Graphs 2: Shortest Paths (all pairs)
Strongly Connected Components
Content of this Lecture

• All-Pairs Shortest Paths
 – Transitive closure: Warshall’s algorithm
 – Shortest paths: Floyd’s algorithm

• Strongly Connected Components
All-Pairs Shortest Paths: General Case

- All-pairs shortest paths: Given a digraph G with positive or negative edge weights, find the distance between all pairs of nodes
 - Transitive closure with distances
 - Result is $O(|V|^2)$ space, so don’t try this for large graphs

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>B</td>
<td>-3</td>
<td>na</td>
<td>-2</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>C</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>D</td>
<td>-2</td>
<td>1</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Why Negative Edge Weights?

- One application: Transportation company
 - Every route incurs cost (for fuel, salary, etc.)
 - Every route creates income (for carrying the freight)
- If cost>income, edge weights become negative
 - But still important to find the best route
 - Example: Best tour from X to C

![Graphs showing different edge weight scenarios](image-url)
No Dijkstra

- Dijkstra’s algorithm does not work
 - Recall that Dijkstra enumerates nodes by their shortest paths
 - Now: Adding a subpath to a so-far shortest path may make it “shorter” (by negative edge weights)
No Dijkstra

- Dijkstra’s algorithm does not work
 - Recall that Dijkstra enumerates nodes by their shortest paths
 - Now: Adding a subpath to a so-far shortest path may make it “shorter” (by negative edge weights)
Negative Cycles

- Shortest path between X and K5?
 - X-K3-K4-K5: 5
 - X-K3-K4-K5-X-K3-K4-K5: 4
 - X-K3-K4-K5-X-K3-K4-K5-X-K3-K4-K5: 3
 - ...

- SP-Problem undefined if G contains a negative cycle
All-Pairs: First Approach

- We start with a simpler problem: Computing the transitive closure of a digraph G without edge weights

- First idea
 - Reachability is transitive: $x \rightarrow y$ and $y \rightarrow z \Rightarrow x \rightarrow z$
 - We use this idea to iteratively build longer and longer paths
 - First extend edges with edges – path of length 2
 - Extend those paths with edges – paths of length 3
 - ...
 - No necessary path can be longer than $|V|$

- In each step, we store “reachable by a path of length $\leq k$” in a matrix
Naïve Algorithm

\[
G = (V, E); \\
M := \text{adjacency_matrix}(G); \\
M'': := M; \\
n := |V|; \\
\text{for } z := 1 \ldots n-1 \text{ do} \\
\quad M' := M''; \\
\quad \text{for } i = 1 \ldots n \text{ do} \\
\quad \quad \text{for } j = 1 \ldots n \text{ do} \\
\quad \quad \quad \text{if } M'[i,j]=1 \text{ then} \\
\quad \quad \quad \quad \text{for } k=1 \text{ to } n \text{ do} \\
\quad \quad \quad \quad \quad \text{if } M[j,k]=1 \text{ then} \\
\quad \quad \quad \quad \quad \quad M''[i,k] := 1; \\
\quad \quad \quad \quad \quad \text{end if;} \\
\quad \quad \quad \quad \text{end for;} \\
\quad \quad \text{end if;} \\
\quad \text{end for;} \\
\text{end for;}
\]

- \(M\) is the adjacency matrix of \(G\), \(M''\) eventually the TC of \(G\)
- \(M': \) Represents paths \(\leq z\)
- Loops \(i\) and \(j\) look at all pairs reachable by a path of length at most \(z+1\)
- Loop \(k\) extends path of length at most \(z\) by all outgoing edges
- Analysis: \(O(n^4)\)

\(z\) appears nowhere; it is there to ensure that we stop when the longest possible shortest paths has been found.
Example – After z=1, 2, 3, 4

Path length: \(\leq 2 \) \(\leq 3 \) \(\leq 4 \) \(\leq 5 \)
Observation

- In the first step, we actually compute $M \times M$, and then replace each value ≥ 1 with 1
 - We only state that there is a path; not how many and not how long
- Computing TC can be described as matrix operations
Paths in the Naïve Algorithm

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The naive algorithm always extends **paths by one edge**
 - Computes $M \times M$, $M^2 \times M$, $M^3 \times M$, ... $M^{n-1} \times M$
Idea for Improvement

- Why not extend paths by all paths found so-far?
 - We compute
 \[M_2' = M \cdot M \]: Path of length at most 2
 \[M_3' = M_2' \cdot M \cup M_2' \cdot M' \]: Path of length 2+1 and 2+2
 \[M_4' = M_3' \cdot M \cup M_3' \cdot M' \cup M_3' \cdot M_3' \], Lengths \(\leq 4+1, \leq 4+ \leq 2, \leq 4+ \leq 4 \)
 ...
 \[M_n' = \ldots \cup M_{n-1}' \cdot M_{n-1}' \]
 - [We will implement it differently]

- Trick: We can stop much earlier
 - The longest shortest path can be at most \(n \)
 - Thus, it suffices to compute \(M_{\log(n)}' = \ldots \cup M_{\log(n)}' \cdot M_{\log(n)}' \)
Algorithm Improved

- We use only one matrix M
- We “add” to M matrices M^2, M^3 ...
- In the extension, we see if a path of length $\leq 2^z$ (stored in M) can be extended by a path of length $\leq 2^z$ (stored in M)
 - Computes all paths $\leq 2\times 2^z=2^{z+1}$
- Analysis: $O(n^3 \log(n))$
- But … we still can be faster

```
G = (V, E);
M := adjacency_matrix(G);
n := |V|;
for z := 0..ceil(log(n)) do
    for i = 1..n do
        for j = 1..n do
            if M[i,j]=1 then
                for k=1 to n do
                    if M[j,k]=1 then
                        M[i,k] := 1;
                        end if;
                    end for;
            end if;
        end for;
    end for;
end for;
```
Example – After z=1, 2, 3

Path length: \(\leq 2 \) \quad \leq 4 \quad \text{Done}
Further Improvement

• Note: The path A→D is found twice: A→B→D / A→C→D
• Can we stop “searching” A→D once we found A→B→D?
• Can we enumerating paths such that redundant paths are discovered less often (i.e., less paths are tested)?
Warshall’s Algorithm

- Key idea
 - Suppose a path $i \rightarrow k$ and $(i,k) \notin E$
 - Then there must be at least one node j with $i \rightarrow j$ and $j \rightarrow k$
 - Let j be the “smallest” such node (the one with the smallest ID)
 - If we fix the highest allowable ID t, then $i \rightarrow k$ is found iff $j \leq t$
 - Suppose we found all paths consisting only of nodes smaller than t (excluding the edge nodes i,k)
 - We increase t by one, i.e., we allow the usage of node $t+1$
 - Every new path must have the form $x \rightarrow (t+1) \rightarrow y$

- Enumerate paths by the IDs of the nodes they may use
Algorithm

- t gives the highest allowed node ID inside a path
- Thus, node t must be on any new path
- We find all pairs i,k with i→t and t→k
- For every such pair, we set the path i→k to 1

1. $G = (V, E)$;
2. $M := \text{adjacency_matrix}(G)$;
3. $n := |V|$;
4. for $t := 1..n$ do
5. for $i = 1..n$ do
6. if $M[i, t] = 1$ then
7. for $k = 1$ to n do
8. if $M[t, k] = 1$ then
9. $M[i, k] := 1$;
10. end if;
11. end for;
12. end if;
13. end for;
14. end for;
Proof of Correctness

• Induction: Case \(t=1 \) is clear
• Going from \(t-1 \) to \(t \)
 – Assumption: We know all reachable pairs using only nodes with ID<\(t \)
 – We enter the i-loop
 – L6-L8 builds new paths over \(t \)
 – L6-L8 adds all paths which additionally contain the node with ID \(t \)
 – Induction assumption true for \(t \)
• These are all paths once \(t=n \)

1. \(G = (V, E) \);
2. \(M := \text{adjacency_matrix}(G) \);
3. \(n := |V| \);
4. for \(t := 1..n \) do
5. for \(i = 1..n \) do
6. if \(M[i,t]=1 \) then
7. for \(k=1 \) to \(n \) do
8. if \(M[t,k]=1 \) then
9. \(M[i,k] := 1; \)
10. end if;
11. end for;
12. end if;
13. end for;
14. end for;
Example – Warshall’s Algorithm

A allowed
Connect
E-A with
A-B, A-C

maxlen=2
Example – After t=A,B,C,D,E

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **B allowed**
 - Connect A-B/E-B with B-D

- **C allowed**
 - Connect A-C/E-C with C-D
 - No news

- **D allowed**
 - Connect A-D, B-D, C-D, E-D with D-E

- **E allowed**
 - Connect everything with everything

maxlen=2

=4

=8

B allowed

C allowed
 - Connect A-C/E-C with C-D
 - No news

D allowed
 - Connect A-D, B-D, C-D, E-D with D-E

E allowed
 - Connect everything with everything
Little change – Dramatic Consequences

G = (V, E);
M := adjacency_matrix(G);
n := |V|;
for z := 1..n do
 for i = 1..n do
 for j = 1..n do
 if M[i,j]=1 then
 for k=1 to n do
 if M[j,k]=1 then
 M[i,k] := 1;
 end if;
 end for;
 end if;
 end for;
 end for;
end for;

\[O(n^4) \]

1. G = (V, E);
2. M := adjacency_matrix(G);
3. n := |V|;
4. for t := 1..n do
 5. for i = 1..n do
 6. if M[i,t]=1 then
 7. for k=1 to n do
 8. if M[t,k]=1 then
 9. M[i,k] := 1;
 end if;
 end for;
 end if;
 end for;
end for;

\[O(n^3) \]

Swap i and j loop
Rephrase j into t
Content of this Lecture

- All-Pairs Shortest Paths
 - Transitive closure: Warshall’s algorithm
 - Shortest paths: Floyd’s algorithm
- Strongly Connected Components
Shortest Paths

- We use the same idea: Enumerate paths using only nodes smaller than \(t \)
- Invariant: Before step \(t \), \(M[i,j] \) contains the length of the shortest path that uses no node with ID higher than \(t \)
- When increasing \(t \), we find new paths \(i \rightarrow t \rightarrow k \) and look at their lengths
- Thus: \(M[i,k] := \min(M[i,k] \cup \{ M[i,t] + M[t,k] | i \rightarrow t \land t \rightarrow k \}) \)
Example
Summary

- Warshall’s algorithm computes the transitive closure of any unweighted digraph G in $O(|V|^3)$
- Floyd’s algorithm computes the distances between any pair of nodes in a digraph without negative cycles in $O(|V|^3)$
- Storing both information requires $O(|V|^2)$
- Problem is easier for …
 - undirected graphs: Connected components
 - graphs with only positive edge weights: All-pairs Dijkstra
 - trees: See nice problems
Content of this Lecture

• All-Pairs Shortest Paths

• Strongly Connected Components (SCC)
 - Why?
 - Pre/Postorder Traversal
 - Kosaraju’s algorithm
Recall

• Definition

Let $G=(V, E)$ be a directed graph.

- An induced subgraph $G'=(V', E')$ of G is called connected if G' contains a path between any pair $v, v' \in V'$
- Any maximal connected subgraph of G is called a strongly connected component of G
Recall

• Definition

Let $G=(V, E)$ be a directed graph.
- An induced subgraph $G'=(V', E')$ of G is called connected if G' contains a path between any pair $v, v' \in V'$
- Any maximal connected subgraph of G is called a strongly connected component of G
Why? Contracting a Graph

- Consider finding the transitive closure (TC) of a digraph G
 - If we know all SCCs, parts of the TC can be computed immediately
 - Next, each SCC can be replaced by a single node, producing G’
 - G’ must be acyclic – and is (much) smaller than G
 - Intuitively: TC(G) = TC(G’) + SCC(G)
Graph Traversal

• Most algorithms for finding SCC are based on pre-/post-order labeling of nodes

• Method

Let G=(V, E). We assign each v∈V a pre-order and a post-order in the following way. Set counters pre=post=0. Perform a depth-first traversal of G. Whenever a node v is reached the first time, assign it the value of pre as pre-order value and increase pre. Whenever a node v is left the last time, assign it the value of post as post-order value and increase post.

• Obviously O(|G|)
 – Labeling not unique; depends on order in which children are visited
Example
Example

Last visit: Cannot be visited again without running into a cycle
Example
Example
Content of this Lecture

- All-Pairs Shortest Paths
- Strongly Connected Components (SCC)
 - Why?
 - Pre/Postorder Traversal
 - Kosaraju’s algorithm
Kosaraju‘s Algorithm

• Definition

Let $G = (V, E)$. The graph $G^T = (V, E')$ with $(v, w) \in E'$ iff $(w, v) \in E$ is called the transposed graph of G.

• Kosaraju’s algorithm is very short
 - Compute post-order labels for all nodes from G using a first DFS
 • Here, we actually don’t need the pre-order values
 - Compute G^T
 - Perform a second DFS on G^T always choosing as next node the one with the highest post-order label according to the first DFS
 - All trees that emerge from the second DFS are SCC of G (and G^T)
Example

X: 9
K3: 8
K4: 7
K2: 6
K6: 5
K7: 4
K5: 3
K8: 2
K1: 1

X
K1
K2
K3
K4
K5
K6
K7
K8

X
K1
K2
K3
K4
K5
K6
K7
K8

X
K1
K2
K3
K4
K5
K6
K7
K8

X
K1
K2
K3
K4
K5
K6
K7
K8
Correctness

- We prove that two nodes v, w are in the same tree of the second DFS iff v and w are in the same SCC in G

Proof
- \(\iff\): Suppose \(v \rightarrow w\) and \(w \rightarrow v\) in G. One of the two nodes (assume it is v) must be reached first during the second DFS. Since v can be reached by w in G, w can be reached by v in \(G^T\). Thus, when we reach v during the traversal of \(G^T\), we will also reach w further down the same tree, so they are in the same tree of \(G^T\).
Correctness

• \(\Rightarrow\): Suppose \(v\) and \(w\) are in the same DFS-tree of \(G^T\)
 - Suppose \(r\) is the root of this tree
 - Since \(r \rightarrow v\) in \(G^T\), it must hold that \(v \rightarrow r\) in \(G\)
 - Because of the order of the second DFS: \(\text{post}(r) > \text{post}(v)\) in \(G\)
 - Thus, there must be a path \(r \rightarrow v\) in \(G\): Otherwise, \(r\) had been visited last after \(v\) in \(G\) and thus would have a smaller post-order
 - Since \(v \rightarrow r\) and \(r \rightarrow v\) in \(G\), the same is true for \(G^T\)
 - The same argument shows that \(w \rightarrow r\) and \(r \rightarrow w\) in \(G\)
 - By transitivity, it follows that \(v \rightarrow w\) and \(w \rightarrow v\) via \(r\) in \(G\) (and in \(G^T\))
Examples \((p() = \text{post-order}())\)

- \(v \rightarrow w\)
- Thus, \(w \rightarrow v\) in \(G^T\)
- Because \(w \rightarrow v\) in \(G\), \(p(v) > p(w)\)
- First tree in \(G^T\) starts in \(v\); doesn’t reach \(w\)
- \(v, w\) not in same tree

- \(v \rightarrow w\) and \(w \rightarrow v\) in \(G\) and in \(G^T\)
- Assume \(w\) is first in 1st DFS: \(p(w) > p(v)\)
- \(w\) has higher p-value, thus 2nd DFS starts in \(w\) and reaches \(v\)
- \(v, w\) in same tree

- Let’s start 1st DFS in \(r\): \(p(r) > p(w) > p(v)\)
- 2nd DFS starts in \(r\), but doesn’t reach \(w\)
- Second tree in 2nd DFS starts in \(w\) and reaches \(v\)
- \(v, w\) in same tree
Complexity

- Both DFS are in $O(|G|)$, computing G^T is in $O(|E|)$
- Instead of computing post-order values and sort them, we can simply push nodes on a stack when we leave them the last time – needs to be done $O(|V|)$ times
- Together: $O(|V| + |E|)$
- Since we need to look at each edge and node at least once to decide upon SCC, the problem is in $\Omega(|V| + |E|)$
- There are faster algorithms that manage to compute SCCs in one traversal
 - Tarjan’s algorithm, Gabow’s algorithm