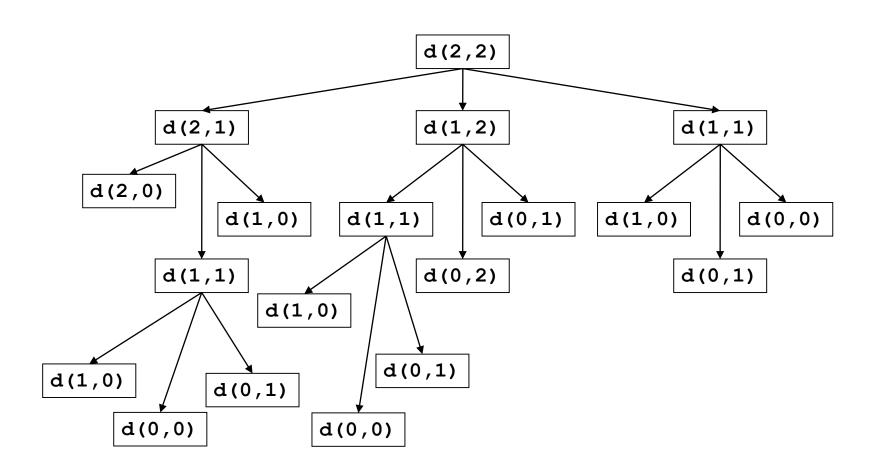
$$d(i, j) = \min \begin{cases} d(i, j-1) + 1 \\ d(i-1, j) + 1 \\ d(i-1, j-1) + t(i, j) \end{cases}$$

$$t(i,j) = \begin{cases} 1 : if & A[i] \neq B[j] \\ 0 : else \end{cases}$$

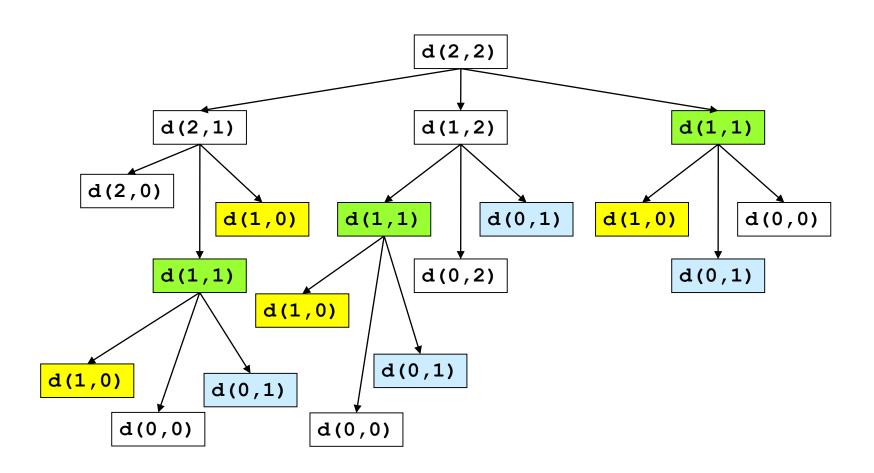
Algorithm

```
function d(i,j) {
      if (i = 0)
                           return j;
      else if (j = 0) return i;
      else
              return min ( d(i,j-1) + 1,
                           d(i-1,j) + 1,
                           d(i-1,j-1) + t(A[i],B[j]));
function t(c_1, c_2) {
      if (c_1 = c_2)
                           return 0;
      else
                            return 1;
```

What is Happening?



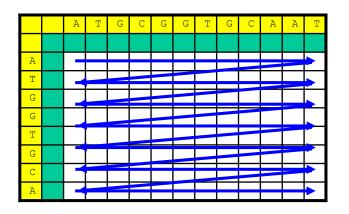
Much Redundant Computation

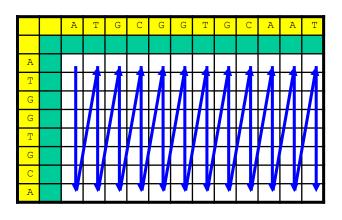


There are only ~n*m different parameter combinations

Dynamic Programming – Using a Table

- Instead of computing top-down (from n,m), we compute all different values for d(i,j) bottom-up
 - We store all values in a table
- We can immediately "compute" d(i,0) and d(0,j)
- Which values can we compute next?





Example

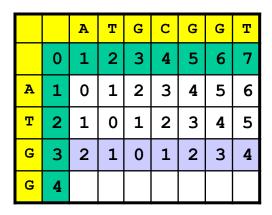
$$d(i, j) = \min \begin{cases} d(i, j-1) + 1 \\ d(i-1, j) + 1 \\ d(i-1, j-1) + t(i, j) \end{cases}$$

		A	Т	G	С	G	G	Т
	0	1	2	3	4	5	6	7
A	1							
Т	2							
G	3							
G	4							

		A	T	G	С	G	G	Т
	0	1	2	3	4	5	6	7
A	1	0						
Т	2							
G	3							
G	4							

		A	Т	U	C	Ů	O	Т
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
Т	2							
G	3							
G	4							

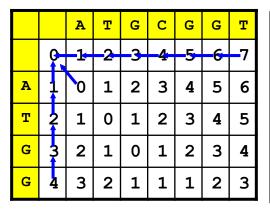
		A	Т	G	С	G	G	Т
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
Т	2	1	0	1	2	3	4	5
G	3							
U	4							

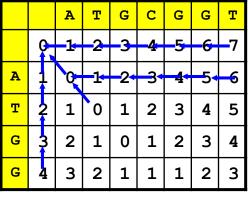


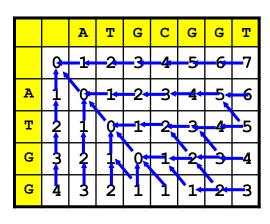
		A	Т	G	С	G	G	Т
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
Т	2	1	0	1	2	3	4	5
G	3	2	1	0	1	2	3	4
U	4	3	2	1	1	1	2	3

Finding the (an) optimal Alignment(s)

- Traceback
 - We find the path from back to front
 - Start at cell (n,m)
 - See which cells were used to compute d(n,m)
 - Walk any of these finds one optimal path
 - Walking all means finding all optimal paths
- Alternative: Store pointers while filling the table







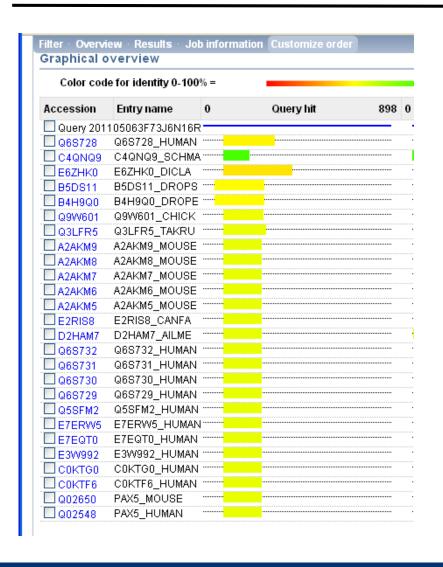
Complexity

- Building the table
 - For every d(i,j), we need to access three other cells and make some (constantly many) additions and comparisons
 - There are (m+1)*(n+1) cells
 - − Thus: ~3*m*n=O(m*n) operations
- Finding one optimal alignment
 - We must walk from (n,m) to (1,1)
 - Such a path can have at most length m+n
 - We cannot go wrong!
 - Together: approximately m+n operations
- Together: O(m*n) (for m*n > m+n)

This Lecture

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Eyeless Again – a Closer Look



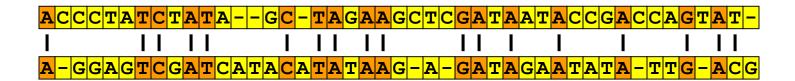
- The similar regions in the different homologues are not distributed randomly
- Actually, a single stretch of 128 AA, the PAX domain, is virtually unchanged in all homologues
 - Controls binding to DNA and hence regulatory effects
- Typical: Only some parts of a sequence are conserved, and these carry function

Example

ACCTATCGATAGCTAGAAGCTCGAAAATACCGACCAGTAT

AGGAGTCGATAATACATATAAGAGATAGAATATATTGATG

Coincidence?



No coincidence!

Distance or Similarity

- Given two sequences A, B
- Until now, we computed a global distance
 - The higher e(A,B), the less similar are A and B
 - The longer A and B, the higher their distance in general
 - Different lengths are punished: e(A,B) ≥ | |A|-|B| |
- Often, we want a local similarity instead
 - Illustration: If we don't compare two defined genes (exons), but two strings presumably containing each one gene (exon)
- Local: We need to search for substrings A'∈A, B'∈B which are very similar to each other
 - A' and B' also should have a certain length to be interesting
 - e(A',B') does not help optimal distance is 0 for A'=B'=""

Aligned Sequences

- Assume we have an alignment L of two sequences A, B
- Let A^L (B^L) be the aligned version of A (B)
 - A^L and B^L are strings over the alphabet Σ^*
- Example
 - A=ATTAG, B=TTCAA
 - L= ATT_AG TTCAA
 - Then A^L=ATT_AG, B^L=_TTCAA
 - Note that $|A^L| = |B^L|$

Aligned Sequence Similarity

- A scoring function is a function s: $\Sigma^* x \Sigma^* \rightarrow Integer$
 - We also call s a substitution matrix
 - (High) positive scores: "good" pairs; (low) negative sc.: "bad" pairs
- The similarity sim' of two aligned sequences A^L, B^L wrt. s
 with |A^L|=|B^L|=n is defined as

$$sim'(A^{L}, B^{L}) = \sum_{i=1}^{n} s(A^{L}[i], B^{L}[i])$$

Example

$$\Sigma' = \{A,C,G,T,_\}$$

	A	С	G	Т	
A	4	-2	-2	-1	-3
С		4	-1	-2	-3
G			4	-2	-3
Т				4	-3

Sequence Similarity

 The similarity sim of two sequences A, B (wrt. s) is the highest similarity score sim' over all alignments of A and B

$$sim(A,B) = \max_{L=align(A,B)} sim'(A^L, B^L)$$

We are not yet there: This still is a global similarity score

Computing sim(A, B)

- Same ideas as for edit distance
- But: We want a high similarity, not a low distance
- But: We have individual scores per pair, not only 1/0
- We can compute sim(|A|,|B|) with

$$sim(i,0) = \sum_{k=1..i} s(A[k], _)$$
 $sim(0,j) = \sum_{k=1..j} s(_, B[k])$

$$sim(i,j) = \begin{cases} sim(i,j-1) + s(_,B[j]) \\ sim(i-1,j) + s(A[i],_) \\ sim(i-1,j-1) + s(A[i],B[j]) \end{cases}$$

Example

	A	G	Т	C
A	4	-1	-1	-1
G		4	-1	-1
T			4	-1
C				4
_	-3	-3	-3	-3

Edit Distance

		A	G	G	Т	С
	0	1	2	3	4	5
A	1	0	1	2	3	4
G	2	1	0	1	2	3
Т	3	2	1	1	1	2
С	4	3	2	2	2	1
С	5	4	3	3	3	2

Similarity

		A	G	G	Т	С
	0	-3	-6	-9	-12	-15
A	-3	4	1	-2	-5	-8
G	-6	1	8	5		
Т	-9					
С	-12					
С	-15					

Lokal Similarity = Local Alignment

Definition

The local similarity score sim* of A, B is defined as

$$sim*(A,B) = \max(sim(A',B'))$$

 $\forall A' substringOf A,B' substringOf B$

Remark

- Inequality in length of A and B does not matter any more
- Sounds terribly complex, but there is a neat trick

ACCCTATCGATAGCTAGAAGCTCGAAAATACCGACCAGTAT

111111111

AGGAGTCGATAATACATATAAGAGATAGAATATATTGATG

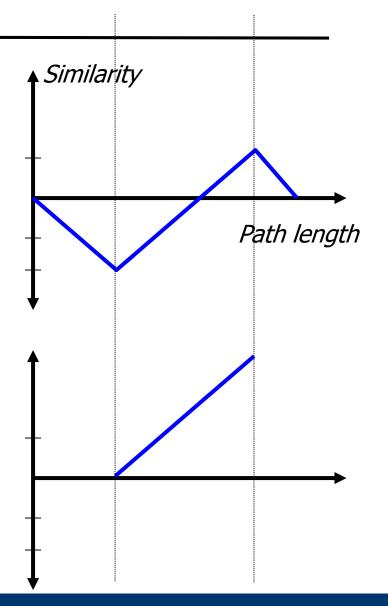
Example

Match: +1

I/R/D: -1

		A	T	G	T	G	G
	0	-1	-2	-3	-4	-5	-6
G				-1			
Т					0		
G						1	
A							0

		A	T	G	T	G	G
	0	0	0				
G				1			
Т					2		
G						3	
A							2



Smith-Waterman Algorithm

• Smith, Waterman: "Identification of common molecular subsequences", J. Mol. Bio 147, 1981

Idea

- Note: Local paths need not span the entire strings
- Look at a single path
- A series of matches (positive values for scoring function s) creates a series of increasing similarity values
- Any step with s<0 lowers the score
- Whenever the cumulative score falls below 0, we drop this prefix
- Instead of carrying on, we conceptually start a new local path
- To this end, we simply set true_score=max(0,score)
- The highest value in the matrix is the end of the best local path

Computation

- The same ideas as before
- We compute sim*(A,B) using a similar recurrence as for global alignments
- sim*[A,B] eventually is the maximal value in S

$$S(i,0) = \sum_{k=1..i} s(A[k], _)$$
 $S(0,j) = \sum_{k=1..j} s(_, B[k])$

$$S(i,j) = max \begin{cases} S(i,j-1) + s(_,B[j]) \\ S(i-1,j) + s(A[i],_) \\ S(i-1,j-1) + s(A[i],B[j]) \end{cases}$$

Example

Match: +1

I/R/D: -1

		A	Т	G	Т	С	G
	0	-1	-2	-3	-4	-5	-6
A	-1	1 -	0 ←	-1	-2	-3	-4
Т	-2	0	2	1.	0	-1	-2
G	-3	-1	1	3 🕳	2_	1 _	0

ATGTCG

ATG___

ATGTCG

AT__G

ATGTCG

A_T_G

		A	T	G	T	С	G
	0	0	0	0	0	0	0
A	0	1	0	0	0	0	0
Т	0	0	2	1	1	0	0
G	0	0	1	3	2	1	1

ATGTCG ATG

Local versus global Alignment

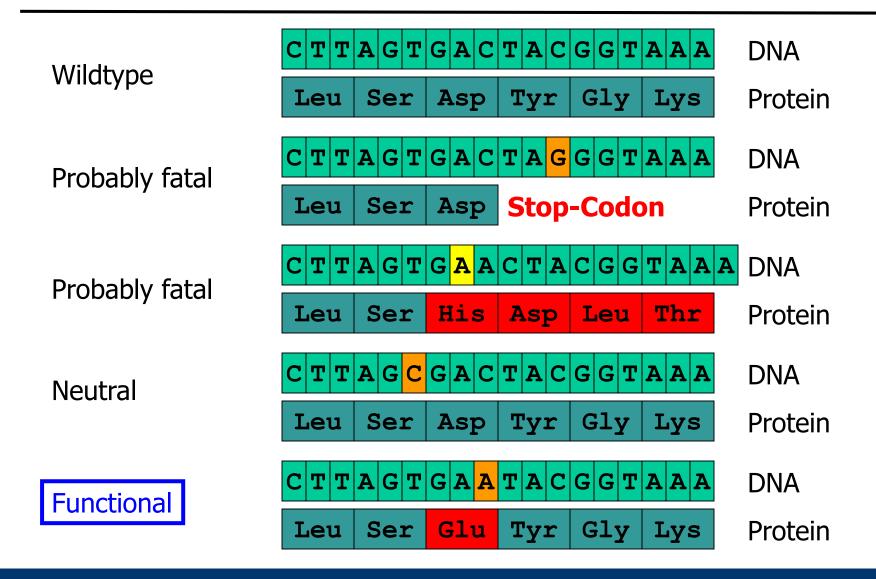
Global Alignment

- Comparison of two entire sequences
- Use when you think the entire sequences are related
- Interest: The differences; assumption: Relatedness
- Example: Proteins of the same family

Local Alignment

- Compare uncharacterized sequences
- Use when comparing "randomly sampled" sequences
- Interest: Similar regions; assumptions: None
- Often a first step before global alignment
- Example: Find similar genes in other species genomes

Beware: Not all Events are Equal



Further Reading

- Everywhere
- Relaxed: Christianini & Hahn, Chapter 3
- Step by step: Waack, Chapter 9