Multiple Sequence Alignment
Sum-of-Pairs and Clustal-W

Ulf Leser
This Lecture

- **Multiple Sequence Alignment**
 - The problem
 - Theoretical approach: Sum-of-Pairs scores
 - Practical approach: Clustal-W
Multiple Sequence Alignment

• We now align multiple \((k>2)\) sequences
 - Note: Also BLAST aligns only two sequences
• Why?
 - Imagine \(k\) sequences of the promoter region of genes, all regulated by the same transcription factor \(f\). Which subsequence within the \(k\) sequences is recognized by \(f\)?
 - Imagine \(k\) sequences of proteins that bind to DNA. Which subsequence of the \(k\) sequences code for the part of the proteins that performs the binding?
• General
 - We want to know the common part(s) in \(k\) sequences
 - “common” does not mean identical
 - This part can be anywhere within the sequences
Definition

• Definition
 - A multiple sequence alignment (MSA) of \(k \) Strings \(s_i, 1 \leq i \leq k \), is a table of \(k \) rows and \(l \) columns (\(l \geq \max(|s_i|) \)), such that
 • Row \(i \) contains the sequence of \(s_i \), with an arbitrary number of blanks being inserted at arbitrary positions
 • Every symbol of every \(s_i \) stands in exactly one column
 • No column contains only blanks
Good MSA

- We are searching for good (optimal) MSAs
- Defining „optimal“ here is not as simple as in the $k=2$ case
- Intuition
 - All sequences had a common ancestor and evolved by evolution
 - We want to assume as few evolutionary events as possible
 - Thus, we want few columns (~ few INSDELs)
 - Thus, we want homogeneous columns (~ few replacements)
This Lecture

- Multiple Sequence Alignment
 - The problem
 - Theoretical approach: Sum-of-Pairs scores
 - Practical approach: Clustal-W
What Should we Count?

• For two sequences
 - We scored each column using a scoring matrix
 - Find the alignment such that the total score is maximal
• But – how do we score a column with 5*T, 3*A, 1*_?
 - We would need an exponentially large scoring matrix
• Alternative: **Sum-of-Pairs Score**
 - We score an entire MSA
 - We score the alignment of each pair of sequences in the usual way
 - We aggregate over all pairs to score the MSA
 - We need a clever algorithm to find the MSA with the best score
Formally

- **Definition**
 - Let M be a MSA for the set S of k sequences $S=\{s_1,\ldots,s_k\}$
 - The alignment of s_i with s_j induced by M is generated as follows
 - Remove from M all rows except i and j
 - Remove all columns that contain only blanks
 - The sum-of-pairs score (sop) of M is the sum of all pair-wise induced alignment scores
 - The optimal MSA for S wrt. to sop is the MSA with the lowest sop-score over all possible MSA for S
Example

- Given a MSA over k sequences of length l - how complex is it to compute its sop-score?
- How do we find the best MSA?
Analogy

- Think of the k=2 case
- Every alignment is a path through the matrix
- The three possible directions (down, right, down-right) conform to the three possible constellations in a column (XX, X_, _X)
- With growing paths, we align growing prefixes of both sequences
Analogy

- Assume \(k=3 \)
- Think of a 3-dimensional cube with the three sequences giving the values in each dimension
- Now, we have paths aligning growing prefixes of three sequences
- Every column has seven possible constellations
 \((XXX, XX_, X_X, _XX, X__, _X_, ___X)\)
All Possible Steps

- \(d(i-1,j-1,k-1)\)
- \(d(i,j-1,k-1)\)
- \(d(i,j,k-1)\)
- \(d(i,j-1,k)\)
- \(d(i-1,j,k)\)
- \(d(i-1,j-1,k)\)
- \(d(i-1,j,k-1)\)
- \(d(i-1,j-1,k)\)
Dynamic Programming in three Dimensions

- We compute the best possible alignment $d(i,j,k)$ for every triple of prefixes (lengths i,j,k) using the following formula:

$$d(i,j,k) = \min \begin{cases}
 d(i-1,j-1,k-1) + c_{ij} + c_{ik} + c_{jk} \\
 d(i-1,j-1,k) + c_{ij} + 2 \\
 d(i-1,j,k-1) + c_{ik} + 2 \\
 d(i,j-1,k-1) + c_{jk} + 2 \\
 d(i-1,j,k) + 2 \\
 d(i,j-1,k) + 2 \\
 d(i,j,k-1) + 2
\end{cases}$$

Three (mis)matches
One (mis)match, two ins

...

Let $c_{ij} = 0$, if $S_1(i) = S_2(j)$, else 1
Let $c_{ik} = 0$, if $S_1(i) = S_3(k)$, else 1
Let $c_{jk} = 0$, if $S_2(j) = S_3(k)$, else 1
Concrete Examples

- Best sop-score for $d(i,j-1,k)$ is known
- We want to compute $d(i,j,k)$
- This requires to align one symbol with two blanks (blank/blank does not count)
- $d(i,j,k) = d(i,j-1,k) + 2$

- Best sop-score for $d(i-1,j,k-1)$ is known
- We want to compute $d(i,j,k)$
- This requires aligning a blank with $s_1[i-1]$ and with $s_3[k-1]$ and to align $s_1[i-1]$ and $s_3[k-1]$
- $d(i,j,k) = d(i-1,j,k-1) + 2 + c_{ik}$
Initialization

• Of course, we have $d(0,0,0)=0$
• Aligning in one dimension: $d(i,0,0)=2*i$
 – Same for $d(0,j,0)$, $d(0,0,k)$
• Aligning in two dimensions: $d(i,j,0)=...$
 – Let $d_{a,b}(i,j)$ be the alignment score for $S_a[1..i]$ with $S_b[1..j]$
 – $d(i, j, 0) = d_{1,2}(i, j) + (i+j)$
 – $d(i, 0, k) = d_{1,3}(i, k) + (i+k)$
 – $d(0, j, k) = d_{2,3}(j, k) + (j+k)$
initialize matrix d;
for i := 1 to |S_1|
 for j := 1 to |S_2|
 for k := 1 to |S_3|
 if (S_1(i) = S_2(j)) then c_{ij} := 0; else c_{ij} := 1;
 if (S_1(i) = S_3(k)) then c_{ik} := 0; else c_{ik} := 1;
 if (S_2(j) = S_3(k)) then c_{jk} := 0; else c_{jk} := 1;
 d_1 := d[i – 1,j – 1,k – 1] + c_{ij} + c_{ik} + c_{jk};
 d_2 := d[i – 1,j – 1,k] + c_{ij} + 2;
 d_3 := d[i – 1,j,k – 1] + c_{ik} + 2;
 d_4 := d[i,j – 1,k – 1] + c_{jk} + 2;
 d_5 := d[i – 1,j,k) + 2;
 d_6 := d[i,j – 1,k) + 2;
 d_7 := d[i,j,k – 1) + 2;
 d[i,j,k] := min(d_1, d_2, d_3, d_4, d_5, d_6, d_7);
 end for;
 end for;
end for;
Bad News: Complexity

- For 3 sequences of length n
 - There are n^3 cells in the cube
 - For each cell (top-left-front corner), we need to look at 7 corners
 - Together: $O(7 \times n^3)$ operations

- For k sequences of length n
 - There are n^k cell corners in the cube
 - For each corner, we need to look at $2^k - 1$ other corners
 - Together: $O(2^k \times n^k)$ operations
Bad News: Biological Meaningfulness

• Let’s take one step back
• What happened during evolution?

- Real number of events: 8
- $\text{sop-score: } 2 + 3 + 6 + 6 + 2 + \ldots$
 - Single mutations are counted multiple times

\[
\begin{align*}
\text{GTTTCA} & \quad \text{GTTGCA} & \quad \text{CTTGCA} \\
\text{GTTTTCA} & \quad \text{GTTGACA} & \quad \text{GTTGTTA} \\
\text{GTATTTCA} & \quad \text{CT_TGC_A} & \quad \text{GT_TGACA} \\
\text{} & \quad \text{GT_TGTTA} & \quad \text{GTATTTCT} \\
\text{} & \quad \text{} & \quad \text{GTATTTGA}
\end{align*}
\]
This Lecture

• Multiple Sequence Alignment
 - The problem
 - Theoretical approach: Sum-of-Pairs scores
 - Practical approach: Clustal-W
Different Scoring Function

- If we knew the phylogenetic tree of the k sequences
 - Align every parent with all its children
 - Aggregate all alignment scores
 - This gives the “real” number of evolutionary operations
- But: Finding the true phylogenetic tree requires a MSA
 - Not covered in this lecture
- Use a heuristic: ClustalW
Clustal-W

- **Main idea**
 - Compute a “good enough” phylogeny – the **guide tree**
 - Use the guide tree to iteratively align **small MSA to larger MSA**
 - Starting from single sequences
 - To escape the curse of dimensionality, compute MSA iteratively
 - “Progressive” MSA
 - Does not necessarily find the best solution
 - Needs a fast method to **align two MSAs**

- **Works quite well in practice**

- **Many other, newer (better) proposals**
 - DAalign, T-Coffee, HMMT, PRRT, MULTALIGN, ...
Step 1: Compute the Guide Tree

- Compute all pair-wise alignments and store in similarity matrix M
 - $M[i,j] = \text{sim}(s_i, s_j)$
- Compute the guide tree using hierarchical clustering
 - Choose the smallest $M[i,j]$
 - Let s_i and s_j form a new (next) branch of the tree
 - Compute the distance from the ancestor of s_i and s_j to all other sequences as the average of the distances to s_i and s_j
 - Set $M' = M$
 - Delete rows and columns i and j
 - Add a new column and row (ij)
 - For all $k \neq ij$: $M'[ij,k] = (M[i,k] + M[j,k]) / 2$
 - Iterate until M' has only one column / row
Sketch
Example

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17</td>
<td>59</td>
<td>59</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>37</td>
<td>61</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>E</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>17</td>
<td>77</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>53</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>CD</th>
<th>AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>31</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td></td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>
```
Example

Once a gap, always a gap
Step 2: Progressive MSA

- **Pair-wise alignment of MSAs** in the order of the guide tree
- **Aligning a MSA** M_1 **with a MSA** M_2
 - Use the usual (global) alignment algorithm
 - To score a column, compute the average score over all pairs of symbols in these columns

Example

```
A  ...P...
B  ...G...
C  ...P...  Score of this column
D  ...A...
E  ...A...
F  ...Y...
```

$$
(2s(P, A) + s(P, Y) + 2s(G, A) + s(G, Y) + 2s(P, A) + s(P, Y)) \div 9
$$
Issues

• There is a lot to say about whether hierarchical clustering actually computes the “correct” tree
• Clustal-W actually uses a different, more accurate phylogenetic algorithm called “neighbor-joining”
• Clustal-W is fast ($O(k^2 \cdot n^2 + k^2 \cdot \log(k))$
 - For k sequences; plus cost for computing pairwise alignments
• Idea behind progressive alignment
 - Find strong signals (highly conserved blocks) first
 - Outliers are added last
 - Increases the chances that conserved blocks survive
 - Several improvements to this scheme are known
Problems with progressive MSA

Source: Cedric Notredame, 2001
Further Reading

- Merkl & Waack, chapter 13
- Böckenhauer & Bongartz, chapter 5.3