Algorithms and Data Structures

Searching in Lists

Ulf Leser
Topic of Next Lessons

- **Search**: Given a (sorted or unsorted) list A with $|A| = n$ elements (integers). Check whether a given value c is contained in A or not
 - Search returns true or false
 - If A is sorted, we can exploit transitivity
 - Fundamental problem with a zillion applications

- **Select**: Given an unsorted list A with $|A| = n$ elements (integers). Return the i^{th} largest element of A.
 - Returns an element of A
 - The sorted case is trivial – return $A[i]$
 - Interesting problem (especially for median) with many applications
 - [Interesting proof]
Content of this Lecture

- Searching in Unsorted Lists
- Searching in Sorted Lists
- Selecting in Unsorted Lists
Searching in an Unsorted List

- No magic
- Compare c to every element of A
- Worst case (c \(\not\in \) A): \(O(n) \)
- Average case (c \(\in \) A)
 - If c is at position i, we require i tests
 - All positions are equally likely: probability \(\frac{1}{n} \)
 - This gives

\[
\frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} * \frac{n^2 + n}{2} = \frac{n+1}{2} = O(n)
\]
Content of this Lecture

- Searching in Unsorted Lists
- **Searching in Sorted Lists**
 - Binary Search
 - Fibonacci Search
 - Interpolation Search
- Selecting in Unsorted Lists
Binary Search (binsearch)

- If A is sorted, we can be much faster
- Binsearch: Exploit transitivity

```java
1. func bool binsearch(A: sorted_array; c,l,r : int) {
2.   If l>r then
3.     return false;
4.   end if;
5.   m := l+((r-l) div 2);
6.   If c<A[m] then
7.     return binsearch(A, c, l, m-1);
8.   else if c>A[m] then
9.     return binsearch(A, c, m+1, r);
10.  else
11.    return true;
12.  end if;
13.}
```
Iterative Binsearch

- Binsearch uses only end-recursion
- Equivalent **iterative program**
 - No call stack
 - We don’t need old values for l,r
 - O(1) additional space

```
1. A: sorted_int_array;
2. c: int;
3. l := 1;
4. r := |A|;
5. while l ≤ r do
6.   m := l+(r-l) div 2;
7.   if c < A[m] then
8.     r := m-1;
9.   else if c > A[m] then
10.    l := m+1;
11.  else
12.    return true;
13. end while,
14. return false;
```
Complexity of Binsearch

- In every call to binsearch (or every while-loop), we only do constant work
- With every call, we reduce the size of sub-array by 50%
 - We call binsearch once with n, with n/2, with n/4, ...
- Binsearch has worst-case complexity $O(\log(n))$
- Average case only marginally better
 - Chances to “hit” target in the middle of an interval are low in most cases
 - See Ottmann/Widmayer

Source: railspikes.com
Content of this Lecture

- Searching in Unsorted Lists
- Searching in Sorted Lists
 - Binary Search
 - Fibonacci Search
 - Interpolation Search
- Selecting in Unsorted Lists
Searching without Divisions

- If we want to be ultra-fast, we should use only simple arithmetic operations
- **Fibonacci search**: $O(\log(n))$ without division/multiplication
 - Note: Bin-search usually uses bit shift (div 2) – very fast
 - Fibonacci search also has slightly better access locality (cache)
 - Also interesting: $O(\log(n))$ without the “always 50%” trick
- **Recall Fibonacci numbers**
 - $\text{fib}(1)=\text{fib}(2)=1$; $\text{fib}(i)=\text{fib}(i-1)+\text{fib}(i-2)$
 - 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
 - Thus, $\text{fib}(i-2)$ is roughly $1/3$, $\text{fib}(i-1)$ roughly $2/3$ of $\text{fib}(i)$
Fibonacci Search: Idea

- Let \(\text{fib}(i) \) be the smallest fib-number \(\geq |A| \)
- If \(A[\text{fib}(i-2)] = c \): stop
- Otherwise, continue searching in \([1 \ldots \text{fib}(i-2)]\) or \([\text{fib}(i-2)+1 \ldots n]\)
- Beware out-of-range part \(A[n+1 \ldots \text{fib}(i)] \)
- No divisions
Algorithm (assume |A| = fib(n)-1)

- **3-6: Search at A[fib(i-2)]**
 - With fib1, fib2 we can compute all other fib’s
 - \(\text{fib}(i) = \text{fib}(i-1) + \text{fib}(i-2)\)
 - \(\text{fib}(i-1) = \text{fib}(i-2) + \text{fib}(i-3)\)
 - …

- **7-24: Break A at descending Fibonacci numbers**

- **After each comparison, update fib1 and fib2**

```plaintext
1. A: sorted_int_array;
2. c: int;
3. compute i;
4. fib1 := fib(i-3);
5. fib2 := fib(i-2);
6. m := fib2;
7. repeat
8.   if c > A[m] then
9.     if fib1 = 0 then return false
10.    else
11.      m := m + fib1;
12.      tmp := fib1;
13.      fib1 := fib2 - fib1;
14.      fib2 := tmp;
15.    end if;
16.   else if c < A[m]
17.    if fib2 = 1 then return false
18.    else
19.      m := m - fib1;
20.      fib2 := fib2 - fib1;
21.      fib1 := fib1 - fib2;
22.    end if;
23. else return true;
24. until true;
```
Example

1. A: sorted_int_array;
2. c: int;
3. compute i;
4. fib1 := fib(i-3);
5. fib2 := fib(i-2);
6. m := fib2;
7. repeat
8. if c>A[m] then
 9. if fib1=0 then return false
 10. else
 11. m := m+fib1;
 12. tmp := fib1;
 13. fib1 := fib2-fib1;
 14. fib2 := tmp;
 15. end if;
16. else if c<A[m]
17. if fib2=1 then return false
18. else
19. m := m-fib1;
20. fib2 := fib2 - fib1;
21. fib1 := fib1 - fib2;
22. end if;
23. else return true;
24. until true;

Search 3 in \{1,2,3\}

<table>
<thead>
<tr>
<th>fib2</th>
<th>fib1</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

true

Search 6 in \{1,2,3,4\}

<table>
<thead>
<tr>
<th>fib2</th>
<th>fib1</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

false

Search 100 in \{1…10000\}

<table>
<thead>
<tr>
<th>fib2</th>
<th>fib1</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>4181</td>
<td>2584</td>
<td>4181</td>
</tr>
<tr>
<td>1597</td>
<td>987</td>
<td>1597</td>
</tr>
</tbody>
</table>

...

...
Complexity

- Worst-case: C is always in the larger (fib1) fraction of A
 - We roughly call once for n, once for $2n/3$, once for $4n/9$, ...
- Formula of Moivre-Binet: For large i ...

\[
\text{fib}(i) \sim \left[\frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^i \right] \sim c \times 1.62^i
\]

- We find fib such that \(\text{fib}(i-1) \leq n \leq \text{fib}(i) \sim c \times 1.62^i\)
- In worst-case, we make \(\sim i\) comparisons
 - We break the array i times
- Since $i = \log_{1.62} (n/c)$, we are in $O(\log(n))$
Searching without Math (sketch)

• We actually can solve the search problem in $O(\log(n))$ using only comparisons (no additions etc.)

• Transform A into a balanced binary search tree
 - At every node, the depth of the two subtrees differ by at most 1
 - At every node n, all values in the left (right) subtree are smaller (larger) than n

• Search
 - Recursively compare c to node labels and descend left/right
 - Balanced bin-tree has depth $O(\log(n))$
 - We need at most $\log(n)$ comparisons – and nothing else
Content of this Lecture

• Searching in Unsorted Lists
• Searching in Sorted Lists
 – Binary Search
 – Fibonacci Search
 – Interpolation Search
• Selecting in Unsorted Lists
Interpolation Search

- Imagine you have a telephone book and search for „Zacharias“
- Will you open the book in the middle?
- We can exploit additional knowledge about our values
- Interpolation Search: Estimate where \(c \) lies in \(A \) based on the distribution of values in \(A \)
 - Simple: Use max and min values in \(A \) and assume equal distribution
 - Complex: Approximation of real distribution (histograms, …)
Simple Interpolation Search

- Assume **equal distribution** - values within A are equally distributed in range \([A[1], A[n]]\)
- Best guess for the **rank of** \(c\)

\[
rank(c) = l + (r - l) \times \frac{c - A[l]}{A[r] - A[l]}
\]

- Idea: Use \(m=rank(c)\) and proceed recursively
- Example: “Xylophon”
Analysis

- On average, Interpolation Search on equally distributed data requires $O(\log(\log(n)))$ comparison (proof: see [OW])
- But: **Worst-case is $O(n)$**
 - If concrete distribution deviates heavily from expected distribution
 - E.g., A contains only names > "Xanthippe"
- Further disadvantage: In each phase, we perform ~ 4 adds/subs and $2*\text{mults/divs}$
 - Assume this takes 12 cycles (1 mult/div = 4 cycles)
 - Binsearch requires $2*\text{adds/subs} + 1*\text{div} \sim 6$ cycles
 - Even for $n=2^{32}\sim 4E9$, this yields $12*\log(\log(4E9))\sim 72$ ops versus $6*\log(4E9)\sim 180$ ops – not that much difference
Content of this Lecture

• Searching in Unsorted Lists
• Searching in Sorted Lists
• Selecting in Unsorted Lists
 – Naïve or clever
Quantiles

- The **median** of a list is its middle value
 - Sort all values and take the one in the middle
- **Generalization:** x%-quantiles
 - Sort all values and take the value at x% of all values
 - Typical: 25, 75, 90, -quantiles
 - How long do 90% of all students need?
 - The 25%, 50%, 75% are called quartiles
 - Median = 50%-quantile (or quartile)
Selection Problem

- Definition
 The selection problem is to find the x%-quantile of a set A of unsorted values

- We can sort A and then access the quantile directly
- Thus, $O(n \times \log(n))$ is easy
- Can we solve this problem in *linear time*?
- It is easy to see that we have to look at least at each value once; thus, the *problem is in $\Omega(n)$*
Top-k Problem

- **Top-k**: Find the k largest values in A
- For **constant k**, a naïve solution is linear (and optimal)
 - repeat k times
 - go through A and find largest value v;
 - remove v from A;
 - return v
 - Requires $k \cdot |A| = O(|A|)$ comparisons
- But if $k = x \cdot |A|$, we are in $O(x \cdot |A| \cdot |A|) = O(|A|^2)$
 - We measure complexity in size of the input
 - It is decisive whether k is part of the input or not
Selection Problem in Linear Time

• We sketch an algorithm which solves the problem for arbitrary x in linear time
 – Actually, we solve the equivalent problem of returning the k’th value in the sorted A (without sorting A)
• Interesting from a theoretical point-of-view
• Practically, the algorithm is of no importance because the linear factor gets enormously large
• It is instructive to see why (and where)
Algorithm

- Recall **QuickSort**: Chose pivot element \(p \), divide array wrt \(p \), recursively sort both partitions using the same trick

- We reuse the idea: Chose pivot element \(p \), divide array wrt \(p \), recursively select in the one partition that must contain the \(k \)'th element

```plaintext
1. func integer divide(A array; l,r integer) {
2.   ... 
3.   while true
4.     ... 
5.     i := i+1;
6.     until A[i] >= val;
7.     ... 
8.     j := j-1;
9.     until A[j] <= val or j < i;
10.    if i > j then
11.      break while;
12.    end if;
13.    swap( A[i], A[j]);
14.   end while;
15.  swap( A[i], A[r]);
16.  return i;
17.}
```

```plaintext
1. func int quantile(A array; k, l, r int) {
2.   ... 
3.   if r <= l then
4.     return A[l];
5.   end if;
6.   pos := divide( A, l, r);
7.   if (k <= pos-1) then
8.     return quantile(A, k, l, pos-1);
9.   else
10.    return quantile(A, k-pos+1, pos, r);
11.   end if;
12.}
```
Analysis

• Worst-case: Assume arbitrarily badly chosen pivot elements
• pos always is r-1 (or l+1)
• Gives $O(n^2)$
• Need to chose the pivot element p more carefully

```
1. func int quantile(A array;
2.                   k, l, r int) {
3.   if r≤l then
4.     return A[l];
5.   end if;
6.   pos := divide(A, l, r);
7.   if (k ≤ pos-l) then
8.     return quantile(A, k, l, pos-1);
9.   else
10.    return quantile(A, k-pos+1, pos, r);
11.  end if;
12.}
```
Choosing \(p \)

- Assume we can choose \(p \) such that we always continue with at most \(q\% \) of \(A \)
 - For any \(q! \) "\(q\% \)" means: Extend of reduction depends on \(n \)
- We perform at most \(T(n) = T(q^*n) + c^*n \) comparisons
 - \(T(q^*n) \) - recursive descent
 - \(c^*n \) - function "divide"
- \(T(n) = T(q^*n) + c^*n = T(q^2n) + q^*c^*n + c^*n = T(q^2n) + (q+1)^*c^*n = T(q^3n) + (q^2+q+1)^*c^*n = \ldots \)

\[
T(n) = c^*n \sum_{n \to \infty} q^i \leq c^*n \sum_{i=0}^{\infty} q^i = c^*n \frac{1}{1-q} = O(n)
\]
Discussion

- Our algorithm has **worst-case complexity** $O(n)$ when we manage to always reduce the array by a fraction of its size – no matter, how large the fraction
- This is not an average-case. We must always (not on average) cut some fraction of A
- Eh – magic?
- No – follows from the way we defined complexity and what we consider as input
- Many ops are “hidden” in the linear factor
 - $q=0.9$: $c*10*n$
 - $q=0.99$: $c*100*n$
 - $q=0.999$: $c*1000*n$
Median-of-Median

- How can we guarantee to always cut a fraction of A?
- **Median-of-median** algorithm
 - Partition A in stretches of length 5
 - Compute the median v_i for each partition (with $i < \text{floor}(n/5)$)
 - Use the (approximated) median v of all v_i as pivot element

\[
\begin{align*}
&v_1 & v_2 & v_3 & v_4 & v_5 & v_6 \\
&v
\end{align*}
\]
Complexity

- Run through A in jumps of length 5
- Find each median in constant time
 - Runtime of sorting a list of length 5 does not depend on n
- Call algorithm recursively on all medians
- Since we always reduce the range of values to look at by 80%, this requires $O(n)$ time

\[v_1 \quad v_2 \quad v_3 \quad v_4 \quad v_5 \quad v_6 \]
\[v_{11} \quad \ldots \quad v_{12} \]
Why Does this Help?

- We have $\sim n/5$ first-level-medians v_i
- v (as median of medians) is smaller than halve of them and greater than the other halve (both $\sim n/10$ values)
- Each v_i itself is smaller than (and greater than) 2 values
- Since for the smaller (greater) medians this median itself is also smaller (greater) than v, v is larger (smaller) than at least $3*\frac{n}{10}$ elements
Illustration (source: Wikipedia)

<table>
<thead>
<tr>
<th>12</th>
<th>15</th>
<th>11</th>
<th>2</th>
<th>9</th>
<th>5</th>
<th>0</th>
<th>7</th>
<th>3</th>
<th>21</th>
<th>44</th>
<th>40</th>
<th>1</th>
<th>18</th>
<th>20</th>
<th>32</th>
<th>19</th>
<th>35</th>
<th>37</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>16</td>
<td>14</td>
<td>8</td>
<td>10</td>
<td>26</td>
<td>6</td>
<td>33</td>
<td>4</td>
<td>27</td>
<td>49</td>
<td>46</td>
<td>52</td>
<td>25</td>
<td>51</td>
<td>34</td>
<td>43</td>
<td>56</td>
<td>72</td>
<td>79</td>
</tr>
<tr>
<td>Medians</td>
<td>17</td>
<td>23</td>
<td>24</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>36</td>
<td>42</td>
<td>47</td>
<td>50</td>
<td>55</td>
<td>58</td>
<td>60</td>
<td>63</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>45</td>
<td>38</td>
<td>53</td>
<td>61</td>
<td>41</td>
<td>62</td>
<td>82</td>
<td>54</td>
<td>48</td>
<td>59</td>
<td>57</td>
<td>71</td>
<td>78</td>
<td>64</td>
<td>80</td>
<td>70</td>
<td>76</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>95</td>
<td>94</td>
<td>86</td>
<td>89</td>
<td>69</td>
<td>68</td>
<td>97</td>
<td>73</td>
<td>92</td>
<td>74</td>
<td>88</td>
<td>99</td>
<td>84</td>
<td>75</td>
<td>90</td>
<td>77</td>
<td>93</td>
<td>98</td>
</tr>
</tbody>
</table>

- Median-of-median of a randomly permuted list 0..99
- For clarity, each 5-tuple is sorted (top-down) and all 5-tuples are sorted by median (left-right)
- Gray/white: Values with actually smaller/greater than median 47
- Blue: Range with certainly smaller / larger values