Algorithms and Data Structures

Open Hashing

Ulf Leser
Open Hashing

- **Open Hashing**: Store all values inside hash table A
- **Inserting values**
 - No collision: Business as usual
 - Collision: Chose another index and **probe again** (is it “open”?)
 - As second index might be full as well, probing must be iterated
- Many suggestions on how to chose the next index to probe
- In general, we want a strategy (**probe sequence**) that
 - ... ultimately visits any index in A (and few twice before)
 - ... is **deterministic** – when searching, we must follow the same order of indexes (probe sequence) as for inserts
Reaching all Indexes of A

• Definition

Let A be a hash table, $|A|=m$, over universe U and h a hash function for U into A. Let $I={0, \ldots, m-1}$. A probe sequence is a deterministic, surjective function $s: U \times I \rightarrow I$.

• Remarks

- We use j to denote elements of the sequence: Where to jump after $j-1$ probes
- s need not be injective – a probe sequences may cross itself
 • But it is better if it doesn’t
- We typically use $s(k, j) = (h(k) - s'(k, j)) \mod m$ for a properly chosen function s'

• Example: $s'(k, j) = j$, hence $s(k, j) = (h(k) - j) \mod m$
Searching

1. func int search(k int) {
2. j := 0;
3. first := h(k);
4. repeat
5. pos := (first-s'(k, j) mod m;
6. j := j+1;
7. until (A[pos]=k) or
 (A[pos]=null) or
 (j=m);
8. if (A[pos]=k) then
9. return pos;
10. else
11. return -1;
12. end if;
13. }

• Let s'(k, 0) := 0
• We assume that s cycles through all indexes of A
 - In whatever order
• Probe sequences longer than m-1 usually make no sense, as they necessarily look into indexes twice
 - But beware of non-injective functions
Deletions

- Deletions are a problem
 - Assume \(h(k) = k \mod 11 \) and \(s(k, j) = (h(k) + 3j) \mod m \)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>23</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>23</td>
<td>6</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>23</td>
<td>6</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>6</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Remedies

• **Leave a mark** (tombstone)
 - During search, jump over tombstones
 - During insert, tombstones may be replaced

• **Re-organize list**
 - Keep pointer p to index where a key should be deleted
 - Walk to end of probe sequence (first empty entry)
 - Move *last non-empty entry* to index p
 - Requires to run through the probe entire sequence for every deletion (otherwise only $n/2$ on average)
 - Not compatible with strategies that keep *probe sequences sorted*
 • See later
Open versus External collision handling

• Pro
 - We do not need more space than reserved – more predictable
 - A typically is filled more homogeneously – less wasted space

• Contra
 - More complicated
 - Generally, we get worse WC/AC complexities for insertion/deletion
 • Additional work to run down probe sequences
 • Especially deletions have overhead
 - A gets full; we cannot go beyond $\alpha = 1$
Open Hashing: Overview

- **We will look into three strategies**
 - **Linear probing**: \(s(k, j) := (h(k) - j) \mod m \)
 - **Double hashing**: \(s(k, j) := (h(k) - j \cdot h'(k)) \mod m \)
 - **Ordered hashing**: Any \(s \); values in probe sequence are kept sorted

- **Others**
 - **Quadratic hashing**: \(s(k, j) := (h(k) - \text{floor}(j/2)^2 \cdot (-1)^j) \mod m \)
 - Less vulnerable to local clustering than linear hashing
 - **Uniform hashing**: \(s \) is a random permutation of \(I \) dependent on \(k \)
 - High administration overhead, guarantees shortest probe sequences
 - **Coalesced hashing**: \(s \) arbitrary; entries are linked by add. pointers
 - Like overflow hashing, but overflow chains are in \(A \); needs additional space for links
Content of this Lecture

• Open Hashing
 - Linear Probing
 - Double Hashing
 - Ordered Hashing
Linear Probing

- Probe sequence function: \(s(k, j) := (h(k) - j) \mod m \)
 - Assume \(h(k) = k \mod 11 \)

\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\text{ins(1);} & \text{ins(7);} & \text{ins(13)} & & & & & & & & \\
1 & 13 & & & & & 7 & & & & \\
\hline
\text{ins(23)} & & & & & & & & & & \\
23 & 1 & 13 & & & & 7 & & & & \\
\hline
\text{ins(12)} & & & & & & & & & & \\
23 & 1 & 13 & & & & 7 & & 12 & & \\
\hline
\text{ins(10)} & & & & & & & & & & \\
23 & 1 & 13 & & & & 7 & 10 & 12 & & \\
\hline
\text{ins(24)} & & & & & & & & & & \\
23 & 1 & 13 & & & & 7 & 24 & 10 & 12 & \\
\end{array}
\]
Analysis

- The longer a chain ...
 - the more different values of $h(k)$ it covers
 - the higher the chances to produce more collisions
- The faster it grows, the faster it merges with other chains
- Assume an empty position p left of a chain of length n and an empty position q with an empty cell to the right
 - Also assume h is uniform
 - Chances to fill q with next insert: $1/m$
 - Chances to fill p with the next insert: $(n+1)/m$
- Linear probing tends to quickly produce long, completely filled stretches of A with high collision probabilities
In Numbers (Derivation of Formulas Skipped)

- Scenario: Some inserts, then many searches
 - Expected number of probes per search are most important

\[
C_n \approx \frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)}\right)
\]

\[
C'_n \approx \frac{1}{2} \left(1 + \frac{1}{(1 - \alpha)^2}\right)
\]

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(C_n) (erfolgreich)</th>
<th>(C'_n) (erfolglos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>1.5</td>
<td>2.5</td>
</tr>
<tr>
<td>0.90</td>
<td>5.5</td>
<td>50.5</td>
</tr>
<tr>
<td>0.95</td>
<td>10.5</td>
<td>200.5</td>
</tr>
<tr>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: S. Albers / [OW93]
Quadratic Hashing

erfolgreiche Suche:

\[C_n \approx 1 - \frac{\alpha}{2} + \ln\left(\frac{1}{1 - \alpha}\right) \]

erfolglose Suche:

\[C'_n \approx \frac{1}{1 - \alpha} - \alpha + \ln\left(\frac{1}{1 - \alpha}\right) \]

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(C_n) (erfolgreich)</th>
<th>(C'_n) (erfolglos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>1.44</td>
<td>2.19</td>
</tr>
<tr>
<td>0.90</td>
<td>2.85</td>
<td>11.40</td>
</tr>
<tr>
<td>0.95</td>
<td>3.52</td>
<td>22.05</td>
</tr>
<tr>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: S. Albers / [OW93]
Discussion

• Disadvantage of linear (and quadratic) hashing: **Problems with the original hash function** h are preserved
 - Probe sequence only depends on $h(k)$, not on k
 • $s'(k, j)$ ignores k
 - All synonyms k, k' will create the same probe sequence
 • Two keys that form a collision are called synonyms
 - Thus, if h tends to generate clusters (or inserted keys are non-uniformly distributed in U), also s tends to generate clusters (i.e., sequences filled from multiple keys)
Content of this Lecture

• Open Hashing
 - Linear Probing
 - Double Hashing
 - Ordered Hashing
Double Hashing

- **Double Hashing**: Use a second hash function h'
 - $s(k, j) := (h(k) - j \cdot h'(k)) \mod m$ (with $h'(k) \neq 0$)
 - Further, we don’t want that $h'(k) | m$ (done if m is prime)

- h' should *spread h-synonyms*
 - If $h(k) = h(k')$, then hopefully $h'(k) \neq h'(k')$
 - Otherwise, we preserve problems with h
 - Optimal case: h' *statistically independent* of h, i.e.,
 $$p(h(k) = h(k') \land h'(k) = h'(k')) = p(h(k) = h(k')) \cdot p(h'(k) = h'(k'))$$
 - If both are uniform: $p(h(k) = h(k')) = p(h'(k) = h'(k')) = 1/m$
 - **Example**: If $h(k) = k \mod m$, then $h'(k) = 1 + k \mod (m-2)$
Example (Linear Probing produced 9 collisions)

$$h(k) = k \mod 11; \quad h'(k) = 1 + k \mod 9; \quad s(k, j) := (h(k) - j \times h'(k)) \mod 11$$

ins(1); ins(7); ins(13)

ins(23)

ins(12)

ins(10)

ins(24)
Analysis

- Please see [OW93]

\[C'_n \leq \frac{1}{1 - \alpha} \]

\[C_n \approx \frac{1}{\alpha} \times \ln\left(\frac{1}{(1 - \alpha)}\right) \]

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(C_n) (erfolgreich)</th>
<th>(C'_n) (erfolglos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>1.39</td>
<td>2</td>
</tr>
<tr>
<td>0.90</td>
<td>2.56</td>
<td>10</td>
</tr>
<tr>
<td>0.95</td>
<td>3.15</td>
<td>20</td>
</tr>
<tr>
<td>1.00</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Another Example

ins(34)
h(k)=1; h'(k)=8
s(k, 1)=4

ins(12)
h(k)=1; h'(k)=4
s(k, 1)=8

ins(10)

ins(15)
h(k)=4; h'(k)=7
s(k, 1)=8
s(k, 2)=1
s(k, 3)=5
Observation

- We change the order of insertions (and nothing else)

```
ins(23); ins(13)  23 13 ...

ins(15)  h(k)=4; h'(k)=6  23 13 15 ...

ins(12)  h(k)=1; h'(k)=4  s(k, 1)=8  23 13 15 ...

ins(10)  23 13 15 ...

ins(34)  h(k)=1; h'(k)=8  s(k, 1)=4  s(k, 2)=7  23 13 15 ...
```
Observation

• The number of collisions depends on the order of inserts
 – Because h' spreads h-synonyms differently for different values of k
• We cannot change the order of inserts, but …
• Observe that when we insert k' and there already was a k with $h(k)=h(k')$, we actually have two choices
 – Until now we always looked for a new place for k'
 – Why not: set $A[h(k')]=k'$ and find a new place for k?
 – If $s(k',1)$ is filled but $s(k,1)$ is free, then the second choice is better
 – Insert is faster, searches will be faster on average
Brent’s Algorithm

- **Brent’s algorithm:**
 Upon collision, propagate key for which the next index in probe sequence is free; if both are occupied, propagate k’

- Improves only successful searches
 - Otherwise we have to follow the chain to its end anyway

- One can show that the average-case probe length for successful searches now is **constant** (~2.5 accesses)
 - Even for relatively full tables
Content of this Lecture

• Open Hashing
 – Linear Probing
 – Double Hashing
 – Ordered Hashing
Idea

• Can we do something to improve unsuccessful searches?
 - Recall overflow hashing: If we keep the overflow chain sorted, we can stop searching after $\alpha/2$ comparisons on average

• Transferring this idea: Keep keys sorted in any probe seq.
 - We have seen with Brent’s algorithm that we have the choice which key to propagate whenever we have a collision
 - Thus, we can also choose to always propagate the larger of both keys – which generates a sorted probe sequence

• Result: Unsuccessful are as fast as successful searches
Details

• In Brent’s algorithm, we only replace a key if we can insert the replaced key directly into A

• Now, we must replace keys even if the next slot in the probe sequence is occupied
 - We run through probe sequence until we meet a key that is smaller
 - We insert the new key here
 - All subsequent keys must be replaced (moved in probe sequence)

• Note that this doesn’t make inserts slower than before
 - Without replacement, we would have to search the first free slot
 - Now we replace until the first free slot
Critical Issue

- Imagine ins(6) would first probe position 1, then 4
- Since 6<9, 9 is replaced; imagine the next slot would be 8
- Since 9<14, 14 is replaced

• Problem
 - 14 is not a synonym of 9 – two probe sequences cross each other
 - Thus, we don’t know where to move 14 – the next position in general requires to know the “j”, i.e., the number of hops that were necessary to get from h(14) to slot 8

• Ordered hashing only works if we can compute the next offset without knowing j
 - E.g. linear hashing (offset -1) or double hashing (offset -h‘(k))
Correctness

- Invariant: Let \(s(k,j) \) be the position in \(A \) where \(k \) is stored. Searching \(k \) returns the correct answer iff \(\forall i<j: A[s(k,i)] < A[s(k,j)] \)
- Proof by induction
 - Invariant holds for the empty array
 - Imagine invariant holds before inserting a key \(k' \)
 - We insert \(k' \) in position \(s(k',j) \) (for some \(j \))
 - Either \(A[s(k',j)] \) was free
 - then invariant still holds
 - Or the old \(A[s(k',j)] < k' \) (otherwise we wouldn’t have inserted \(k' \) here)
 - Then the old \(A[s(k',j)] \) was replaced by a smaller value
 - Invariant must still hold
Wrap-Up

• **Open hashing** can be a good alternative to overflow hashing even if the fill grade approaches 1
 - Very little average-case cost for look-ups with double hashing and Brent’s algorithm or using ordered hashing
 • Depending which types of searches are more frequent

• Open hashing suffers from having only static place, but guarantees to not request more space once A is allocated
 - Less memory fragmentation
Exemplary Questions

• Create a hashtable step-by-step using open hashing with double probing and hash functions \(h(k) = k \mod 13 \) and \(h'(k) = 3 + k \mod 9 \) when inserting keys 17, 12, 4, 1, 36, 25, 6

• Use the same list for creating a hash table with double hashing and Brent’s algorithm

• Use the same list for creating a hash table with ordered linear probing (linear probing such that the probe sequences are ordered).

• Analyze the WC complexity of searching key \(k \) in a hash table with direct chaining using a sorted linked list when (a) \(k \) is in \(A \); (b) \(k \) is not in \(A \).