

Gene expression analysis

Last lecture

mRNA-expression arrays

Chips with probes that measure mRNA

Workflow mRNA arrays

RNA extraction, cDNA rewriting, labeling, hybridization, scanning, spot detection, spot intensity to numeric values, normalization, *analysis* (today)

Background-Correction & Normalization

Assume that no structural differences exist between samples Homogenize measurements to render them comparable

This lecture

- Differential expression
 - Fold Change
 - t-Test
- Clustering
- Databases

Differential Expression - Motivation

Understand etiology

Identify early detection marker

Personalized medicine

Differential Expression

We have:

 $N_1,...,N_m$: normale samples $T_1,...,T_n$: tumor samples

We **look for**: genes with significant differences between N and T

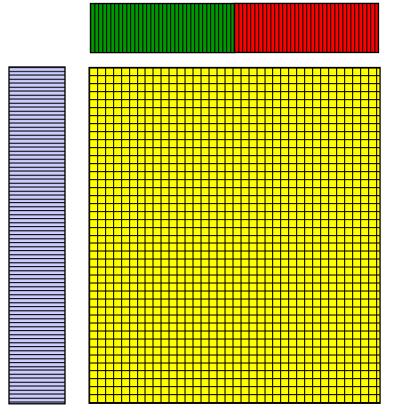
Compare values of gene X from group N with those of group T

$$N = \{n_{1},...,n_{m}\}$$

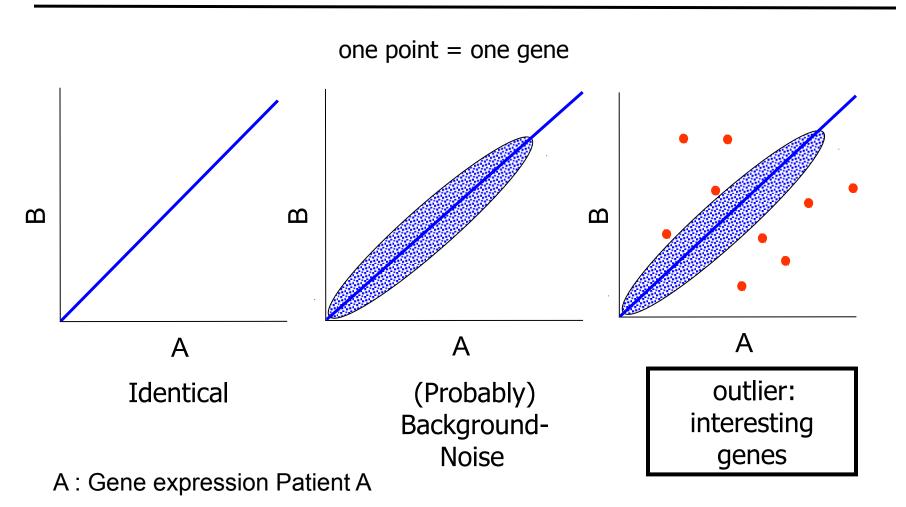
 $T = \{t_{1},...,t_{n}\}$

many methods, here: Fold change t-test

Sample



What to look for - Scatterplot



B: Gene expression Patient B

This lecture

- Differential expression
 - Fold Change
 - T-Test
- Clustering
- Databases

Fold Change

Fold Change (FC)

$$FC = \log_2(\frac{mean(T)}{mean(N)}) = \log_2(mean(T)) - \log_2(mean(N))$$

Thresholds (sort of because never really comparable)

|FC| < 1 not interesting |FC| > 2 very interesting

Log2

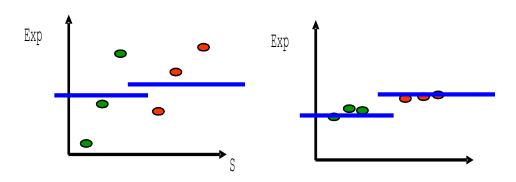
	mean(tumor)	mean(normal)	mean(t) / mean(n)	FC
gene a	16	1	16	4
gene b gene c	0.0625 10	1 10	0.0625 1	-4 0
gene d	200	1	200	7.65

This lecture

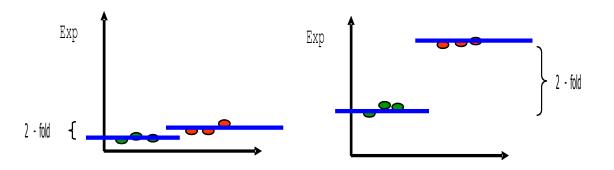
- Differential expression
 - Fold Change
 - T-Test
- Clustering
- Databases

Fold Change – Advantages / Disadvantages

- + intuitive measure
- independent of scatter



- independent of absolute values



→ score based only on the mean of the groups not optimal, **include variance!**

Hypothesis Testing – Comparing Two Samples

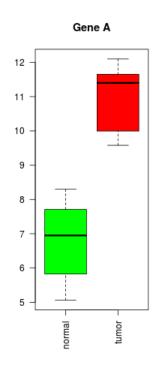
Gene expression matrix:

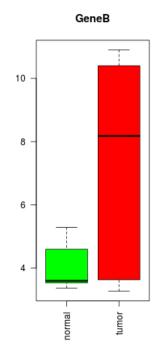
Gene	N1	N2	N3	N4	N5	N6	N7	T1	T2	Т3	T4	T5	Т6	Т7	FC
Α	5.06	5.22	8.3	8.03	6.95	6.43	7.39	10.1	9.89	11.7	11.6	11.4	9.58	12.1	-4.14
В	3.58	4.14	3.49	3.37	5.29	5.06	3.6	3.7	10.9	10.3	3.57	10.5	8.18	3.27	-3.13

High abs(FC) for Gene A and Gene B

But: variance very high in the tumor samples of Gene B

Evaluate 'randomness' of → T-test

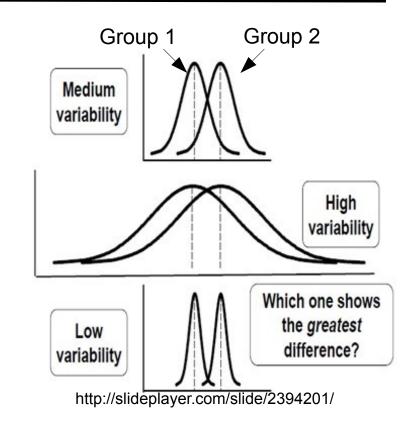




Hypothesis Testing

- Same Mean
 - → Different variance
- Measure 'uncertainty' with standard deviation sd
- Combine both to likelihood for 'correctness'

- Assumption
 - Log-Normal distributions
 - Symmetric
 - Independent

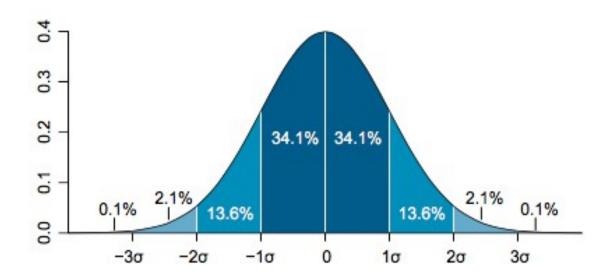


$$\sigma_X := \sqrt{\operatorname{Var}(X)}$$

$$Var(X) = E((X - E(X))^2) = E(X^2) - (E(X))^2$$

Tschebyscheff-Inequation

$$\mathrm{P}[|X - \mu| \geq k] \leq rac{\sigma^2}{k^2}$$



Quite neat:
Z-transform your data
and see how likely a single value is

Hypothesis Testing

- T-Test (unpaired two-sample) compares the mean of two unpaired samples
- **Assumption:**
 - values normally distributed equal variances
- **Hypothesis: H**₀ (Null hypothesis): $\mu_1 = \mu_2$ vs. $\mu_1 != \mu_2$ (means are not equal)
- **Test statistic:** Function of the sample that summarizes the data set into one value that can be used for hypothesis testing

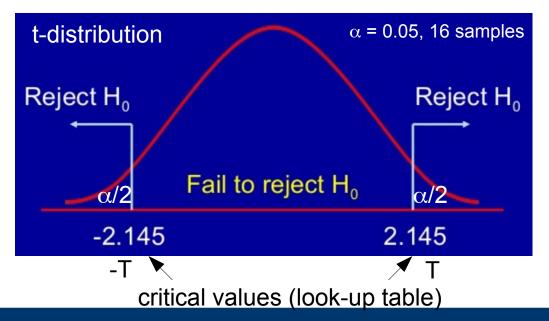
$$t = \frac{mean(T) - mean(N)}{\sqrt{\frac{sd(T)^2}{m} + \frac{sd(N)^2}{n}}}$$
 difference between the means t . Smaller standard deviation

The greater | t |, the greater the difference between the means

- · Smaller standard deviation
- More samples

Hypothesis Testing – t-Test (Welch Test)

- From T-statistic to p-value:
 - T-value, α and number of samples determine the p-value (look-up tables)
- · P-value:
 - Probability of observing your data under the assumption that H_□ is true
 - Probability that you will be in error if rejecting H₀
- Significance level (α): Probability of a false positive outcome of the test, the error of rejecting H₀ when it is actually true



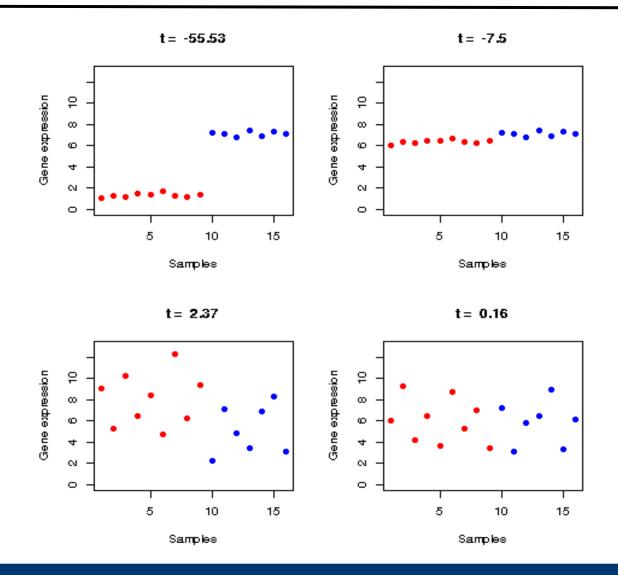
If |t| > |T| we reject H₀

→ p-value is significant (p-value < α)

Steps of Hypothesis Testing

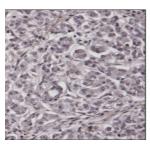
- Determine null and alternative hypothesis
- Select a significance level (alpha)
- Take a random sample from the population of interest
- Calculate a test statistic from the sample that provides information about the null hypothesis
- Decision

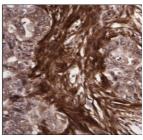
Example



Example

Example for Gene B from slide 11





Hypothesis

$$H_0: m_N - m_T = 0$$

$$H_0: m_N - m_T = 0$$
 $H_1: m_N - m_T! = 0$

Significance level

$$\alpha = 0.05$$

Test statistic

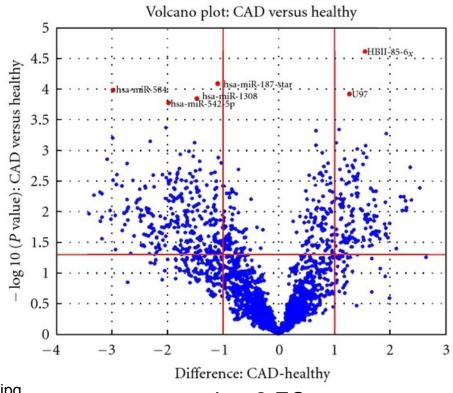
$$t = \frac{mean(T) - mean(N)}{\sqrt{\frac{sd(T)^2}{m} + \frac{sd(N)^2}{n}}} = -2.27 \quad \text{(Critical value |T| = 2.45)}$$

p-Value

p-value = 0.06 — We cannot reject H₀, gene B ist not significantly differentially expressed!

Vulcano Plot

- Scatterplot significance versus fold change
 - Y-axis: Negative log₁₀ of the p-value
 - X-axis: Fold-change
- Interested in the upper left upper right corner



http://www.hindawi.com/journals/crp/2011/532915.fig.001.jpg

Multiple Testing Correction

Problem: Microarrays has 22k genes, thus an α =0.05 leads to approximately 22 000 * 0.05 ~ 1100 FPs.

Solution: Multiple testing correction. Two basic approaches:

- **1. Family wise error rate (FWER)**, the probability of having at least one false positive in the set of results considered as significant
- 2. False discovery rate (FDR), the expected proportion of true null hypotheses rejected in the total number of rejections.(FDR measures the expected proportion of incorrectly rejected null hypotheses, i.e. type I errors)

Bonferoni (FWER)

Let N be the number of genes tested and p the p-value of a given probe, one computes an adjusted p-value using:

$$p_{adjusted} = p*N$$

Only if the adjusted p-value is smaller than the pre-chosen significance value, the probe is considered differentially expressed.

Very conservative (many failures to reject a false H₀), rarely used

Bonferoni assumes independence between the tests (usually wrong)

Appropriate when a **single false positive** in a set of tests would be a problem (e.g., drug development)

Benjamini – Hochberg (FDR)

- 1. choose a specific α (e.g. α =0.05)
- 2. rank all m p-values from smallest to largest
- 3. correct all p-values: $BH(p_i)_{i=1,...,m} = p_i * m/i$
- 4. BH (p) = significant if BH(p) $\leq \alpha$

Genes	p-value	rank	ВН(р)	Significant? (α=0.05)
Gene A	0.00001	1	0.00001*1000/1=0.01	yes
Gene B	0.0004	2	0.0004*1000/2=0.20	no
Gene C	0.01	3	0.01*1000/3=3.3 → 1.0	no

This lecture

- Differential expression
 - Fold Change
 - T-Test
- Clustering
- Databases

Clustering - Motivation

Subgroups detection

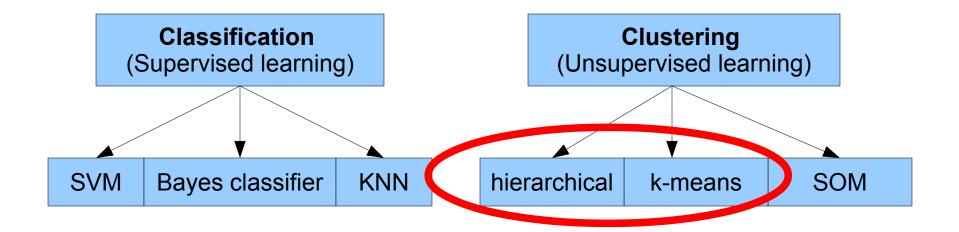
Quality control

Similar-detection in spacial and temporal behavior

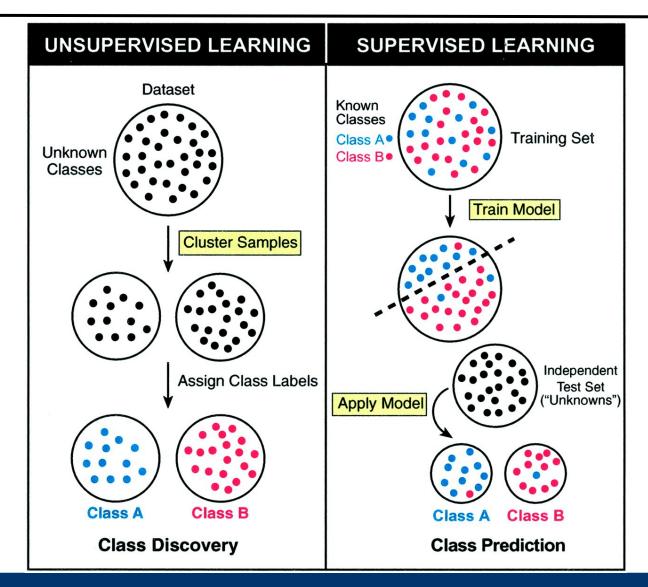
→ co-regulated / expressed genes (e.g. genes controlled by the same transcription-factor).

Discover new disease subtypes

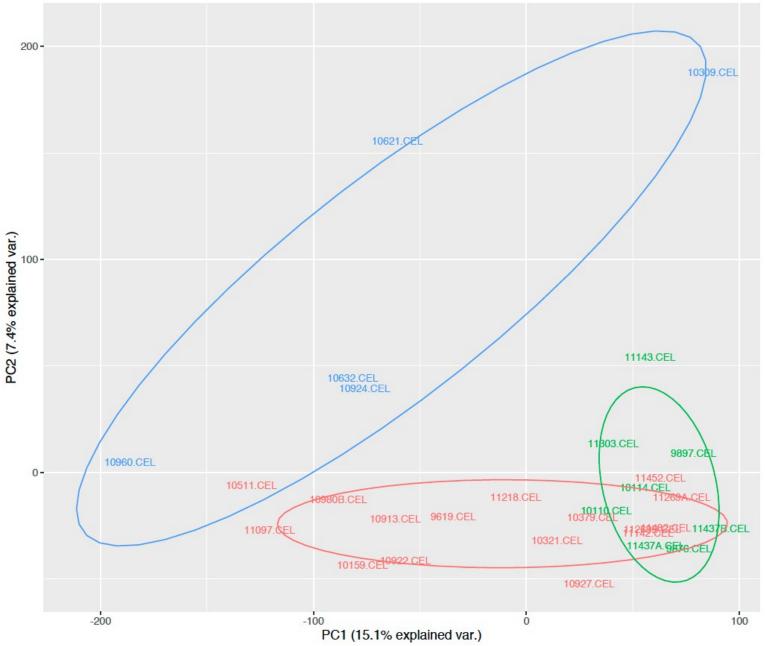
Overview (Un)Supervised Learning



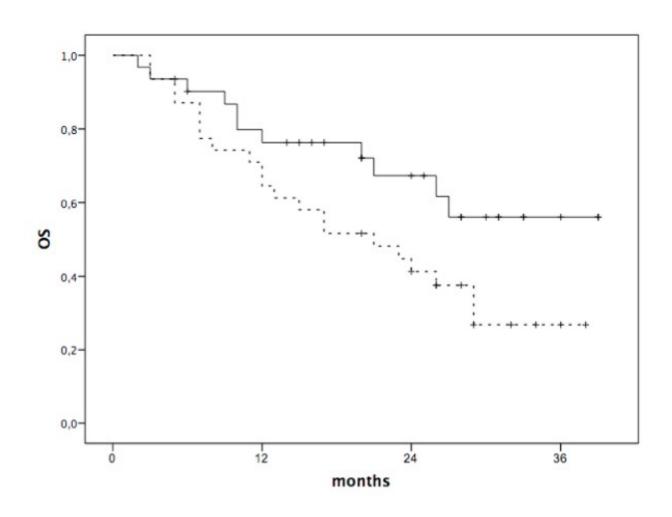
Clustering

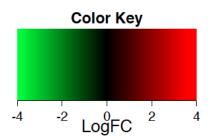


Ramaswamy & Golub 2002

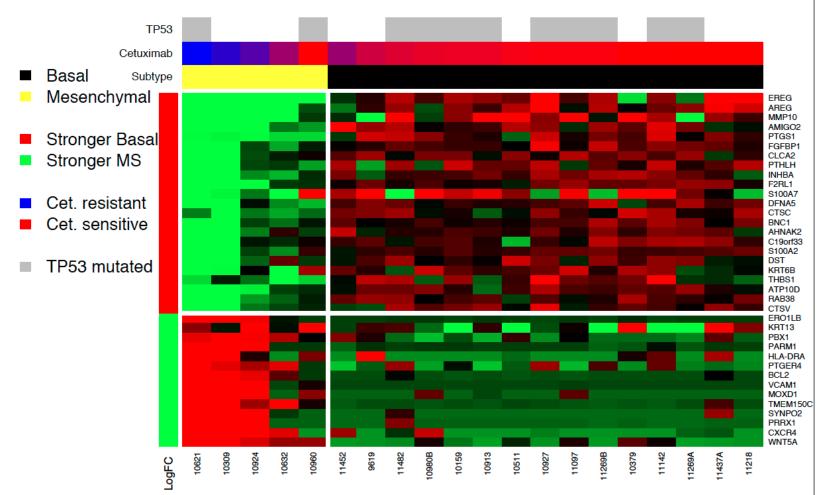


Kaplan-Meier Clusterplot





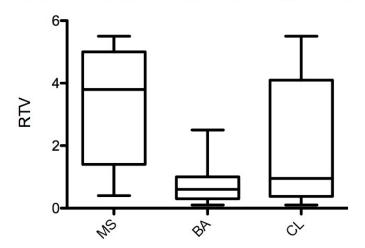
37 most differentially expressed genes BA vs MS



Clustering

- Goal:
 - Partitioning
 - Biological interpretation of subtypes (clusters)
- Requires:
 - · (useful) similarity measure
- Advantages:
 - Intuitive
 - Simple (you would think)

cetuximab response in different subtypes of HNSCC



Hierarchical Clustering - Algorithm

- 1. Distance measure
 - Euclidean

Pearson, etc.

- 2. compute similarity matrix S
- 3. while |S|>1:
 - 4. determine pair (X,Y) with minimal distance
 - 5. compute new value Z = avg(X,Y), (single, average, or complete linkage)
 - 6. delete X and Y in S, insert Z in S
 - 7. compute new distances of Z to all elements in S
 - 8. visualize X and Y as pair

Hierarchical Clustering

Result: binary tree

Cutting the dendrogram at a particular height partitions the data into disjoint clusters

For an easier determination of clusters: length of branch is set in relation to the difference of the leafs.

Linkage Rule essential

Hierarchical Clustering – Linkage

- Methods produce similar results for data with strong clustering tendency (each cluster is compact and separated)
- **Single** Linkage:

$$D(X, Y) = \min_{x \in X, y \in Y} d_{xy}$$

- Single smallest distance
- Violates the compactness property (i.e., observations inside the same cluster should tend to be similar)
- Complete Linkage: $D(X,Y) = \max_{x \in X, y \in Y} d_{xy}$

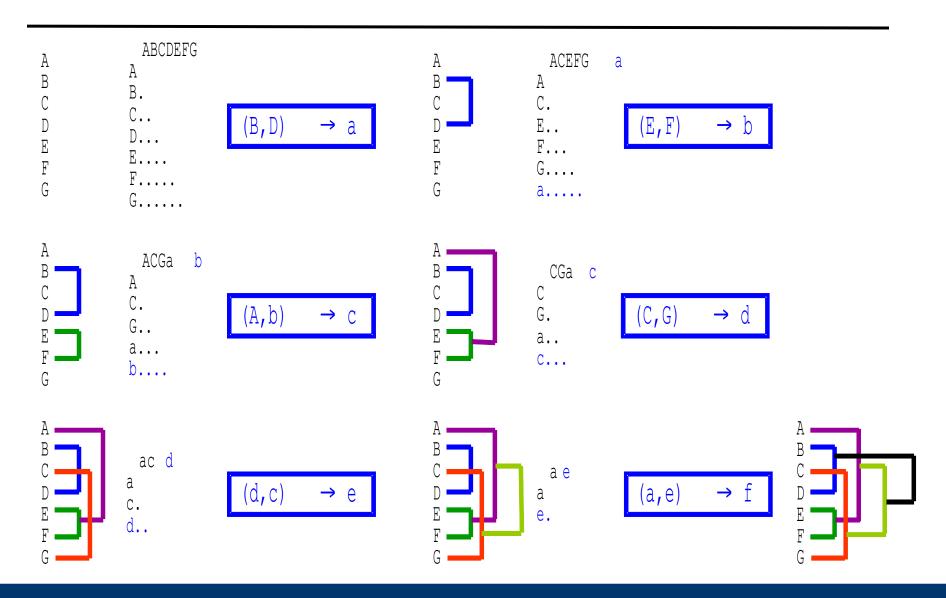
$$D(X, Y) = \max_{x \in X, y \in Y} d_{xy}$$

- Most distant elements
- **Average** Linkage:

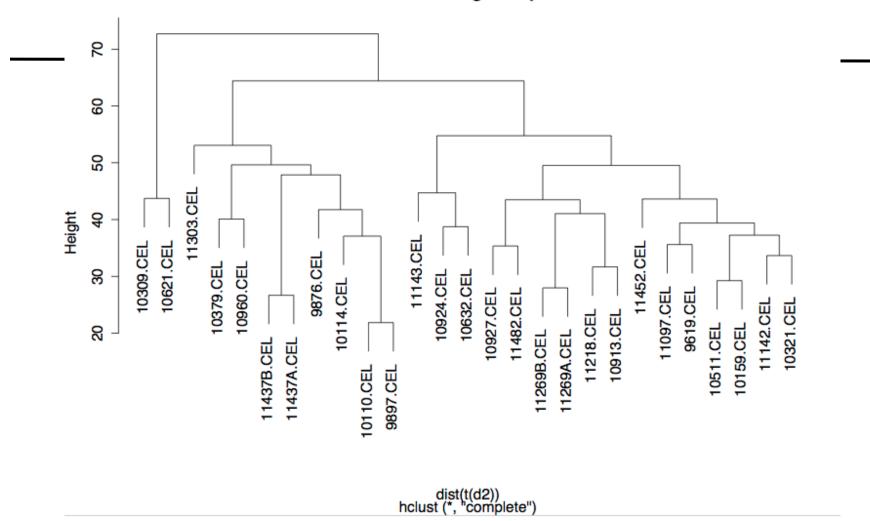
$$D(X, Y) = \frac{1}{N_X N_Y} \sum_{x \in X} \sum_{y \in Y} d_{xy}$$

Compromise

Hierarchical Clustering - graphical



Hierarchical clustering of expression data



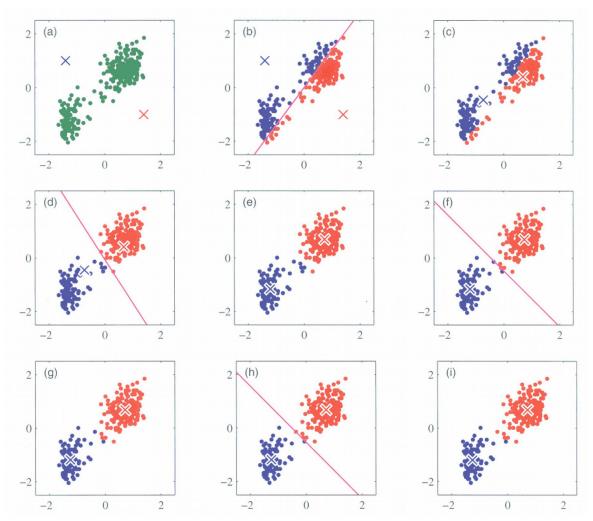
K means

K-means partitions the n observations into k clusters

Minimize the distance of the n data points from their respective cluster centres.

- 1. choose k random cluster centers $\mu_1, \dots \mu_k$
- Assign for each point x in dataset S the closest cluster center
- 3. compute a new center μ for every cluster C
- 4. repeat 2-3. until cluster centers do not change

K means



http://www.itee.uq.edu.au/~comp4702/lectures/k-means_bis_1.jpg

K means

Convergence is not assured.

Cluster quality can be computed by determining the mean distance of a gene to its clustercenter.

Number of clusters has to be chosen in advance.

The initialization of the cluster centers has a great impact on the clustering quality, compute more than one initial constellation.

This lecture

- Differential expression
 - Fold Change
 - T-Test
- Clustering
- Databases

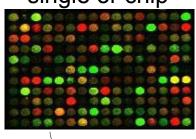
GEO – Gene Expression Omnibus

NCBI public repository http://www.ncbi.nlm.nih.gov/geo/archives microarray, NGS, and other high-throughput genomics data submitted by the research community

GPL (GEO platform) platform description

submitted by manufacturer

GSM
(GEO sample)
raw-processed
intensities from a
single or chip



GSE
(GEO series)
grouping of chip data,
a single experiment

submitted by experimentalist

GDS (GEO dataset) grouping of experiments

curated by NCBI

GEO

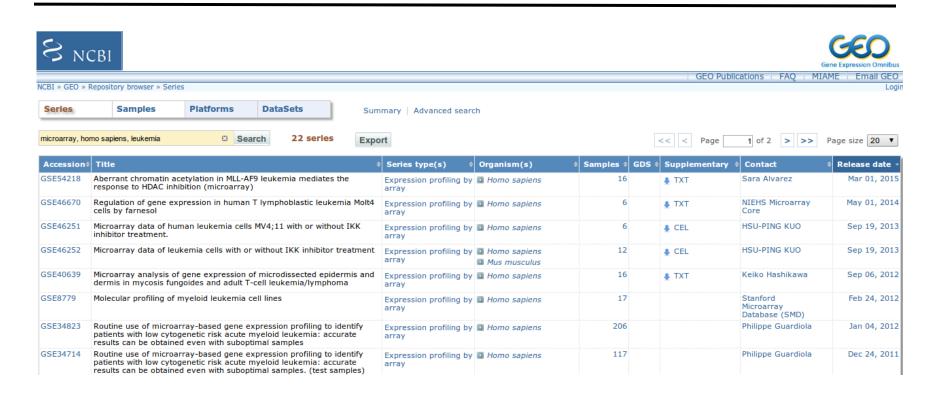
Gene Expression Omnibus

GEO is a public functional genomics data repository supporting MIAME-compliant data submissions. Array- and sequence-based data are accepted. Tools are provided to help users query and download experiments and curated gene expression profiles.

Keyword or GEO Accession Search

Getting Started	Tools	Browse Conter	nt			
Overview	Search for Studies at GEO DataSets	Repository Browse	Repository Browser			
FAQ	Search for Gene Expression at GEO Profiles	DataSets:	3848			
About GEO DataSets	Search GEO Documentation	Series: 🔯	58176			
About GEO Profiles	Analyze a Study with GEO2R	Platforms:	14392			
About GEO2R Analysis	GEO BLAST	Samples:	1424131			
How to Construct a Query	Programmatic Access					
How to Download Data	FTP Site					
Information for Submitters						
Login to Submit	Submission Guidelines	MIAME Standards	MIAME Standards			
	Update Guidelines	Citing and Linking	Citing and Linking to GEO			
		Guidelines for Reviewers				
		GEO Publications				

GEO

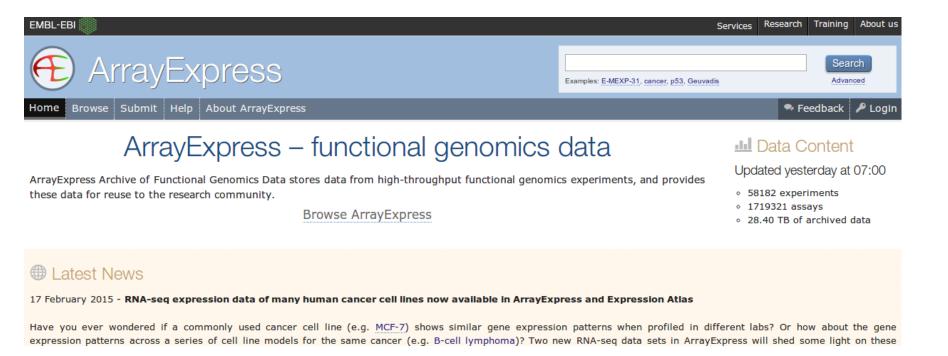


All GEO submissions follow the MIAME checklist

MIAME (Minimum Information about a Microarray Experiment)

- 1. raw data (e.g. .CEL, .txt)
- 2. final processed (normalized) data
- **3. sample annotation** (incl. Experimental factors and their values, scan protocol, e.g. drug, dosage)
- **4. experimental design** including sample data relationships (e.g., overall design; technical or biological replicates)
- **5. annotation** of the **array** (e.g., gene identifiers, genomic coordinates, probe oligonucleotide sequences)
- **6. laboratory** and **data processing protocols** (e.g., what normalisation method)

ArrayExpress (EMBL-EBI)



All ArrayExpress submissions follow the MIAME checklist

GEO vs. ArrayExpress

- both encompass MIAME compliance
- both provide a good possibility for making data publicly availabe as often requested by journals
- ArrayExpress provides analysis tools

Summary

Combine T-test and fold change for optimal detection of differential expression (Volcano plot)

More explorative analyses like clustering can detect patterns inherent in the expression data like co-regulated genes or new disease subtypes.

Public repositories like GEO and ArrayExpress offer a rich fundus of data.