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This Lecture

• Protein-protein interactions
– Characteristics
– Experimental detection methods
– Databases

• Biological networks
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Motivation

• Interaction: Physical binding of two or more proteins
– E.g. signal transduction, gene regulation, metabolism, …
– Transient or permanent
– Directed effect (regulates), undirected (binds), specific 

(activates)
• Changes in protein structure may hinder bindings and 

thus perturb natural cellular processes
– Influence on all “downstream” proteins, i.e., proteins 

reachable through a path of interactions
• Interactome: Set of all PPIs in a cell (type, species, …)
• Complex: Permanent binding of two or more proteins
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Context-dependency

• PPI often is context-dependent
– Cell type, cell cycle phase and state
– Environmental conditions
– Developmental stage
– Protein modification
– Presence of cofactors and other binding partners
– …

• Disregarded by many PPI detection methods
• Low quality of typical data sets
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Experimental detection methods

• PPIs  have been studied extensively using different 
experimental methods

• Many are small-scale: Two given proteins in a given 
condition

• High-throughput methods
• Yeast two-hybrid assays (Y2H)
• Tandem affinity purification and mass spectrometry (TAP-

MS)
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Yeast two-hybrid screens

• Test if protein A (bait) is interacting with B (prey)
– Choose a transcription factor T and reporter gene G such 

that
• If activated T binds to promoter of G, G is expressed 
• Expression of G can be measured
• T can be split in two domains: DNA binding and activation

– Bait is fused to DNA binding domain of T
– Prey is fused to activating domain of T
– Both are expressed in genetically engineered yeast cells
– If A binds to B, T is assembled and G is expressed

Bait protein Prey protein

BD
AD

Transcription of reporter 
gene

Promoter

RNA Polymerase
BD

AD
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Properties

• Advantages
– Throughput: Many preys can be tested with same bait (and 

vice versa)
– Can be automized – high coverage of interactome
– Readout can be very sensitive

• Problems
– High rate of false positives (up to 50%)

• Artificial environment: Yeast cells
• No post-translational modifications
• No protein transport
• Unclear if proteins in vivo are ever expressed at the same 

time
• ... 

– Fusion influences binding behavior – false negatives
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Tandem affinity purification and mass 
spectrometry

Bait

1. Tag the 
protein of 
interest

4. Purification

5. Purified 
protein 

complexes

6. Identification of 
associated proteins by 

mass spectrometry

2. Protein binds in 
its natural 

environment

3. Complexes are fished 
by affinity 

chromatography
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Properties

• Advantages
– Can capture PPI in (almost – the tag) natural conditions
– Single bait can detect many interactions in one experiment
– Few false positives

• Disadvantages
– Tag may hinder PPI – false negatives
– Purification and MS are delicate processes
– Difficult MS since the input is a mixture of different 

proteins
– Individual complexes are not identified
– Internal structure of complex is not resolved
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Matrix / Spokes Model

• Direct interactions can not be distinguished from 
interactions mediated by other proteins in a 
complex

• Matrix model: infers interactions between all 
proteins of a purified complex → (N*(N-1))/2

• Spokes model: infers only interactions between the 
bait and the co-purified proteins → N–1

Bait

# Proteins Matrix Spokes

4 6 3

10 45 9

80 3540 79
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PPI Databases [KP10]

• There are >300 DBs related to PPI and pathways
– See http://www.pathguide.org

• Manually curated
“source” DBs (blue)
– Experimentally 

proven interactions
– Gather data from 

low-throughput 
methods
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PPI Databases

• There are >300 DBs related to PPI and pathways
– See http://www.pathguide.org

• Manually curated
“source” DBs

• DBs integrating 
other DBs and HT 
data sets (red)
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PPI Databases

• There are >300 DBs related to PPI and pathways
– See http://www.pathguide.org

• Manually curated 
“source” DBs

• DBs integrating others
and HT data sets

• Predicted interactions
(yellow)
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PPI Databases

• There are >300 DBs related to PPI and pathways
– See http://www.pathguide.org

• Manually curated 
“source” DBs

• DBs integrating others
and HT data sets

• Predicted interactions
• Pathway DBs 

(green)
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A Mess [KP10]

• Different definitions of a PPI
– Binary, physical interaction
– Complexes, pairs, pathways
– Transient, functional association

• Consistency: Some integrated DBs have “imported” 
more data than there is in the sources

• Databases overlap to varying degrees
• Different reliability of content
• Literature-curated DBs do not guarantee higher 

quality than high-throughout experiments [CYS08]
– Re-annotation reveals inconsistencies, subjective 

judgments, errors in gene name assignment, … 
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Concrete Examples

Database Species Proteins Interactions

IntAct No restriction 53.276 271.764

BioGrid No restriction 30.712 131.638

DIP No restriction 23.201 71.276

MINT No restriction 31.797 90.505

HPRD Human only 30.047 39.194

MMPPI Mammals

STRING No restriction 
(630)

2.590.259

UniHI Human only

OPID Human only

Experimentall
y verified

Experimentally 
verified and / 
or predicted
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This Lecture

• Protein-protein interactions
• Biological networks

– Scale-free graphs
– Cliques and dense subgraphs
– Centrality and diseases
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Some Fundamental Observations

• Proteins that are close in the
network share function more 
frequently

• Central proteins are vital
• Complexes form dense 

subgraphs
• Functional modules are 

subgraphs
• Certain subgraphs can be found 

significantly more often than 
expected by chance (why?)
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Protein-protein interaction networks

• Networks are represented as undirected graphs
• Definition of a graph: G = (V,E)

– V is the set of nodes (proteins)
– E is the set of binary, undirected edges (interactions)

• Computational representation

B

C

A

D

A B C D

A 0 0 1 1

B 0 0 0 1

C 1 0 0 1

D 1 1 1 0

{ (A,C), (A,D), 
(B,D), (C,A), 
(C,D) (D,B) , 

(D,C), (D,A) }

Adjacency matrixAdjacency 
lists
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Degree distribution

• Degree distribution P(k): relative frequency of 
nodes with degree k

• Used to define different classes of networks
• Common distributions

– Poisson
• Random networks

– Power-law
• Scale-free networks

Barabasi et al., 2004
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• Biological networks are (presumably)
scale-free
– Few nodes are highly connected (hubs)
– Most nodes have very few connections

• Also true for many other graphs: electricity 
networks, public transport, social networks, …

• Evolutionary explanation
– Growth: Networks grow by addition of new nodes 
– Preferential attachment: new nodes prefer linking to highly 

connec. nodes
• Possible explanation: Gene duplication – interaction with same targets

– Older nodes have more chances to connect to nodes
– Hub-structure emerges naturally

Scale-free Networks
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Other Biological Networks

• Regulatory networks: How genes / transcription 
factors influence the expression of each other
– TF regulate expression of genes and of other TFs
– Edges semantics: activate / inhibit / regulate
– Important, for instance, in cell differentiation

• Signal networks: Molecular reaction to external 
stimulus
– Transient interactions including small molecules
– Temporal dimension important (fast)
– Important, for instance, in oncology

• Metabolic networks
• Protein-protein interaction networks
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Modular network organization

• Cellular function is carried out by modules 
– Sets of proteins interacting to achieve a certain function

• Function is reflected in a modular network structure

Costanzo et al., Nature, 
2010

Don‘t be 
fooled by 
layout

Modules 
must be 
dense, 
not close
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Pathwa
ys in 
cancer

Ribosome 
subunits – 
Translation 

Proteasome 
subunits – Protein 
degradation

Protein 
transport

MAPK/VEGF/Er
bB signaling 
pathway

Functional Modules
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Clustering Coefficient

• Modules (clusters) are densely connected groups of nodes
• Cluster coefficient C reflects network modularity by measuring 

tendency of nodes to cluster (‘triangle density’)

– Ev = number of edges between neighbors of v

– dv = number of neighbors of v

–                  = maximum number of edges between  
                     neighbors dv
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Example

v v v

Cv = 10/10 = 1 Cv = 3/10 = 0.3 Cv = 0/10 = 0

• Cluster coefficient C is a measure for the entire graph
• We also want to find modules, i.e., regions in the graph with 

high cluster coefficient
• A clique is a maximal complete subgraph, i.e., a maximal set 

of nodes where every pair is connected by an edge
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Finding Modules / Cliques

• Finding all (maximal) cliques in a graph is intractable 
– NP-complete

• Finding 
“quasi-cliques” is 
equally complex
– Cliques with some

missing edges
– Same as subgraphs

with high cluster
coefficient

• Various heuristics
– E.g. a good quasi-clique probably contains a (smaller) 

clique

build set S2 of all cliques of size 2
i:= 2;
repeat
  i := i+1;
  Si := ;
  for j := 1 to |Si-1|
    for k := j+1 to |Si-1|
      T := Si-1[j]  Si-1[k];
      if |T|=i-1 then
        N := Si-1[j]  Si-1[k];
        if N is a clique then
          Si := Si  N;
        end if;
      end if;
    end for;
  end for;
until |Si| = 0:
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Example

• 4-cliques: (1,3,4,5) – (1,3,4,6) – (1,3,4,7) - … 
• Merge-Phase

4

1

3

2

7

65

|(1,3,4,6)(1,3,4,7)|=3
(1,3,4,6)(1,3,4,7)=(1,3,4,6,7) 

Edge (6,7) exists
5-clique

|(1,3,4,5)(1,3,4,6)|=3
(1,3,4,5)(1,3,4,6)=(1,3,4,5,6) 

Edge (5,6) does not exists
No clique
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This Lecture

• Protein-protein interactions
• Biological networks

– Scale-free graphs
– Cliques and dense subgraphs
– Centrality and diseases
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Network centrality

• Central proteins exhibit interesting properties
– Essentiality – knock-out is lethal
– Much higher evolutionary conservation
– Often associated to (certain types of) human diseases

• Various measures exist
– Degree centrality: Rank nodes by degree
– Betweenness-centrality: Rank nodes by 

number of shortest paths between any pair of 
nodes on which it lies

– Closeness-centrality: Rank nodes by their 
average distance to all other nodes

– PageRank
– …
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Network-based Disease Gene Ranking
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Centrality of Seeds in (OMIM) Disease 
Networks

Fraction of seeds among top k% proteins; ~600 diseases from 
OMIM

d1 = direct interactions

d2 = direct and indirect 
interactions

Rank in % within disease network
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Cross-Validation

• If a disease gene is not yet known – can we find it?

20%

Rank in % within disease network
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Further Reading

• Jaeger, S. (2012). "Network-based Inference of Protein 
Function and Disease-Gene Associations". Dissertation, 
Humboldt-Universität zu Berlin.

• Goh, K. I., Cusick, M. E., Valle, D., Childs, B., Vidal, M. and 
Barabasi, A. L. (2007). "The human disease network." Proc 
Natl Acad Sci U S A 104(21): 8685-90.

• Ideker, T. and Sharan, R. (2008). "Protein networks in 
disease." Genome Res 18(4): 644-52.

• Barabasi, A. L. and Oltvai, Z. N. (2004). "Network biology: 
understanding the cell's functional organization." Nat Rev 
Genet 5(2): 101-13.
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This Lecture

• Protein-protein interactions
– Characteristics
– Experimental detection methods
– Databases

• Biological networks

2
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Motivation

• Interaction: Physical binding of two or more proteins
– E.g. signal transduction, gene regulation, metabolism, …
– Transient or permanent
– Directed effect (regulates), undirected (binds), specific 

(activates)
• Changes in protein structure may hinder bindings and 

thus perturb natural cellular processes
– Influence on all “downstream” proteins, i.e., proteins 

reachable through a path of interactions
• Interactome: Set of all PPIs in a cell (type, species, …)
• Complex: Permanent binding of two or more proteins

* Interaktion = Wechselwirkung, physikalische Bindung  zwischen 
zwei Proteinen, beruhen meist auf nicht-kovalenten Bindungen 
wie van-der-Waals Kräfte, Wasserstoffbrücken usw.

* PPI spielen wichtige Rolle bei allen biologischen Prozessen, z.B. 
Signaltransduktionsprozesse, Metabolismus (Enzyme)

* PPI können permanent (stable) oder transient sein
* transient: nur für eine kurzen Effekt kurzzeitig
* permanent: Bildung von Multiprotein Komplexen 

(zb Cytochrome c)
* Arten von Bindungen: gerichtet (Regulation), ungerichtet 

(Bindung), spezifisch (Aktivierung)
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Context-dependency

• PPI often is context-dependent
– Cell type, cell cycle phase and state
– Environmental conditions
– Developmental stage
– Protein modification
– Presence of cofactors and other binding partners
– …

• Disregarded by many PPI detection methods
• Low quality of typical data sets

4
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Experimental detection methods

• PPIs  have been studied extensively using different 
experimental methods

• Many are small-scale: Two given proteins in a given 
condition

• High-throughput methods
• Yeast two-hybrid assays (Y2H)
• Tandem affinity purification and mass spectrometry (TAP-

MS)

Experimentelle Methoden: Protein Microarrays, MS usw

Small scale: less than 100 PPI are considered, typischeerweise mittels X-Ray 
Kristallographie, Studien beschäftigen sich zumiest mit einem bestimmten Protein

Binary methods: direct physical interactions between proteins (Y2H)
Co-compex: direct and indirect interactions (TAP-MS)

Beide sind large-scale

5
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Yeast two-hybrid screens

• Test if protein A (bait) is interacting with B (prey)
– Choose a transcription factor T and reporter gene G such 

that
• If activated T binds to promoter of G, G is expressed 
• Expression of G can be measured
• T can be split in two domains: DNA binding and activation

– Bait is fused to DNA binding domain of T
– Prey is fused to activating domain of T
– Both are expressed in genetically engineered yeast cells
– If A binds to B, T is assembled and G is expressed

Bait protein Prey protein

BD
AD

Transcription of reporter 
gene

Promoter

RNA Polymerase
BD

AD

Hefe-Zwei-Hybrid-System

* testen ob Protein A (bait = Köder) und Protein B (prey = Beute) miteinander interagieren
* dabei wird Prinzip der transkriptionellen Aktivierung genutzt

BD: Binding domain
AD: Activation domain

* die Voraussetzung für den Test ist das Binden eines TFs an einen Promoter und die darauffolgende Transkription eines 
downstream liegenden Gens

* Schlüssel: AD und BD funktionieren auch wenn sie  nur nahe beieinander sind, sie müssen nicht direkt binden

Samira:
- Two fusion protein reconstitute a transcription factor – Bait and prey
- utilizes the fact that Transcription Factors commonly require two domains - a DNA binding domain and an activation domain 

promoting transcription. In order to find out which proteins interact with a certain protein of interest (termed bait ), the bait 
is fused to a DNA binding domain which binds to the promoter of a reporter gene, while the other proteins (termed prey) 
are fused with an activation domain. When a physical interaction between the bait and some

prey occurs, an expression of the reporter gene can be detected.
An interaction between a protein containing a DNA binding domain (bait) and an activation domain (prey) can be detected by 

measuring the expression level of the reporter gene.

Which proteins interact with protein of interest ?
Fuse protein of interest, bait, to DNA binding domain
Fuse potential binding partners to activation domain 

Physical interaction between bait and prey forms an intact functional transcriptional activator → Initiation of the 
expression of reporter gene

6
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Properties

• Advantages
– Throughput: Many preys can be tested with same bait (and 

vice versa)
– Can be automized – high coverage of interactome
– Readout can be very sensitive

• Problems
– High rate of false positives (up to 50%)

• Artificial environment: Yeast cells
• No post-translational modifications
• No protein transport
• Unclear if proteins in vivo are ever expressed at the same 

time
• ... 

– Fusion influences binding behavior – false negatives

Vorteile
* ermöglicht Untersuchung von PPI in in vivo-ähnlichen Verhältnissen (d.h. im Milieu einer Zelle 

und mit in Eukaryoten vorkommenden posttranslationalen Modifikationen, z.B. 
Glykosylierung, Palmitoylierung)

* Hefe ist relativ billig und leicht zu handhaben

Probleme
* Interaktion der untersuchten Proteine muss im Zellkern stattfinden, da dort Trankription 

stattfindet. Aber: Proteine falten sich in diesem Milieu ggf.anders als in dem wo sie 
üblicherweise auftreten

* Modifikationen der Hefe sind teilweise anders als in anderen Eukaryoten (führt zu veränderter 
Faltung) → insgesamt also falsch-positive Interaktionen möglich: Proteine interagieren nur 
wegen falscher Faltung miteinander

* auch falsch-negative resultieren daraus: keine Interaktion aufgrund von veränderter Faltung im 
Kern

* evt. Interaktion im Y2H Versuch, aber in Realität kein gemeinsamen Auftreten im Zellzyklus, 
Zellorganell oder Zelltyp

nur ca. 50% der mittels Y2H ermittelten Interaktionen sind biologisch bedeutend
Große Anzahl PPI kann mit Y2H nicht detektiert werden 
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Tandem affinity purification and mass 
spectrometry

Bait

1. Tag the 
protein of 
interest

4. Purification

5. Purified 
protein 

complexes

6. Identification of 
associated proteins by 

mass spectrometry

2. Protein binds in 
its natural 

environment

3. Complexes are fished 
by affinity 

chromatography

- In a single TAP-MS experiment, a protein of interest, “bait”, is modified by 
integrating a polypeptide tag into the protein via standard recombinant DNA 
techniques

- The bait protein is then expressed inside a cell where it may carry out its function 
as part of one or more protein complexes.

- To retrieve other proteins in a complex, the complex is purified from a cell lysate 
via affinity chromatography

using the tag of the bait protein. A single experiment is referred to as a purification. 
- Protein complexes are bound to  an IgG column, and washed to remove majority of 

contaminants
- A single purification is supposed to identify “prey” proteins forming protein 

complexes with the bait
protein. 
- TEV protease is then used to elute the semi-purified protein complexes which are 

subsequently absorbed onto a calmodulin column. After further washing, purified 
protein complexes containing the protein of interest and its associated proteins

- The purified proteins are identified by standard mass spectrometry identification. 
- Ideally, these purified proteins would constitute the entire complex encompassing 

all proteins interacting
with the bait protein.

8
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Properties

• Advantages
– Can capture PPI in (almost – the tag) natural conditions
– Single bait can detect many interactions in one experiment
– Few false positives

• Disadvantages
– Tag may hinder PPI – false negatives
– Purification and MS are delicate processes
– Difficult MS since the input is a mixture of different 

proteins
– Individual complexes are not identified
– Internal structure of complex is not resolved

Vorteile:

Nachteile:
* MS/Purification sind anfällige,schwierige Experimente
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Matrix / Spokes Model

• Direct interactions can not be distinguished from 
interactions mediated by other proteins in a 
complex

• Matrix model: infers interactions between all 
proteins of a purified complex → (N*(N-1))/2

• Spokes model: infers only interactions between the 
bait and the co-purified proteins → N–1

Bait

# Proteins Matrix Spokes

4 6 3

10 45 9

80 3540 79

Matrix model: direct and indirect interactions
Spokes model: only direct interactions, less false-positives 
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PPI Databases [KP10]

• There are >300 DBs related to PPI and pathways
– See http://www.pathguide.org

• Manually curated
“source” DBs (blue)
– Experimentally 

proven interactions
– Gather data from 

low-throughput 
methods

Drei verschiedene Typen von Datenbanken:

* primary databases: containing only experiemnetally proven interactions
* enthalten PPI aus small scale experiments
* berühmte Beispiele auf Folien:

* BioGRID: Biological General Repository for Interaction datasets
* DIP: Database of interacting Proteins
* IntAct: molecular interaction database
* MNT: molecular interaction database
* HPRD: Human Protein Reference Database

* DBs list Spezies, Experiment, Publikation, …
* kaum Überlappung zwischen den Datenbanken: in sechs Resourcen gibt es drei PPI, die in 

allen Quellen vorkommen, im vergleich sind die Anzahl der Interaktionen, die nur in einer DB 
vorkommen sehr hoch, zb ~20k in HPRD 
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PPI Databases

• There are >300 DBs related to PPI and pathways
– See http://www.pathguide.org

• Manually curated
“source” DBs

• DBs integrating 
other DBs and HT 
data sets (red)

* Wegen der Heterogenität der Daten in den DBs gibt es inzwischen Meta-Dbs, Daten werden 
kombiniert um zuverlässigere Daten zu erhalten

* nicht einfach: unterschiedliche Ids für Proteine (selbst innerhalb einer DB)
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PPI Databases

• There are >300 DBs related to PPI and pathways
– See http://www.pathguide.org

• Manually curated 
“source” DBs

• DBs integrating others
and HT data sets

• Predicted interactions
(yellow)

* kombinieren Daten aus den anderen Datenbanken mit in silico methoden (am computer 
bestimmt)

* bekannteste: STRING DB
* STRING integriert aus versch.Dbs und gewichtet die PPI
* methoden um PPI zu predicten: 

* aus sequenze Struktur ableiten, ähnliche Domänen die interagieren, interagieren vllt 
auch zwischen zwei Proteinen mit ähnlichen Domänen
* ableitung von homologen Proteinen
* co-expression usw. 
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PPI Databases

• There are >300 DBs related to PPI and pathways
– See http://www.pathguide.org

• Manually curated 
“source” DBs

• DBs integrating others
and HT data sets

• Predicted interactions
• Pathway DBs 

(green)



  

Ulf Leser: Bioinformatics, Summer Semester 2016  15

A Mess [KP10]

• Different definitions of a PPI
– Binary, physical interaction
– Complexes, pairs, pathways
– Transient, functional association

• Consistency: Some integrated DBs have “imported” 
more data than there is in the sources

• Databases overlap to varying degrees
• Different reliability of content
• Literature-curated DBs do not guarantee higher 

quality than high-throughout experiments [CYS08]
– Re-annotation reveals inconsistencies, subjective 

judgments, errors in gene name assignment, … 
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Concrete Examples

Database Species Proteins Interactions

IntAct No restriction 53.276 271.764

BioGrid No restriction 30.712 131.638

DIP No restriction 23.201 71.276

MINT No restriction 31.797 90.505

HPRD Human only 30.047 39.194

MMPPI Mammals

STRING No restriction 
(630)

2.590.259

UniHI Human only

OPID Human only

Experimentall
y verified

Experimentally 
verified and / 
or predicted

Variierende Datenqualität, deshalb verschiedene Methoden um Verläasslichkeit zu erhöhen:

* filtern nach Interaktionen, die in mehreren DBs vorkommen, berechnen eines Scores für eine 
PPI (unterscheidliche Gewichtung der Quellen, nach Detektionsmethode)

* weitere Konfidenz über einbeziehung der Funktion – interagierende Proteine haben 
wahrscheinlich ähliche Funktionen/üben Funktion im gleichen Zellkompartiment aus usw
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This Lecture

• Protein-protein interactions
• Biological networks

– Scale-free graphs
– Cliques and dense subgraphs
– Centrality and diseases

- Vom Gen zum Protein
- mRNA, andere Arten RNA
- Kernidee von Microarrays
- Affy versus two-color
- Populäre chip Typen, kurzer Exkurs neue 

Sachen (Exon, tiling)
- Probleme mit den Daten
- Normalisierung (1-2 Methoden) und 

Qualitätssicherung (*wenige*
Plotarten mit Kochrezept-artigen Hinweisen)
- Technische / biologische Replikate
- Wenn möglich was "echtes„

- http://plmimagegallery.bmbolstad.com/

17
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Some Fundamental Observations

• Proteins that are close in the
network share function more 
frequently

• Central proteins are vital
• Complexes form dense 

subgraphs
• Functional modules are 

subgraphs
• Certain subgraphs can be found 

significantly more often than 
expected by chance (why?)

For computational analysis, protein interaction 
networks and their structure

Nodes V represent proteins
Edges E between two nodes u and v represent evidence for the presence of a 

physical interaction between the two proteins

18
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Protein-protein interaction networks

• Networks are represented as undirected graphs
• Definition of a graph: G = (V,E)

– V is the set of nodes (proteins)
– E is the set of binary, undirected edges (interactions)

• Computational representation

B

C

A

D

A B C D

A 0 0 1 1

B 0 0 0 1

C 1 0 0 1

D 1 1 1 0

{ (A,C), (A,D), 
(B,D), (C,A), 
(C,D) (D,B) , 

(D,C), (D,A) }

Adjacency matrixAdjacency 
lists

For computational analysis biological networks are modeled as graphs, protein 
interaction networks and their structure

Nodes V represent proteins
Edges E between two nodes u and v represent evidence for the presence of a 

physical interaction between the two proteins

19
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Degree distribution

• Degree distribution P(k): relative frequency of 
nodes with degree k

• Used to define different classes of networks
• Common distributions

– Poisson
• Random networks

– Power-law
• Scale-free networks

Barabasi et al., 2004

kkP ~)(

 e
k

kP
k

!
~)(

* P(k) Wahrscheinlichkeit, dass ein beliebiger Knoten Grad k hat

* number of nodes with degree k N(k) divided by the total number of nodes in the 
network

* allows to distinguish between different network classes, eg random networks, scale 
free networks
* in a random network the nodes follow a poisson distribution, which indicates that 
most nodes have approximately the same number of links
* random networks: jeder Knoten hat in etwa den gleichen Knotengrad
* scale free networks: wenige Knoten haben hohen Knotengrad, viele einen geringen

20
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• Biological networks are (presumably)
scale-free
– Few nodes are highly connected (hubs)
– Most nodes have very few connections

• Also true for many other graphs: electricity 
networks, public transport, social networks, …

• Evolutionary explanation
– Growth: Networks grow by addition of new nodes 
– Preferential attachment: new nodes prefer linking to highly 

connec. nodes
• Possible explanation: Gene duplication – interaction with same targets

– Older nodes have more chances to connect to nodes
– Hub-structure emerges naturally

Scale-free Networks

* in biological networks gamma is between 2 and 3
* highly connected nodes are called hubs
* typisch für scale free networks ist, dass es keinen typischen Knotengrad gibt
* The smaller gamma, the more important the rate of the hubs in the network
* zwei Mechanismen verantwortlich für scale-free Topologien:

* Growth (networks wachsen durch Hinzufügen neuer Knoten)
* preferential attachment: nodesae mainly attached to nodes that are 
already highly connected
* gemeinsamer Ursprung: duplikation
* duplikation: zwei dientische Gen Produkte entstehen (Growth), 
außerdem werden duplizierte Gene mit den gleichen Gen Produkten 
interagieren wie ihr Vorfahr-Gen, da strukturelle Ähnlichkeit 

21
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Einige Metro Netzwerke

22
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Other Biological Networks

• Regulatory networks: How genes / transcription 
factors influence the expression of each other
– TF regulate expression of genes and of other TFs
– Edges semantics: activate / inhibit / regulate
– Important, for instance, in cell differentiation

• Signal networks: Molecular reaction to external 
stimulus
– Transient interactions including small molecules
– Temporal dimension important (fast)
– Important, for instance, in oncology

• Metabolic networks
• Protein-protein interaction networks

Regulatory networks: The activity of genes is regulated by transcription factors, proteins that 
typically bind to DNA. Most transcription factors bind to multiple binding sites in a genome. As 
a result, all cells have complex gene regulatory networks. For instance, the human genome 
encodes on the order of 1,400 DNA-binding transcription factors that regulate the expression 
of more than 20,000 human genes.[9] Technologies to study gene regulatory networks include 
ChIP-chip, ChIP-seq, CliP-seq, and others.

Signal networks: Signals are transduced within cells or in between cells and thus form complex 
signaling networks. For instance, in the MAPK/ERK pathway is transduced from the cell 
surface to the cell nucleus by a series of protein–protein interactions, phosphorylation 
reactions, and other events. Signaling networks typically integrate protein–protein interaction 
networks, gene regulatory networks, and metabolic networks.
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Modular network organization

• Cellular function is carried out by modules 
– Sets of proteins interacting to achieve a certain function

• Function is reflected in a modular network structure

Costanzo et al., Nature, 
2010

Don‘t be 
fooled by 
layout

Modules 
must be 
dense, 
not close

This modularity refers to a group of physically 
or functionally linked molecules/proteins that 
work together to achieve a (relatively) 
distinct function

24
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Pathwa
ys in 
cancer

Ribosome 
subunits – 
Translation 

Proteasome 
subunits – Protein 
degradation

Protein 
transport

MAPK/VEGF/Er
bB signaling 
pathway

Functional Modules
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Clustering Coefficient

• Modules (clusters) are densely connected groups of nodes
• Cluster coefficient C reflects network modularity by measuring 

tendency of nodes to cluster (‘triangle density’)

– Ev = number of edges between neighbors of v

– dv = number of neighbors of v

–                  = maximum number of edges between  
                     neighbors dv
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Der Clusterkoeffizient (engl. clustering coefficient) ist in der Graphentheorie ein Maß 
für die Cliquenbildung bzw. Transitivität in einem Netzwerk. Sind alle Nachbarn 
eines Knotens paarweise verbunden, also jeder mit jedem, dann bilden sie eine 
Clique. Dies ist gleichbedeutend mit dem Begriff der Transitivität, denn innerhalb 
einer Clique gilt: Ist A mit B verbunden und A mit C, so sind auch B und C 
verbunden.[1] Man unterscheidet zwischen dem globalen Clusterkoeffizienten, 
der das gesamte Netzwerk charakterisiert und dem lokalen Clusterkoeffizienten, 
der einen einzelnen Knoten charakterisiert.

Lokaler CC: Quotient aus der Anzahl der Kanten, die zwischen seinen k_i Nachbarn 
tatsächlich verlaufen, und der Anzahl Kanten, die zwischen diesen Nachbarn 
maximal verlaufen könnten (ungerichteter Graph)

Each module can be reduced to a set of triangles – high density of triangles is 
reflected by a high clustering coefficient

For cliques C = 1
For non-triangle graphs = 0

26
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Example

v v v

Cv = 10/10 = 1 Cv = 3/10 = 0.3 Cv = 0/10 = 0

• Cluster coefficient C is a measure for the entire graph
• We also want to find modules, i.e., regions in the graph with 

high cluster coefficient
• A clique is a maximal complete subgraph, i.e., a maximal set 

of nodes where every pair is connected by an edge

Each module can be reduced to a set of 
triangles – high density of triangles is 
reflected by a high clustering coefficient

For cliques C = 1
For non-triangle graphs = 0

27
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Finding Modules / Cliques

• Finding all (maximal) cliques in a graph is intractable 
– NP-complete

• Finding 
“quasi-cliques” is 
equally complex
– Cliques with some

missing edges
– Same as subgraphs

with high cluster
coefficient

• Various heuristics
– E.g. a good quasi-clique probably contains a (smaller) 

clique

build set S2 of all cliques of size 2
i:= 2;
repeat
  i := i+1;
  Si := ;
  for j := 1 to |Si-1|
    for k := j+1 to |Si-1|
      T := Si-1[j]  Si-1[k];
      if |T|=i-1 then
        N := Si-1[j]  Si-1[k];
        if N is a clique then
          Si := Si  N;
        end if;
      end if;
    end for;
  end for;
until |Si| = 0:

Anderes Beispiel: social network, finden des größten Subset an Leuten, die sich alle kennen
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Example

• 4-cliques: (1,3,4,5) – (1,3,4,6) – (1,3,4,7) - … 
• Merge-Phase

4

1

3

2

7

65

|(1,3,4,6)(1,3,4,7)|=3
(1,3,4,6)(1,3,4,7)=(1,3,4,6,7) 

Edge (6,7) exists
5-clique

|(1,3,4,5)(1,3,4,6)|=3
(1,3,4,5)(1,3,4,6)=(1,3,4,5,6) 

Edge (5,6) does not exists
No clique
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This Lecture

• Protein-protein interactions
• Biological networks

– Scale-free graphs
– Cliques and dense subgraphs
– Centrality and diseases

30
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Network centrality

• Central proteins exhibit interesting properties
– Essentiality – knock-out is lethal
– Much higher evolutionary conservation
– Often associated to (certain types of) human diseases

• Various measures exist
– Degree centrality: Rank nodes by degree
– Betweenness-centrality: Rank nodes by 

number of shortest paths between any pair of 
nodes on which it lies

– Closeness-centrality: Rank nodes by their 
average distance to all other nodes

– PageRank
– …
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Network-based Disease Gene Ranking

-For associating proteins with disease we follow a strategy that is based on finding 
disease-related proteins according to their similarity to known disease-related genes.
-Similarity with disease genes is measured in functional similarity and shared 
interactions

-For a given disease we first extract all genes that are known to be involved in the 
disease as seeds
-From these seeds we compile a disease specific network by integrating direct and 
indirctly interacting proteins as well as proteins with functional similarity

• Problem: many (especially novel) genes have little information attached

• Under-annotated genes are under-represented in the network
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Centrality of Seeds in (OMIM) Disease 
Networks

Fraction of seeds among top k% proteins; ~600 diseases from 
OMIM

d1 = direct interactions

d2 = direct and indirect 
interactions

Rank in % within disease network
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Cross-Validation

• If a disease gene is not yet known – can we find it?

20%

Rank in % within disease network
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