Algorithms and Data Structures

Priority Queues
Special Scenarios for Searching

• Up to now, we assumed that all elements of a list are equally important and that any of them could be searched next (with varying probability)

• What if some elements are more important than others?
 - There is a (maybe partial) order on list elements
 - Most important elements are always (not mostly) retrieved next
 - Priority Queues

• Difference to Self-Organizing Lists
 - Most important element is always retrieved next – should be $O(1)$
 - List should be kept ordered by importance
 - We look at a scenario where new elements are inserted all the time and the most important element is removed regularly
Shortest Paths in a Graph

- Task: Find the **distance between X and all other nodes**
 - Classical problem: Single-Source-Shortest-Paths
 - Famous solution: **Dijkstra’s algorithm**
Assumptions

- We assume that there is at least one path between X and any other node (every node is reachable from X)
- We assume strictly positive edge weights
- Distance is the length (=sum of weights) of the shortest path
- There might be many shortest paths, but distance is unique
- We only want the distances and need no “witness paths”
Exhaustive Solution

- First approach: Enumerate all paths
 - Need to break cycles (e.g. X – K3 – K4 – X – K3 - …)
Redundant work

- First approach: Enumerate all paths
 - Need to break cycles (e.g. X – K3 – K4 – X – K3 - …)
Dijkstra’s Idea

- Enumerate paths from X by their length
 - Neither DFS nor BFS
- Assume we reach a node Y by a path p of length l and we have already explored all paths from X with length $l' \leq l$ and that Y was not reached yet
- Then p must be a shortest path between X and Y
 - Because any p' between X and Y would have a prefix of length at least l and (a) a continuation with length > 0 or (b) would not need a continuation (then p is as short as p')
Example for Idea

1: X – K3
2: X – K3 – K2
2: X – K1
4: X – K3 – K2 – K6
4: X – K3 – K4
4: X – K3 – K7

5: X – K3 – K4 – K5
7: X – K3 – K7 – K8
Stop (all nodes found)
A Further Trick

- Enumerate paths by iteratively extending short paths by all possible extensions
 - All edges outgoing from the end node of a short path
- These extensions
 - ... either lead to a node which we didn’t reach before – then we found a path, but cannot yet be sure it is the shortest
 - ... or lead to a node which we already reached but we are not yet sure of we found the shortest path to it – update current best distance
 - ... or lead to a node which we already reached and for which we also surely found a shortest path already – these can be ignored
- Eventually, we enumerate nodes by their distance
Algorithm

• Assumptions
 - Nodes have IDs between 1 ... |V|
 - Edges are (from, to, weight)

• We enumerate nodes by length of their shortest paths
 - In the first loop, we pick x and update distances (A) to all adjacent nodes
 - When we pick a node k, we already have computed its distance to x in A
 - We adapt the current best distances to all neighbors of k we haven’t picked yet

• Once we picked all nodes, we are done

1. G = (V, E);
2. x : start_node; # x ∈ V
3. A : array_of_distances;
5. L := V;
6. A[x] := 0;
7. while L≠∅
8. k := L.get_closest_node();
9. L := L \ k;
10. forall (k,f,w)∈E do
11. if f∈L then
12. new_dist := A[k]+w;
13. if new_dist < A[f] then
15. end if;
16. end if;
17. end for;
18. end while;
Example for Algorithm

- Pick x
Example for Algorithm

- Pick x
- Adapt distances to all neighbors
Example for Algorithm

- Pick K3 (closest to x)

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>K2</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>K3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>K4</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>K5</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>K6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>K7</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>K8</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>
Example for Algorithm

- Pick K3
- Adapt distances (from x) to all neighbors (of K3)
Example for Algorithm

- Pick K1 (or K2)
Example for Algorithm

- Pick K1
- Adapt distances to all neighbors
 - There are none
Example for Algorithm

- Pick K2
Example for Algorithm

- Pick K2
- Adapt distances to all neighbors
 - K1 was picked already - ignore
 - We found a shorter path to K6
Example for Algorithm

- Pick K6 (or K4 or K7)
Example for Algorithm

- Pick K6
- Adapt distances to all neighbors
 - There are none
Example for Algorithm

- Pick K7
Example for Algorithm

- Pick K7
- Adapt distances to all neighbors
 - K6 was visited already
Example for Algorithm

- Pick K4
Example for Algorithm

- Pick K4
- Adapt distances to all neighbors
 - X was visited already
Example for Algorithm

- Pick K5 ... Pick K8
A Closer Look

- Algorithm seems to work
 - Proof and analysis will follow later
 - Hint: 8 is passed-by \(|V|\) times and 12 at most \(|E|\) times
- Central: `get_closest_node()`
 - Needs to find the node \(k\) in \(L\) for which \(A[k]\) is the smallest
 - \(A[k]\) is changed a lot during a run
- Searching \(A\)? Resorting \(A\)?
- Better: Priority queue
 - List of tuples \((o, v)\) (object,value)
 - Central operation: Return tuple where \(v\) is smallest

1. \(G = (V, E)\);
2. \(x : \text{start_node}; \quad \# x \in V\)
3. \(A : \text{array_of_distances}\);
4. \(V_i : A[i] := \infty;\)
5. \(L := V;\)
6. \(A[x] := 0;\)
7. \(\text{while } L \neq \emptyset\)
8. \(k := L.\text{get_closest_node}();\)
9. \(L := L \setminus k;\)
10. \(\text{forall } (k, f, w) \in E \text{ do}\)
11. \(\text{if } f \in L \text{ then}\)
12. \(\text{new_dist} := A[k] + w;\)
13. \(\text{if } \text{new_dist} < A[f] \text{ then}\)
14. \(A[f] := \text{new_dist};\)
15. \(\text{end if};\)
16. \(\text{end if};\)
17. \(\text{end for};\)
18. \(\text{end while};\)
Content of this Lecture

- Priority Queues
- Using Heaps
- Using Fibonacci Heaps
Priority Queues

- A priority queue (PQ) is an ADT with 3 essential operations
 - \texttt{add(o,v)}: Add element \(o \) with value (priority) \(v \)
 - \texttt{getMin}(): Retrieve element with highest priority
 - \texttt{removeMin}(): Remove element with highest priority

- Typical additional operations
 - \texttt{merge(p1, p2)}: Merge two PQs into one (properly sorted)
 - \texttt{create (L)}: Convert a list in a priority queue
 - \texttt{delete(o)}: Delete \(o \) from PQ
 - \texttt{changeValue(o,v)}: Change value of \(o \) to \(v \)
Other Applications

• Games (e.g. chess)
 - The machine explores next movements but cannot look at all of them; give each move an assumed benefit and explore moves with probably highest benefit first (see also A* algorithm)

• Multi-modal route planning
 - Find fastest route through a map (network) with multiple ways of transportation (feet, bus, train, ...) between edges where edge weights change dynamically (delay, congestion, ...)
 • And departure times may depend on arrival: Timetable-based routing

• Quality of Service in a network
 - When bandwidth is limited, sort all transmission requests in a PQ and transmit by highest priority

• …
Naive Implementations (with $|Q|=n$)

- Using a linked list
 - `add` requires $O(1)$ (at the end or start or anywhere)
 - `getMin` requires $O(n)$ [bad]
 - `deleteMin` requires $O(1)$ (if we keep the pointer after a `getMin`)
 - `merge` requires $O(1)$

- Using a linked list sorted by priority
 - `add` requires $O(n)$ [bad]
 - `getMin` requires $O(1)$
 - `deleteMin` requires $O(1)$
 - `merge` requires $O(n+m)$
Maybe Arrays?

- Using a sorted array
 - `add` requires $O(n)$ [bad - we find the position in $\log(n)$, but then have to free a cell by moving all elements after this cell]
 - `getMin` requires $O(1)$
 - `deleteMin` requires $O(n)$ [bad]

- PQs are typically used in applications where elements are inserted and removed all the time

- We need a DS that can change its size dynamically at very low cost while keeping a certain order (min element)

- We want constant or at most log-time for all operations
Content of this Lecture

- Priority Queues
- **Using Heaps**
 - Heaps
 - Operations on Heaps
 - Heap Sort
- **Using Fibonacci Heaps**
Heap-based PQ

- Unsorted lists require $O(n)$ for $\text{getMin}()$
 - We don’t know where the smallest element is
- Sorted lists require $O(n)$ for $\text{add}()$
 - We don’t know where to put the new element
- Can we find a way to keep the list “a little sorted”?
 - Actually, we only need the smallest element at a fixed position
 - All other elements can be at arbitrary places
 - $\text{add}() / \text{deleteMin}()$ could be faster than $O(n)$, if they don’t need to keep the entire list sorted
- One such structure is called a heap
Heaps

- **Definition**

 A *heap* is a labeled binary tree for which the following holds

 - **Form-constraint (FC):** The tree is complete except the last level

 - I.e.: Every node at level \(l < d - 1 \) has exactly two children

 - **Heap-constraint (HC):** The label of any node is smaller than that of its children

```
Level 1
  3

Level 2
  5       8
  10      9
  11      12

Level 3
  15

Level 4 (last)
  18
```
Properties

• Order
 - A heap is “a little” sorted: We know the smallest element (root)
 - We know the order for some pairs of elements (parent-successors), but for many pairs we don’t know which is bigger (e.g. nodes in the same level)

• Size
 - A complete binary tree with m levels has $2^m - 1$ nodes
 - A heap with m levels thus has between $2^{m-1} + 1$ and $2^m - 1$ nodes
 - A heap with n nodes has $\lceil \log(n+1) \rceil$ levels
Operations

- Assume we store our PQ as a heap
- Clearly, \(\text{getMin()} \) is possible in \(O(1) \)
 - Keep a pointer to the root
- But …
 - How can we perform \(\text{deleteMin()} \) – such that the new structure again is a heap?
 - How can we add an element to a heap – such that the new structure again is a heap?
 - How can we turn a list into a heap?
DeleteMin()

- We first remove the root
 - Creates two heaps
 - We must connect them again
- We take the „last“ node, place it in root, and “sift” it down the tree
 - Last node: right-most in the last level (actually, we can take any from the last level)
 - Sifting down: Exchange with smaller of both children as long as at least one child is smaller than the node itself
Analysis - Correctness

• We need to show that FC and HC still hold
• HC: Look at the tree after we moved a node k. k may
 - ... be smaller than its children. Then HC holds and we are done
 - ... be larger than at least one child k2. Assume that k2 is the
 smaller of the two children (k1, k2) of k. We next swap k and k2.
 The new parent (k2) now is smaller than its children (k1, k), so the
 HC holds
 - After the last swap, k has no children – HC holds
• FC: We remove one node, then we sift down
 - Removing last node doesn’t affect FC as we remove in the last level
 - Sifting does not change the topology of the tree (we only swap)
Analysis - Complexity

- Recall that a heap with n nodes has $\text{ceil}(\log(n+1))$ levels.
- During sifting, we perform at most one comparison and one swap in every level.
- Thus: $O(\text{ceil}(\log(n+1))) = O(\log(n))$.
Add() on a Heap

- Cannot simply add on top
- Idea: We add new element somewhere in last level and **sift up**
 - We might need a new level
 - Sifting up: Compare to parent and swap if parent is larger
Analysis

• Correctness
 - HC
 • If parent has only one child, HC holds after each swap
 • Assume a parent k has children k1 and k2, k2 was swapped there in the last move, and k2<k. Since HC held before, k<k1, thus k2<k<k1. We swap k2 and k, and thus the new parent is smaller than its children. On the other hand, if k2≥k, HC holds immediately (and we don’t swap).
 - FC: See deleteMin()

• Complexity: O(log(n))
 - See deleteMin()
How to Find the Next Free / Last Occupied Node

• What do we need to find?
 - For `deleteMin`, we use the right-most leaf on the last level
 - For `add`, we add the leaf right from the last leaf

• We actually need the parent k
 - From n, we can compute in $O(1)$ the position p of the last leaf in the last level: $p = n - 2^{\lfloor \log(n) \rfloor}$
 • Or $\log(n+1)$ for `add`
 - The parent k of the node at p has index $\lfloor p/2 \rfloor$'th in level $d-1$
 - The parent k' of k has index $\lfloor p/4 \rfloor$'th in level $d-2$
 - ...
 - Now, in each node, we can decide whether to go left or right
 - Fast trick: Use the binary representation of p
Illustration

- For `deleteMin`, we need `x` (or `x'`); for `add`, we need `y` (or `y'`)
 - `p(x)=0, p(y)=1, p(x')=4, p(y')=5`
 - Binary: 000, 001, 100, 101
- Go through bitstring from left-to-right
- Next bit=0: Go left
- Next bit=1: Go right

- Allows finding `k` in $O(\log(n))$
Summary

<table>
<thead>
<tr>
<th></th>
<th>Linked list</th>
<th>Sorted linked list</th>
<th>Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>getMin()</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>deleteMin()</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(\log(n))</td>
</tr>
<tr>
<td>add()</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(\log(n))</td>
</tr>
<tr>
<td>merge()</td>
<td>O(1)</td>
<td>O(n1+n2)</td>
<td>O(\log(n1)\times\log(n2))</td>
</tr>
<tr>
<td>Space</td>
<td>n add. pointer</td>
<td>n add. pointer</td>
<td>n add. pointer</td>
</tr>
</tbody>
</table>

Heaps can also be kept efficiently in an array - no extra space, but limit to heap size.
Creating a Heap

- We start with an unsorted list with \(n \) elements
- Naïve algorithm: Start with empty heap and perform \(n \) additions
 - Obviously requires \(O(n \times \log(n)) \)
- Better: **Bottom-Up-Sift-Down**
 - Build a tree from the \(n \) elements fulfilling the FC (but not HC)
 - Simple fill a tree level-by-level – this is in \(O(n) \)
 - Sift-down all nodes on the second-last level
 - Sift-down all nodes on the third-last level
 - ...
 - Sift down root
Analysis

• Correctness
 - After finishing one level, all subtrees starting in this level are heaps because sifting-down ensures FC and HC (see `deleteMin()`)
 - Thus, when we are done with the first level (root), we have a heap

• Analysis
 - We look at the cost per level \(h \) (\(1 \ldots \log(n) = d \))
 - For every node at level \(h \), we need at most \(d-h \) operations
 - At level \(h \neq d \), there are \(2^{h-1} \) nodes
 - For nodes at level \(d \), we don’t do anything
 - Over all levels, this yields

\[
T(n) = \sum_{h=1}^{d-1} 2^{h-1} \ast (d - h) = \sum_{h=1}^{d-1} h \ast 2^{d-h-1} = 2^{d-1} \sum_{h=1}^{d-1} \frac{h}{2^h} \leq n \ast \sum_{h=1}^{\infty} \frac{h}{2^h} = n \ast 2 = O(n)
\]
Heap Sort

- Heaps also are a suitable data structure for sorting
- **Heap-Sort** (a classical sorting algorithm)
 - Given an unsorted list, first create a heap in $O(n)$
 - Repeat
 - Take the smallest element and store in array in $O(1)$
 - Re-build heap in $O(\log(n))$
 - Call `deleteMin(root)`
 - Until heap is empty – after n iterations
- Thus: $O(n \cdot \log(n))$
 - Average-case only slightly better
- Can be **implemented in-place** when heap is stored in array
 - See [OW93] for details
Content of this Lecture

- Priority Queues
- Using Heaps
- **Using Fibonacci Heaps**
Fibonacci-Heaps (very rough sketch)

- A Fibonacci Heap (FH) is a forest of (non-binary) heaps with disjoint values
 - All roots are maintained in a double-linked list
 - Special pointer (\texttt{min}) to the smallest root
 - Accessing this value (\texttt{getMin()}) obviously is $O(1)$

Source: S. Albers, Alg&DS, SoSe 2010
Maintainance of a FH

- FHs are maintained in a **lazy fashion**
 - **add\((v)\)**: We create a new heap with a single element node with value \(v \). Add this heap to the list of heaps; adapt min-pointer, if \(v \) is smaller than previous min
 - Clearly \(O(1) \)
 - **merge()**: Simple link the two root-lists and determine new min (as min of two mins)
 - Clearly \(O(1) \)

- **Deleting an element** (**deleteMin()**) needs more work
 - Until now, we just added single-element heaps
 - Thus, our structure after \(n \) add() is an **unsorted list of \(n \) elements**
 - Finding the next min element after **deleteMin()** in a naïve manner would require \(O(n) \)
deleteMin() on FH

- **Method is not complicated**
 - We first remove the min element
 - We then go through the root-list and **merge heaps with the same rank** (=\# of children) until all heaps in the list have different ranks
 - Merging two heaps in O(1): (1) Find the heap with the smaller root value; (2) Add it as child to the root of the other heap

- **But analysis is fairly complicated**
 - The above method is O(n) in worst case
 - But after every clean-up, the root-list is much smaller than before
 - Subsequent clean-ups need much less time
 - **Amortized analysis** shows: Average-case complexity is O(log(n))
 - Analysis depends on the growth of the trees during merge - these grow as the **Fibonacci numbers**
Disadvantage

• Though faster on average, Fibonacci Heaps have unpredictable delays
• No log(n) upper bound for every operation
• Not suitable for real-time applications etc.
Summary

<table>
<thead>
<tr>
<th></th>
<th>Linked list</th>
<th>Sorted linked list</th>
<th>Heap</th>
<th>Fibonacci Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>getMin()</code></td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td><code>deleteMin()</code></td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(log(n))</td>
<td>O(log(n))*</td>
</tr>
<tr>
<td><code>add()</code></td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(log(n))</td>
<td>O(1)</td>
</tr>
<tr>
<td><code>merge()</code></td>
<td>O(1)</td>
<td>O(n1+n2)</td>
<td>O(log(n))</td>
<td>O(1)</td>
</tr>
</tbody>
</table>