Network Reconstruction & Network Analysis

Ulf Leser
Content

- Network reconstruction
 - Boolean models
 - Correlation-Based Approaches: REVEAL / ARACNE
 - Example
- Quantitative network analysis
Networks

How do we know?
What does the network tell us?
Approaches to Network Reconstruction

• By many, many small-scale experiments
• By mathematical modeling from high-throughput data sets

• By evolutionary inference from model organisms
• By curation from the literature (see first bullet)
Reconstruction from Indirect High-Throughput Data

- Network reconstruction, re-engineering, inference, ...

- Idea: Derive network from indirect observations
 - **Network**: Links and their effect (strength, activation, …)
 - We usually assume the players (genes, metabolites, …) to be given
 - **Observation**: High-throughput measurements
 - Here: Transcriptome, microarrays, RNA-Seq
 - **Indirect**: We try to infer mechanistic causality by correlation

- Dynamic networks
 - Nodes get states (active / passive)
 - Current states determine future states of nodes
 - Leads to dynamic behavior

- Warning: All current methods are highly reductionist
Boolean Network Models

• Definition

A **Boolean Network** is a digraph $G=(V,E)$ where

- Every node has an associated Boolean state (on/off)
- Every node is labeled with a **Boolean function over the states** of all incoming nodes

• Usage

- Vertices = genes
- Edge (v,w) models an effect of v on w
- The state of a node v is determined by its Boolean function over all “incoming” states
- Simplistic: No cofactors, no cellular context, no binding affinity, no time, no kinetics, …

![Diagram of a Boolean network with nodes A, B, C and functions f_A, f_B, f_C.]
Network Dynamics

• Definition
 A *Dynamic Boolean Network* (DBN) is a Boolean network where every node \(v \) is assigned a sequence of states \(v_0, v_1, v_2, \ldots \) such that the state of \(v_t \) is defined over the Boolean function of \(v \) applied to the states \(w_{t-1} \) of all incoming nodes \(w \)

• Remarks
 - Models the state of every gene (on / off) over time
 - States at time point \(t \) (only) depend on states at time point \(t-1 \)
 - No buffering, synchronized time, …
 - **Deterministic**: Given all states at any time point \(t \) and the Boolean functions, any state at any later time point can be uniquely determined
Example

Transition table

Source: Filkov, „Modeling Gene Regulation“, 2003
Example

\[f_A(B) = B \]
\[f_B(A, C) = A \text{ and } C \]
\[f_C(A) = \text{not } A \]

Boolean Network

<table>
<thead>
<tr>
<th>genes time</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Network Analysis

- Many things can be analyzed using DBN
- For instance, an attractor is a (set of) states towards which the network state converges
 - Point attractor: State which cannot be left any more
 - Cyclic attractor: A series of states which will repeat forever
 - Probability of attractors depend largely on size of network and complexity of Boolean functions
- Skipped – we want to reconstruct networks
Network Reconstruction

- Assume we know all genes, but not their relationships.
- Assume we observe the states of n genes over m time points (a matrix S; the observations).
- Can we re-engineer the Boolean function of every gene given a sequence of states?

<table>
<thead>
<tr>
<th>genes time</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Network Reconstruction

- Assume we know all genes, but not their relationships
- Assume we observe the states of n genes over m time points (a matrix S; the observations)
- Can we re-engineer the Boolean function of every gene given a sequence of states?

\[f(A) = \neg B \]
\[f(B) = A \land \neg B \]
\[f(C) = B \]

<table>
<thead>
<tr>
<th>genes time</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Formal Problem

• Definition
 Let S_t, $0 \leq t \leq m$, be the vector of all observed states of all genes V at time point t. A DBN $G=(V,E)$ with functions $f_1, \ldots f_n$, $n=|V|$, is called
 - consistent with S_t iff $S_t = [f_1(S_{t-1}), f_2(S_{t-1}), \ldots f_n(S_{t-1})]$
 - consistent with S iff it is consistent for all S_t, $1 \leq t \leq m$

• The Boolean network reconstruction problem
 Given an observation S over a set V, find a DBN $G=(V,E)$ that is consistent with S.

• Remark
 - Reconstruction means finding the functions $f_1, \ldots f_n$
 - This also determines network topology (nodes appearing in a f_i)
Solutions

• Clearly, there are many observations S for which no consistent G exists
 - Recall that DBN are deterministic
 - Imagine S_t, S_{t+1} and S_u, S_{u+1} with $S_t=S_u$ but $S_{t+1} \neq S_{u+1}$

• Also, there are many observation S for which more than one consistent G exists

• Every time point narrows the options for G – the longer S, the less (or no) consistent G’s exist
Optimal Networks

- **Definition**
 - *For a DBN G, let size(G) be the total number of variables (edges) appearing in the Boolean functions of G*
 - *A DBN G is minimal for observation S, if G is consistent with S and there is no G' which is also consistent with S and size(G') < size(G)*

- **Remark**
 - **Parsimony assumption**: Small models are better
 - Thus, the smallest network is the best – functions are as simple as possible, nothing is inferred that is not enforced by the data
 - Not necessarily unique
Naïve Algorithm

N = V;
for k=1...n # length of functions
 for every n in N # all unexplained nodes
 test all functions f of size k for n on S;
 if f is consistent for n on S
 N := N \ n; # n is explained
 Add f to network;
 end if;
 end for;
end for;

- Exhaustive algorithm for finding minimal networks
- **Very complex** (AND, OR, NOT, no paranthesis)
 - k=1: 2n functions
 - k=2: 2*2n*2n=O(n^2) functions
 - ...
 - General: O(2^{2k-1}*n^k) functions
Pros and Cons

- **Application (transcriptome data)**
 - Perform time-series gene expression experiments
 - Brutally discretize each measurement: Genes are on or off
 - Reconstruct DBN

- **Pros: Simple**

- **Cons**
 - Binary values are not capturing reality
 - Synchronized, clocked time is nonsense
 - No quantification (It needs 2*A and one B to regulate C)
 - Only small networks are computable
 - …
Content

- Network reconstruction
 - Boolean models
 - Correlation-Based Approaches: REVEAL / ARACNE
 - Example
- Quantitative network analysis
Towards Reality

• There are less complex & more robust algorithms

• REVEAL replaces Boolean functions by mutual information; correlations rather than deterministic switching

• ARACNE is even simpler: Only removal of some (presumably indirect) correlations
Foundations

- **Definition**

 Let X, Y be two discrete random variables. The mutual information \(MI(X,Y) \) is defined as

 \[
 MI(X,Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \cdot \log \left(\frac{p(x,y)}{p(x)*p(y)} \right)
 \]

- **Remark**

 - Measure the variable’s mutual dependency
 - Dependency: Deviation of \(p(X,Y) \) from \(p(X)\cdot p(Y) \)
 - How much does the state of X determines the state of Y?
 - Many similar measures (information gain, conditional entropy, cross entropy, …)
Example

\[MI(X, Y) = \sum_{x \in X} \sum_{y \in Y} p(x, y) \times \log \left(\frac{p(x, y)}{p(x) \times p(y)} \right) \]

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
p(x,y) & y=0 & y=1 \\
\hline
\hline
x=0; p(x=0)=0.2 & 0,12 & 0,08 \\
\hline
x=1; p(x=1)=0.8 & 0,48 & 0,32 \\
\hline
\end{tabular}
\end{table}

\[MI(X, Y) = 0 \]

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
p(x,y) & y=0 & y=1 \\
\hline
\hline
x=0; p(x=0)=0.2 & 0,18 & 0,03 \\
\hline
x=1; p(x=1)=0.8 & 0,05 & 0,74 \\
\hline
\end{tabular}
\end{table}

\[MI(X, Y) = 0,53 \]
Two more Facts

- With a little math, we find
 \[\text{MI}(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) \]
 - \(H(X) \): Entropy of \(X \)
 - \(H(X|Y) \): Conditional entropy of \(X \) given \(Y \)

- It follows that the maximal value of \(\text{MI}(X,Y) = H(X) \) (\(H(Y) \))
 - \(H(X|Y) = 0 \), which means that \(X \) (\(Y \)) completely determines \(Y \) (\(X \))

- MI can be extended to sets of three, four, ... variables
 - Like Boolean functions over three, four, ... variables
 - Multivariate mutual information
REVEAL

N = V;
for k=1...n # number of nodes/variables
 for every X in N # all unexplained nodes
 find subset T=(Y₁,...Yₖ) with MI(X,Y₁,...Yₖ) = H(X);
 if T exists
 N := N \ X; # n is explained
 end for;
 end for;
end for;

• Again, we have observations of n genes at m time points
 - Or m different conditions, treatments, …
• Again, we discretize expression values to 0 or 1
 - More bins are possible
• MI(X,Y) means looking at pairs (x₁,y₀), (x₂,y₁), …
REVEAL in Practice

- In the formulation given, REVEAL would be as strict as Boolean functions
 - Dependencies must be perfect
- In the presence of noise, one must be satisfied with almost maximal MI
 - I.e., $|\text{MI}(X,Y)-H(X)| < \varepsilon$
- Can be extended to more than two possible states
 - Less strict discretization, more realistic model
- Most other restrictions of DBN remain
ARACNE

- **Fast** variation of REVEAL which (a) considers each pair in isolation and (b) gives up model minimality

- **Idea**
 - Compute mutual information between all pairs of genes
 - This gives a complete network
 - Remove edges where $|\text{MI}(X,Y)-\text{H}(X)| > \varepsilon$
 - ε can be estimated from the distribution of MI – created at random?
 - Remove certain *indirect effects* (“data processing inequalities”)

- **Under certain assumptions, ARACNE provably converges to the true network**
 - Given unlimited input, no loops
 - “True”: Under all networks obeying our simplifying assumptions
Imagine with strong effects of A on B and B on C; will appear as

But if we find which edge most probably is an artifact?

- Assumption: If $\text{MI}(X,Z) \leq \min(\text{MI}(X,Y),\text{MI}(Y,Z))$, then the correlation between X-Z is an indirect effect and removed
- Procedural: In every triangle, remove the smallest edge
 - But in which order should triangles be visited?
Content

- Network reconstruction
 - Boolean models
 - Correlation-Based Approaches: REVEAL/ ARACNE
 - Example
- Quantitative network analysis
Reconstructing the Mammalian Clock

- DA Sven Lund, 2015
- Data
 - ~630 rather unspecific arrays from GEO
 - Compared to two time-resolved clock-specific experiments
- Reconstruction quality of three algorithms
 - Aracne, Bayes Networks, Time-Delay Aracne
Results

- Filtering of ARACNE reduces recall a lot, while precision increases only marginally.
- Data set size outweighs specificity - reconstruction about as good using many untargeted arrays or using fewer targeted arrays.
Content

• Network reconstruction
• Quantitative network analysis
 - A model of transcriptional regulation
 - Metabolic network models
 - Kinetic modeling
Networks as Equations

- REVEAL / ARACNE infer relationships based on correlation
- Alternative: Describe states as sets of (linear) equations
 - No discretization
 - Extensibility: Incorporate different types of experiments (binding, epigenetic status, mRNA translation, …)
 - Still many limitations: Synchronized time, no kinetics, …
- We look at one simple approach in between reconstruction and analysis
 - We assume the network topology to be given
 - We infer the (probable) strengths of different effects
 - Schacht et al. (2014). "Estimating the activity of transcription factors by the effect on their target genes." Bioinformatics
Approach

• Assume a network $G=(V,E)$, where V consists of a set of transcription factors T and a set of genes G
 - Transcription factors regulate genes, but not vice versa
 - We also ignore that a TF may regulate TFs (other or even itself)
 - Each gene g is regulated by all its incoming TFs (and no others)
• Measurements: m observations for n nodes (genes / TFs)
• We model the expression values of all genes as linear combinations of the values of its regulating TFs

$$g_{i,j} = \beta_0 + \sum_{t=1}^{\vert T \vert} \beta_t * \delta_{t,j} * e_{t,i}$$
Model

\[g_{i,j} = \beta_0 + \sum_{t=1}^{\left| T \right|} \beta_t \cdot \delta_{t,j} \cdot e_{t,i} \]

- \(g_{i,j} \): Expression of gene \(i \) in observation \(S_j \)
- \(\beta_0 \): Fixed additive offset (sample differences)
- \(\beta_t \): Global activity parameter for transcription factor \(t \)
- \(\delta_{t,j} \): Observation specific (\(S_j \)) effect on \(t \)
- \(e_{t,i} \): Effect strength of TF \(t \) on gene \(i \)
 - Set to 0 if there is no edge between \(g \) and \(t \)
Optimization

- Typically, these (large) systems cannot be solved exactly
- Instead, minimize the error

\[
g_{i,j} - \left(\beta_0 + \sum_{t=1}^{T} \beta_t \cdot \delta_{t,j} \cdot e_{t,i} \right) \] = \min

- ... under a set of constraints
- Several solvers available
Many Other Models

• **Stoichiometric networks**
 - Model the turnover of molecules
 - Especially metabolism
 - Needs to consider enzymatic effects
 - What will a network produce given a certain input?
 - Is a network in flux balance?

• **Kinetic networks**
 - Takes into account reaction rates: How many in what time
 - No linear relationship
 - Leads to systems of differential equations
 - Can predict system behavior in time under realistic assumptions

\[
\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}
\]