PAM and BLAST

Ulf Leser
Klausurtermin

• Freitag, 29.7.2015, 11-14 (11.30 – 13.30) Uhr
• Raum: 3.001
• Keine Hilfsmittel erlaubt

• Anmelden
• Übungsschein
This Lecture

• **Substitution Matrices**
 - PAM distance
 - PAM matrices

• **Scaling up Local Alignments**
 - BLAST
Substitution Matrices

- **Recall**
 - A **scoring function** is a function \(s : \Sigma \times \Sigma' \rightarrow \text{Integer} \)
 - We also call \(s \) a substitution matrix

- **DNA:** symmetric, simple matrices

- **Protein sequences** are different
 - AA have very different properties
 - Substitutions may **change the 3D structure** completely or just a little bit or not at all
Amino Acids

Small

- Glycine (Gly, G)
 - MW: 75.07
- Alanine (Ala, A)
 - MW: 75.07
- Serine (Ser, S)
 - MW: 105.09, $pK_a = 16$
- Threonine (Thr, T)
 - MW: 125.11, $pK_a = 15$
- Cysteine (Cys, C)
 - MW: 121.15, $pK_a = 8.35$

Hydrophobic

- Valine (Val, V)
 - MW: 99.14
- Leucine (Leu, L)
 - MW: 113.16
- Isoleucine (Ile, I)
 - MW: 113.16
- Methionine (Met, M)
 - MW: 131.19
- Proline (Pro, P)
 - MW: 97.12

Aromatic

- Phenylalanine (Phe, F)
 - MW: 147.18
- Tyrosine (Tyr, Y)
 - MW: 163.18
- Tryptophan (Trp, W)
 - MW: 186.21

Acidic

- Aspartic Acid (Asp, D)
 - MW: 119.13, $pK_a = 3.9$
- Glutamic Acid (Glu, E)
 - MW: 129.12, $pK_a = 4.27$

Amide

- Asparagine (Asn, N)
 - MW: 134.11
- Glutamine (Gln, Q)
 - MW: 128.14

Basic

- Histidine (His, H)
 - MW: 137.14, $pK_a = 6.04$
- Lysine (Lys, K)
 - MW: 128.17, $pK_a = 10.79$
- Arginine (Arg, R)
 - MW: 156.19, $pK_a = 12.48$
Where do all these numbers come from?
Is it Really Necessary?

- We count how often a particular AA was replaced by any other AA
 - Using “sure” sequence alignments
- Replacement rate of Alanin (A) := 100%
- Obviously no equal distribution
- Even if we assume that mutations happen more or the less at the same rate, they obviously don’t survive at the same rate
 - Mutations are suppressed to different degrees
 - W (Tryptophan): Strong suppression
 - S (Serin): Little suppression
Filling a Substitution Matrix for Protein Sequences

• We need app. 200 values
 - Assuming a symmetric matrix

• Possibility 1: Analytical
 - Capture weight, polarity, size, ...
 - Find a scoring scheme to measure the difference between two AA
 - Needs to produce a single value per AA pair
 - Not used in practice

• Possibility 2: Empirical
 - Count which substitutions survived at which frequency in reality
 - Needs true alignments: Pairs of homologues and aligned sequences
Margaret O. Dayhoff

- Goal: “Deduce evolutionary relationships of the biological kingdoms, phyla, and other taxa from sequence evidence”
- Collection of all known protein sequences
 - First edition: 65 proteins
 - Several releases followed
 - Resulted in the Protein Information Resource (PIR)

Thanks to Antje Krause
PAM: Point-Accepted Mutations

• PAM has two meanings
 - 1 PAM – **Unit** for measuring the similarity of two AA sequences
 - PAM-X matrix – **Substitution matrix** to use when aligning two sequences that are X PAM distant
PAM as Distance Measure

• Definition
 Let S_1, S_2 be two protein sequences with $|S_1| = |S_2|$. We say S_1 and S_2 are x PAM distant, iff S_1 most probably was produced from S_2 with x mutations per 100 AAs.

• Remarks
 - PAM is motivated by evolution
 - Assumptions: Mutations happen with the same rate at every position of a sequence
 - If mutation rate is high, mutations will occur again and again at the same position
 - PAM ≠ %-sequence-identity
PAM as Distance Measure

- No INDELS, only replacements
- The PAM distance d of two DNA sequences can be derived analytically from their %-sequence-diversity p
 - $d = -3/4 \ln(1-4/3*p)$ (Jukes-Cantor model)
 - Derivation skipped
- Pairs with PAM >250 are probably not homologues
 - %-sequence-identity < 20%
 - Twilight zone
 - Which %-sequence-identity will two random protein sequences have?
PAM Matrices

- The **PAM-X matrix** contains measures for the probability that a given AA was replaced by another given AA in two sequences that are **x PAM distant**

- **Estimated from data**
 - Let \((S_{1,1}, S_{2,1}), ..., (S_{1,n}, S_{2,n})\) be **n x-PAM distant pairs** of aligned sequences
 - Compute \(f(i)\), the relative frequency of AA \(A_i\) in all pairs
 - Compute \(f(i,j)\), the relative substitution frequency of \(A_i\) and \(A_j\)
 - Number of positions \(k\) in any of the aligned pairs with \(S_{1,z}[k]=A_i\) and \(S_{2,z}[k]=A_j\) or vice versa
 - Then

\[
M_x(i, j) = \log \left(\frac{f(i, j)}{f(i) \times f(j)} \right)
\]

Some Explanations

- **Log-likelihood ratio combining**
 - **Expectation**: chances to generate this mutation by chance given the relative frequencies of the two involved AAs
 - **Observation**: observed frequency of this mutation

\[
M_x(i,j) = \log \left(\frac{f(i,j)}{f(i) \times f(j)} \right)
\]

- **Meaning**
 - \(M(i,j) = 0\): No selection
 - \(M(i,j) < 0\): Negative selection, suppression of mutation
 - \(M(i,j) > 0\): Positive selection, mutation is favored
Example

$S_{1,1}$: ACGTGAC
$S_{2,1}$: AGGTGCC
$S_{1,2}$: GTTAGTA
$S_{2,2}$: TTTAGTA
$S_{1,3}$: GGTCA
$S_{2,3}$: AGTCA

Relative frequencies

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10/38</td>
<td>6/38</td>
<td>11/38</td>
<td>11/38</td>
</tr>
</tbody>
</table>

Mutation rates

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4/19</td>
<td>1/19</td>
<td>1/19</td>
<td>0/19</td>
</tr>
<tr>
<td>C</td>
<td>2/19</td>
<td>1/19</td>
<td>0/19</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4/19</td>
<td>1/19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>5/19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,48</td>
<td>0,10</td>
<td>-0,16</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>0,63</td>
<td>0,06</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td>0,40</td>
<td>-0,20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>0,50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problems

- Depends on predefined alignments
- We need a substitution matrix to find optimal alignments
 - A hen-egg problem
 - Alternative: Do it manually using experience, 3D-structure, ..
- Makes several assumptions
 - Mutations are equally likely at every position in a sequence
 - Mutations are equally likely independent from AA neighbors
 - ...

Real Substitution Matrices

• PAM requires large n for each x to adequately capture rare mutations

• Dirty trick: Molecular clock assumption
 - Assume that mutations appear with equal rate over time
 - Then the frequencies of PAM-x mutations depend linearly on the frequencies of PAM-1 mutations
 - PAM-x matrices are computed by repeated matrix multiplication of PAM-1 with itself

• Complete, highly heuristic procedure
 - Choose set of n pairs with small distance and align manually
 - Use these alignments to compute M_1
 - Compute $M_x = (M_1)^x$
BLOSUM

- PAM is a bit old-fashioned
- **BLOSUM**: BLOcks SUbstitution Matrix
 - Henikoff and Henikoff, 1993
 - Removes assumption of equal mutation rates across each sequence position by considering **conserved blocks**
 - Direct estimation for different PAM distances instead of error-propagating self multiplication
This Lecture

- **Substitution Matrices**
 - PAM distance
 - PAM matrices
- **Scaling up Local Alignments**
 - BLAST
Growth of EMBL
Scaling Up Local Alignment

- Searching similar sequences (with a high local alignment score) is a fundamental operation in Bioinformatics
- Sequence databases grow exponentially
- We need faster algorithms, even if they sometimes fail
Similarity Search Problems and their Accuracy

• Task: Given a sequence \(s \) and a database \(D \), find all sequences \(T \) in \(D \) that are sufficiently local-similar to \(s \)
 - Often, exactly computing \(T \) is not feasible and not necessary (think of the WWW and search engines)

• Assume a method that finds a set \(X \) of answers for \(s \)

• How good is this method?
 - Some sequences will be in \(X \) and \(T \) – true positives
 - Some will be in \(X \) but not \(T \) – false positives
 • Also called Type I error
 - Some will be in \(T \) but not \(X \) – false negatives
 • Also called Type II error
 - Some will be neither in \(X \) nor \(T \) – true negatives
Precision and Recall

- **Precision** = $TP/(TP+FP)$
 - What is the fraction of correct answers in X?
 - Related to specificity

- **Recall** = $TP/(TP+FN)$
 - Which fraction of correct answers from T are also in X?
 - Also called sensitivity

- **Trade-Offs**
 - Usual methods compute a score per element of D
 - All sequences with a score above a threshold t are returned as X
 - Increasing t: higher precision, lower recall
 - Lowering t: lower precision, higher recall
 - ... if the score correlates with correctness ...
Example

- Let \(|DB| = 1000, |X| = 15, |T| = 20, |X \cap T| = 9\)

<table>
<thead>
<tr>
<th></th>
<th>Real: Positive</th>
<th>Real: Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alg: Positive</td>
<td>TP = 9</td>
<td>FP = 6</td>
</tr>
<tr>
<td>Alg: Negative</td>
<td>FN = 11</td>
<td>TN = 974</td>
</tr>
</tbody>
</table>

- Precision = \(\frac{TP}{TP+FP} = \frac{9}{15} = 60\%\)
- Recall = \(\frac{TP}{TP+FN} = \frac{9}{20} = 45\%\)

- Assume we increase \(t\): \(|X| = 10, |X \cap T| = 7\)

<table>
<thead>
<tr>
<th></th>
<th>Real: Positive</th>
<th>Real: Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alg: Positive</td>
<td>TP = 7</td>
<td>FP = 3</td>
</tr>
<tr>
<td>Alg: Negative</td>
<td>FN = 13</td>
<td></td>
</tr>
</tbody>
</table>

- Precision: 70\%, recall = 35\%
BLAST

• Altschul, Gish, Miller, Myers, Lipman: „Basic Local Alignment Search Tool“, J Mol Bio, 1990
 - A heuristic algorithm for sequence similarity search
 - Very fast, high recall, not perfect
 - Very successful: You “blast” a sequence
 - NCBI runs thousands of BLAST searches every day

• A family of tools
 - Gapped-BLAST, PSI-BLAST, MegaBlast, BLAST-ALL, PATHBLAST, Name-BLAST, …
 - BLAST for DNA, protein, DNA-protein, protein-DNA, …
 - We only look at the simple DNA-DNA version
 - We skip several heuristic and domain-specific tricks
Fundamental Idea

• Fundamental idea: If two sequences have a good local alignment, then the matching area contains, with very high probability, a sub-area where the match is even better (or even exact)

• These sub-areas are called seeds

TTGACTCGATTATAGTCGCGGATATACTATCG
CCTATCAACAAGAATATAGTCCCTGATCCAGC

TTGACTC GATTATAGTCGCGGAT ATACTATCG
CCTATCAACA GAATATAGTCCCTGAT CCAGC

TTGACTC GATTATAGTCGCGGAT ATACTATCG
CCTATCAACA GAATATAGTCCCTGAT CCAGC
Algorithm

• Given query sequence s and sequence database $D = \{d_i\}$
• 1. Compute all substrings s_i of s of length q
 - Also called q-grams
 - How many?
• 2. Find all approximate occurrences of all s_i in all d_j
 - Gap-free alignment with matrix; score must be above threshold t
 - Hits are called seeds – approx. occurrences of some s_i in some d_j
• 3. Extend seeds to left and right in s_i and d_j until
 - [Constantly update the similarity score]
 - … the score drops sharply
 - … s_i or s_j ends
 - … the score gets too bad compared to other hits found earlier
Example

$q=5$, $t=3$, Matrix: $M=+1$, $R=-1$

$s=ACGTGATA$

$d=GATTGACGTGACTGCTAGTGATACTATAT$

- $s_1=ACGTG$
- $s_2=CGTGA$
- $s_3=GTGAT$
- $s_4=TGATA$

$GATTGACGTGACTGCTAGTGATACTATAT$

$GATTGACGTGACTGCTAGTGATACTATAT$

$GATTGACGTGACTGCTAGTGATACTATAT$

$GATTGACGTGACTGCTAGTGATACTATAT$

$GATTGACGTGACTGCAAGTGATACTATAT$

$ACGTGATA$ 5

$ACGTGATA$ 5+1=6

$ACGTGATA$ 6−1=5

...
Properties

• Finding **seeds efficiently** requires more work
 - Pre-compute all q-grams of all \(d_i \)
 - Group by q-gram
 - Called a **hash-index** (should be kept in main memory)
 - Lookup: Given \(s \), find all matching q-grams (as seeds)

• **Exclusion method**
 - Vast majority of all sequences in DB **are never looked at** because they do not contain a seed
 - The “seed” idea is the basis of nearly all fast alignment methods

• **Where it fails**
 - **Sensitive to** \(t \): Too high – missing hits; too low – slow
 - Does not consider gaps
Speed – Precision - Recall

- Increasing t
 - Higher requirements for any seed
 - Less seeds, less extensions
 - Lower recall, higher speed, precision stays

- Increasing q (and adapting t)
 - Higher requirements for any seed
 - Less seeds, less extensions
 - Lower recall, higher speed, precision stays
BLAST Screenshots
BLAST-2

• Faster
 - BLAST: 90% of time spend in extensions
 - BLAST2: Two seeds in short distance
 • Needs a decrease in t

• Higher recall
 - BLAST didn’t even consider gaps in the extension phase
 - BLAST2: Full local alignment starting from seeds
 • Allows an increase of t
Further Reading

• Substitution matrixes: Krane & Raymer, Chapter 3
• BLAST, BLAST2: Merkl & Waack, Chapter 12