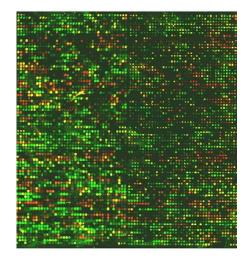


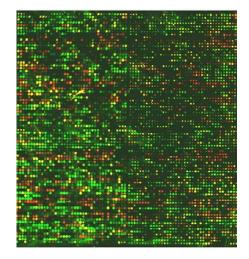
Proteomics: Large-Scale Identification of Proteins

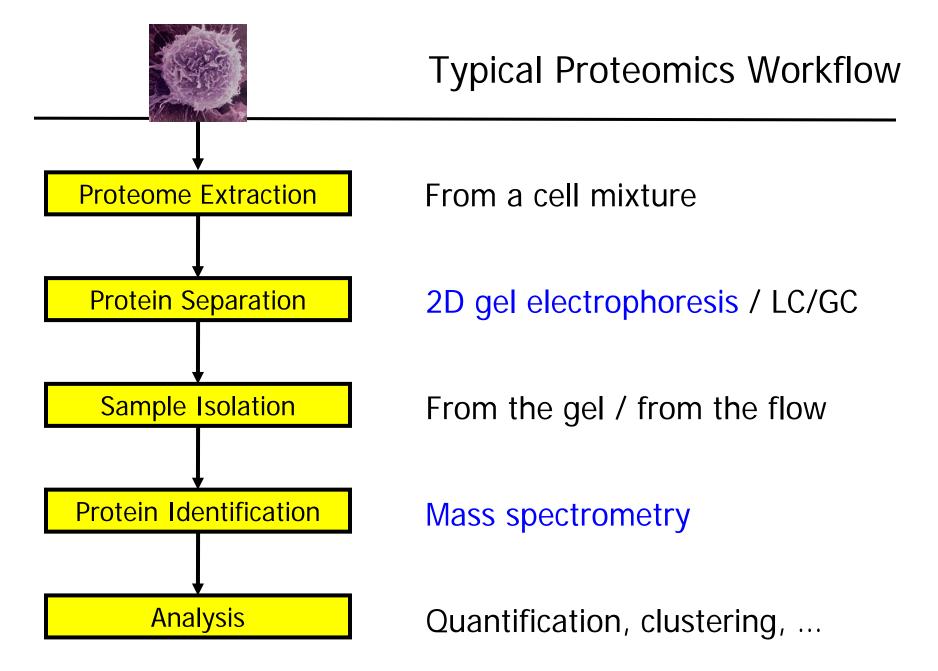


- Proteomics
- Separation
- Identification: Mass Spectrometry

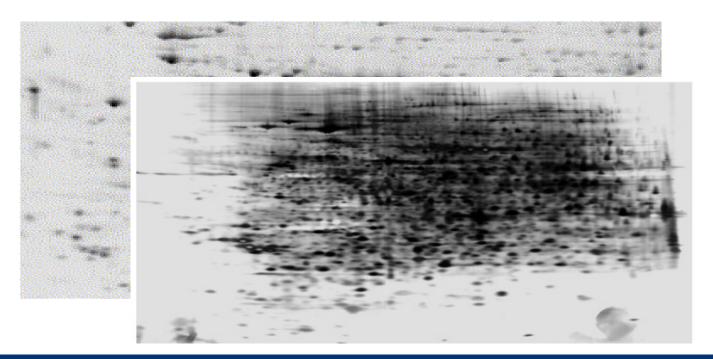
Proteomics

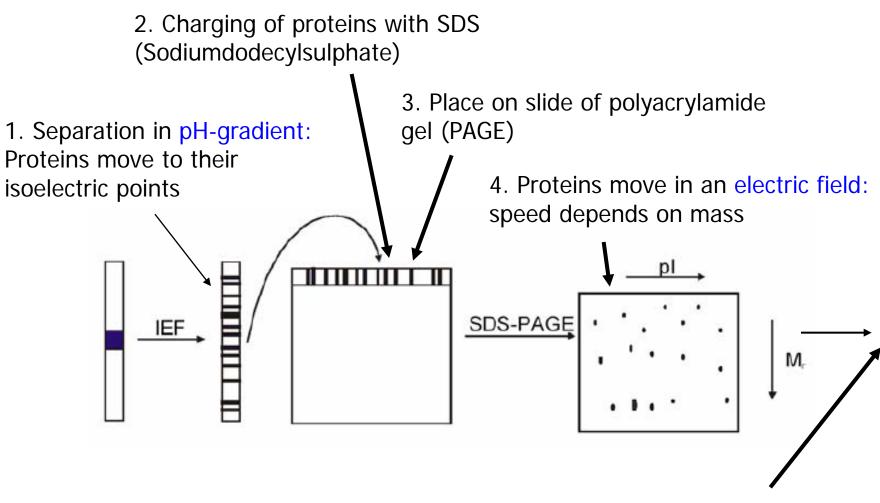
- Genomics = Determining the genome of a species
- Transcriptomics = Determining the mRNA of a cell / tissue / state
- Proteomics = Determining the proteins in a cell / tissue / state
- Proteomics and transcriptomics have mostly identical goals
 - Understanding the processes happening in a cell
 - Differentiate between states, tissues, developmental state, ...
 - Biomarker: Finding protein/mRNA/... (forms, concentrations) that are characteristic for a certain phenotype (e.g., a disease)
- Metabolomics, epigenomics, bibliomics, ...


Proteomics versus Transcriptomics


- Advantages
 - Proteins make you live, not mRNA
 - mRNA is only indirect evidence with little correlation with proteome
 - Regulation by miRNA, post-translation modifications, decay, ...
 - Protein survive (some time), mRNA is (mostly) transient
 - Proteins are favorite drug targets

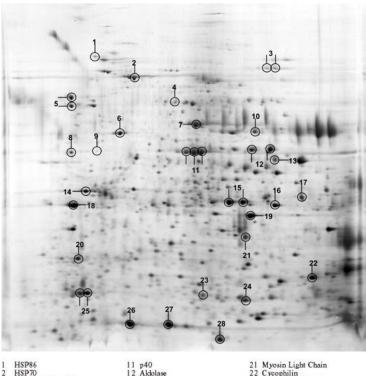
Proteomics versus Transcriptomics


- Disadvantages
 - Scale: ~20K genes, ~300K proteins, ~1M protein forms
 - Handling: No PCR, no hybridization, no simple synthesis, no sequencing, no long-term "storage" as clones, high reactivity, ...
 - Behavior highly context-dependent: Temperature, solution, pH, ...


- Proteomics
- Separation
- Identification: Mass Spectrometry

2D Gel Elektrophoresis

- Separation of proteins in two dimensions
 - Mass
 - Charge
- Every spot one protein (hopefully)


Method

5. Staining; photo; image analysis; excision

Analysis

- 2D-Page may separate up to 10.000 proteins
- Under identical conditions, the position of a particular protein is fairly stable
- Software for identification of proteins by position
 - After photo and image analysis
 - Align image to reference
- Various databases of 2D-Gels

13 GAPDH

14 14-3-3 e

16 Triose Phosphate Isomerase

17 Elongation Factor 1a

18 14-3-3 homolog 1

15 GST28

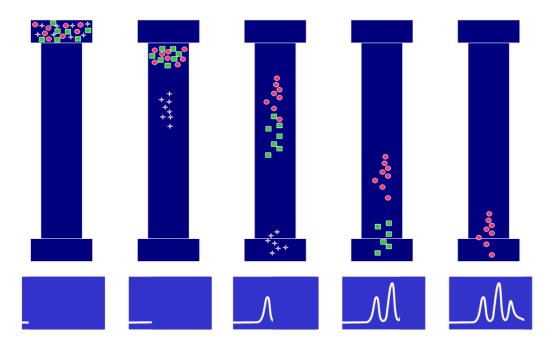
19 GST26

20 Calpain

- Calreticulin Actin Enolase Tropomyosin Serpin-like
 - 10 Phosphoglycerate kinase

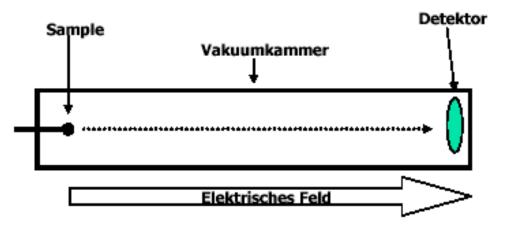
ATP:Guanidino Kinase

Adenylate Dehydrogenase


- 22 Cycophilin
 - 23 Superoxide Dismutase
 - 24 Fatty Acid Binding Protein (Sm14)
 - 25 SME16
 - 26 Thioredoxin 27 Dynein Light Chain
 - 28 Ubiquitin
 - 29 Adenylate Kinase

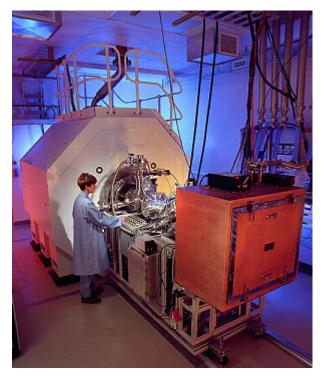
Pro / Contra

- Comparably simple and cheap
- Disadvantages
 - No high-throughput much manual work
 - No robust quantification (spot intensity depends on staining)
 - Similar proteins (e.g. protein forms) build overlapping spots
 - Many restrictions
 - No proteins with <20KD or >200KD
 - No highly charged proteins
 - No detection of low concentrations
 - No membrane proteins (depending on method)
 - ...
 - No de-novo protein identification
 - Limited accuracy in comparative identification

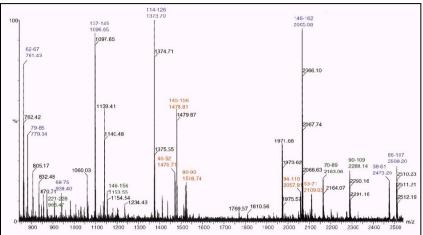

Liquide / Gas Chromatography

- Other option: GC/LC
 - Chamber contains two phases (liquid / liquid, liquid/gas)
 - Different speeds depending on mass/charge ratio
 - Separation by retention times

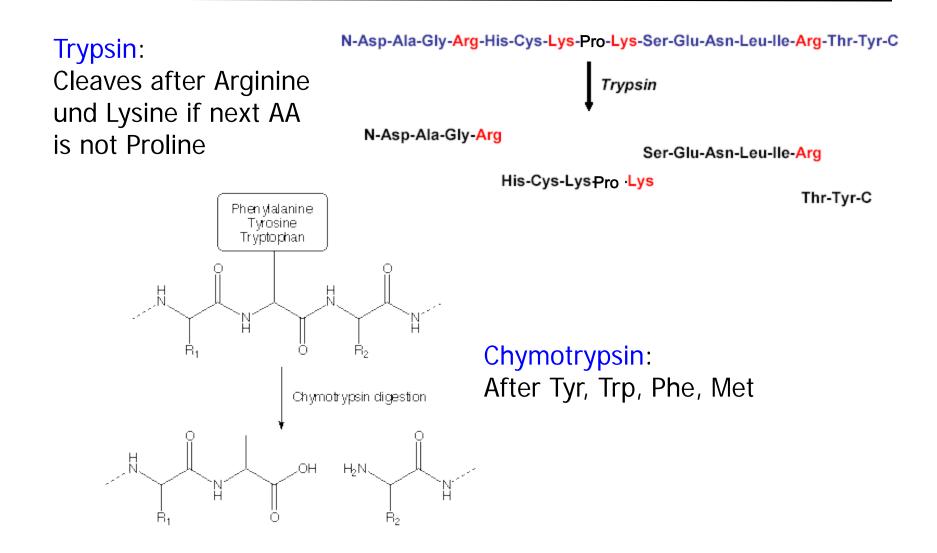
- Proteomics
- Separation
- Identification: Mass Spectrometry
 - Method
 - Algorithms: Naïve, probabilistic


- Accelerate particles (must be charged) in an electric field
- Detector measures hits at back wall
- Time of flight (ToF) proportional to mass
 - Other techniques exist (magnetic drift, ...)
- Spectrum of mass peaks is used to identify particle

Mass Spectrometry



Source: http://imr.osu.edu



Source: http://www.sysbio.org

- Problem: Proteins are fragile and break during acceleration
- Solution
 - Break proteins at defined points before acceleration (digestion)
 - Measure peptides (each peptide one signal time of flight)
 - Identify protein based on spectrum of peptide hits
- In theory, every protein has an almost unique spectrum
 - Using modern MS/MS, even different forms of the same protein are separable

Digestion

- Problem: Peptides often are uncharged no acceleration
- Solution
 - MALDI Matrix Assisted Laser Desorption / Ionization
 - Peptide are embedded in a "matrix"
 - Crystallization with charged, light-sensitive molecules
 - Fire on crystal with laser
 - Light-sensitive molecules vaporize and carry peptides with them
 - Accelerate
- Other techniques known
 - E.g. ESI: electrospray ionization

From Spectra to Peaks

- Detecting peaks and assigning them to peptides is difficult
 - Technical bias in runs / machines
 - Inaccuracies of measurement
 - Inhomogeneous sample preparation
 - Matrix etc.
 - Different quantities of peptides
- 1097.65 62-67 1374.71 761.43 2066.10 145-156 1139.41 1478.81 1479.87 762.42 2067.74 79-85 779.34 1140.48 1971.68 1,375.55 86-107 40-52 90-109 2509.20 1973 6 1470.7 805.17 70-89 2289.14 38-61 2068.63 2163.06 1060.03 80.93 2473.20 2510.23 832.48 1518 74 68-75 2290.16 2511.21 146-156 870.71939.40 2164.07 109.0 1153.55 2291 18 2512.19 1154.54 1004 40 1769.57 1810.56 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 1100

146-162

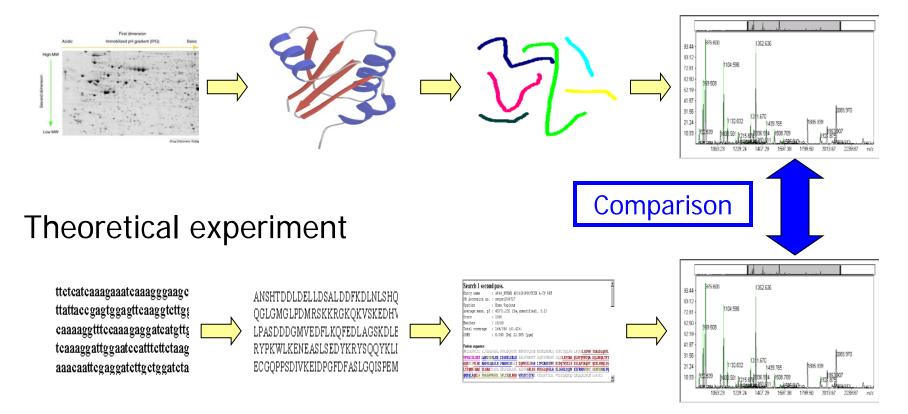
2065.08

114-126 1373.70

137-145

1096.65

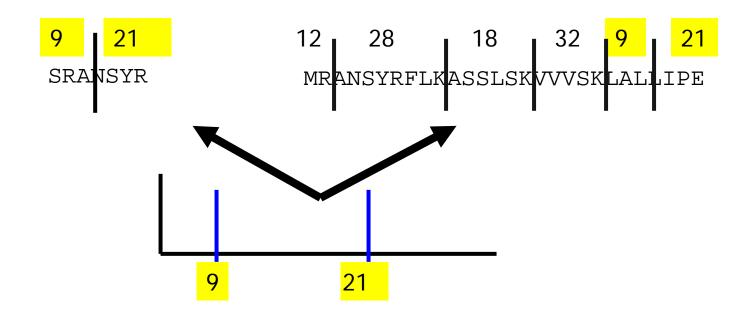
- Creating a spectrum: Signal processing (not covered here)
 - Peak detection, peak disambiguation, noise filtering, ...


100

- Proteomics
- Separation
- Identification: Mass Spectrometry
 - Method
 - Algorithms: Naïve, probabilistic

- We focus on database-based identification
- Idea
 - We have a database D of protein sequences $d_1, d_2, ...$
 - Each d_i is subjected to electronic digestion peptide set / protein
 - For each peptide, we know its theoretical ToF
 - Compute a theoretical spectrum s_i for each d_i
 - Measure real spectrum s of unknown protein k
 - Compare empirical spectrum s with all theoretical spectra s_i
- We can only find what we already know

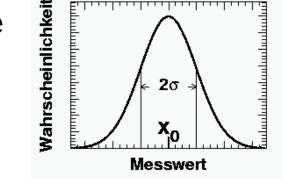
Illustration


Real experiment

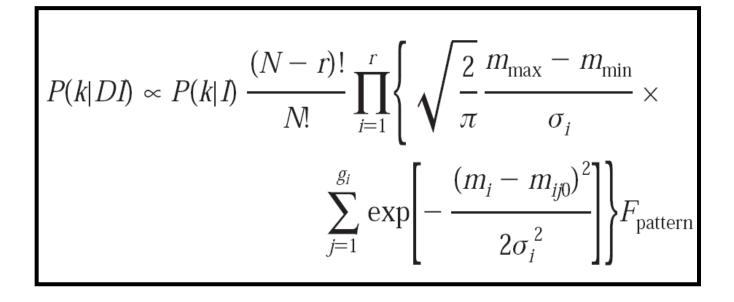
- Compare measured s with all s_i in DB
- Protein d_i which has the most peaks in common wins
 - Input: $s = \{p_1, ..., p_m\}, s_i = \{q_1, ..., q_j\}$
 - For each s_i : Compute $|s \cap s_i|$
 - Protein d_i where s_i has maximal overlap wins
- Complexity?
 - Keep peak lists s and s_i sorted
 - We need to compare |s| hits with |D| proteins in DB
 - Let q be the average number of peaks in a database spectrum
 - Together: ~(|s|+q)*|D| comparisons
 - Can be sped-up further (indexing)

- Peptide masses are not really equal (e.g. isotopes)
 - Small deviation nearest peak; match might not be unique
- Some (short) peptides are more frequent than others
 - Some peptides appear in almost all proteins little signal
 - Should have a lower impact
- Proteins have different lengths
 - Longer proteins have a higher a-priori chance for more peak matches

Example


• Which one would you prefer?

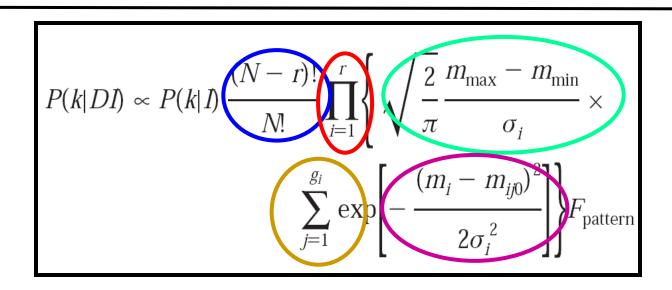
More Problems


- Enzymes don't work 100% correct
- Protein sequences in DB contain errors
 - Especially when directly translated from genome
 - Leads to theoretical spectra not existing in nature
- Posttranslational modifications
- MS is not perfect spurious, shifted, missing peaks
- All these issues lead to false positive and false negative peaks within the spectra
- Some protein always has the highest count what if real sequence is not in the database?
 - No confidence scores

- Heuristic: MOWSE (outdated)
 - Considers total protein mass and peptide frequencies
 - Generates a score
- Probabilistic algorithm: Profound
 - Copes with measurement errors, deviation in protein mass, and different peptide frequencies
 - Generates a probability of match for each protein (~ confidence)
- Many more (and newer) algorithms
 - MASCOT, PeptIdent, ProteinProspector, SEQAN, ...

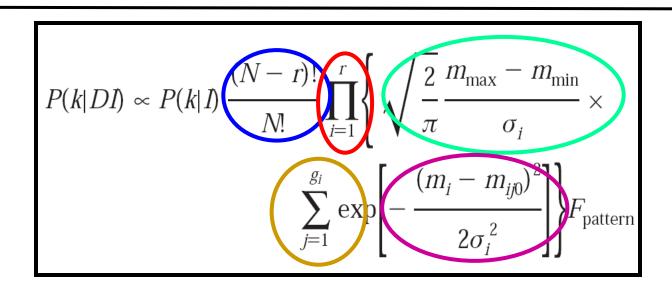
- Computes, for a given spectrum D (s) and each protein k (s_i), the probability that D was produced by k
- The formula is complex; its derivation is even more complex and skipped
- Basic assumption: Measured peptide ulletmasses are normally distributed around the "canonical" value
 - Most probable isotope composition
- First step: Assign peaks from k to closest peak from D

- A-priori assignment is a strong first filter; errors are propagated



Legend

$$P(k|DI) \propto P(k|I) \frac{(N-r)!}{N!} \prod_{i=1}^{r} \left\{ \sqrt{\frac{2}{\pi}} \frac{m_{\max} - m_{\min}}{\sigma_i} \times \sum_{j=1}^{g_i} \exp\left[-\frac{(m_i - m_{ij0})^2}{2\sigma_i^2}\right] \right\} F_{\text{pattern}}$$


- p(k|D,I) = prob. that protein k was observed by spectrum D given the background information I
- p(k|I): A-priori probability of k in the given species / cell / tissue
- N: Predicted number of peptides of database protein k
- r: Number of hits between D and k (results from initial assignment)
- m_{max}, m_{min} range of observed masses for current peak (background)
- σ_i standard deviation of current peak (background)
- g_i: How often is the i'th peptide contained in k?
- m_i: Mean mass of the DB peak (background)
- m_{ij0}: Empirical mass of j'th occurrence of this peptide
- F_{pattern}: Heuristic factor dealing with "overlapping peaks"

ProFound Explanation

- How many of the expected peptides for k did we observe?
- Multiply probabilities of all hits
- "Freedom" of measurements of hits for this peptide
- Many predicted peaks may create only one measured peak
- Probability of the deviation of the canonical mass to the measured mass (assuming normal distribution)

ProFound Intuition

- Many hits (r ~ N) score goes down (outweighs influence of more factors in the red product)
- Hits with a small stddev or a broad range score goes up
- Many observed peaks match the predicted peaks score goes up
- Observed peaks close to canonical peaks score goes up
- Theoretical peak as high stddev scores go down (also green)

- Score assumes that protein is in the database
 - Better: formulate "null" hypothesis, compute prob. of the spectrum given the null hypothesis, and report the log-odds ratio as score
 - But this is not as simple done as said
- Assumes that every peak comes from "the" protein
 - But measurements might be contaminated with peptides from other proteins
- Assumes that observed peaks can be assigned clearly to predicted peaks
 - This problem is tried to be covered by F_{pattern}

- Basics on proteomics: Every Bioinformatics book
- Zhang, W. and Chait, B. T. (2000). "ProFound: an expert system for protein identification using mass spectrometric peptide mapping information." *Anal Chem* 72(11): 2482-9.
- Pappin, D. J. C., Hojrup, P. and Bleasby, A. J. (1993). "Rapid identification of proteins by peptide-mass fingerprinting." *Current Biology* 3(327-332).
- Survey: Colinge J, Bennett KL (2007) Introduction to Computational Proteomics. PLoS Comput Biol 3(7): e114