Algorithms and Data Structures

Sorting:
Merge Sort and Quick Sort

Ulf Leser
Content of this Lecture

- Merge Sort
- Quick Sort
Central Idea for Improvements in Sorting

- Methods we analyzed so-far did not optimally exploit transitivity of the "greater-or-equal" relationship
- If x ≤ y and y ≤ z, then x ≤ z
- If we compared x and y and y and z, there is no need any more to compare x and z
- The clue to lower complexity algorithms for sorting is finding ways to exploit such information
Merge Sort

- There are various algorithms with $O(n \log(n))$ comparisons
 - I.e., optimal
- (Probably) Simplest one: **Merge Sort**
 - Divide-and-conquer algorithm
 - Break array in two partitions of equal size
 - Sort each partition recursively, if it has more than 1 elements
 - Merge sorted partitions
- Merge Sort is not in-place: $O(n)$ additional space
Illustration

Source: WikiPedia
Illustration

Divide - Partition

Conquer - Merge

- Here we exploit transitivity
- We save comparisons during merge because both sub-lists are sorted
Algorithm

function void mergesort(S array; l,r integer) {
 if (l<r) then
 #Sort each ~50% of array
 m := (r-l) div 2;
 mergesort(S, l, l+m);
 mergesort(S, l+m+1, r);
 #merges two sorted lists
 merge(S, l, l+m ,r);
 else
 # Nothing to do, 1-element list
 end if;
}
Merging Two Sorted Lists

- Recall: Intersection of two sorted doc-lists in IR
- Idea
 - Move one pointer through each list
 - Whatever element is smaller, copy to a new list and increment this pointer
 - “New list” requires additional space
 - Repeat until one list is exhausted
 - Copy rest of other list to new list
Example
function void merge(S array;
 l,m,r integer) {
 B: array[1..r-l+1];
 i := l; # Start of 1st list
 j := m+1; # Start of 2nd list
 k := 1; # Target list
 while (i<=m) and (j<=r) do
 if S[i] <= S[j] then
 B[k] := S[i]; # From 1st list
 i := i+1;
 else
 B[k] := S[j]; # From 2nd list
 j := j+1;
 end if;
 k := k+1; # Next target
 end while;
 if i>m then # What remained?
 copy S[j..r] to B[k..k+r-j];
 else
 copy S[i..m] to B[k..k+m-i];
 end if;
 # Back to original list
 copy B[1..r-l+1] to S[l..r];
}
Complexity

• Theorem
 \textit{Merge Sort requires }\Omega(n \times \log(n)) \textit{ and } O(n \times \log(n)) \textit{ comparisons}

• Proof of } O(n \times \log(n))

 - Merging two sorted lists of size \(n \) requires } O(n) \textit{ comparisons}

 • After every comp, 1 element is moved; there are only \(2 \times n \) elements

 - Merge Sort calls Merge Sort } twice with always \textit{~half} \textit{ of the array}

 • Let } T(n) \textit{ be the number of comparisons

 • Thus: } T(n) = T(n/2) + T(n/2) + O(n)

 - This is } O(n \times \log(n))

 • See recursive solution of max subarray

• } \Omega(n \times \log(n)) \textit{: # comparisons does not depend on data in } S
Remarks

• Merge Sort is **worst-case optimal**: Even in the worst of all cases, it does not need more than (in the order of) the minimal number of comparisons
 - Given our lower bound for sorting
• But there are also **disadvantages**
 - $O(n)$ additional space
 - Requires $\Omega(n \times \log(n))$ moves
 • Sorted sub-arrays get copied to new array in any case
 • See Ottmann/Widmayer for proof
• Note: Basis for sorting algorithms on **external memory**
Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Comparisons worst case</th>
<th>Comparisons best case</th>
<th>Additional space</th>
<th>Moves worst/best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2) / O(n)$</td>
</tr>
<tr>
<td>Bubble Sort</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2) / O(1)$</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \log(n))$</td>
<td>$O(n \log(n))$</td>
<td>$O(n)$</td>
<td>$O(n \log(n))$</td>
</tr>
</tbody>
</table>
Content of this Lecture

- Merge Sort
- **Quick Sort**
 - Algorithm
 - Average Case Analysis
 - Improving Space Complexity
Comparison Merge Sort and Quick Sort

• What can we do better than Merge Sort?
 - The \(O(n)\) additional space is a problem
 - We need this space because the growing sorted runs have fixed sizes of up to 50% of \(|S|\) (2, 4, 8, …, \(\text{ceil}(n/2)\))
 - We cannot easily merge two sorted lists in-place, because we have no clue how the numbers are distributed in the two lists

• Quick-sort uses a similar yet different way
 - We also recursively generate sort-of sorted runs
 - Whenever we create two such runs, we make sure that one contains only “small” and one contains only “large” values - relative to a value that needs to be determined
 - This allows us to do a kind-of “merge” in-place
Main Idea

- Let k be an arbitrary index of S, $1 \leq k \leq |S|$
- Look at element $S[k]$ (call it the pivot element)
- Modify S such that $\exists i$: $\forall j \leq i: S[j] \leq S[k]$ and $\forall l > i: S[k] \leq S[l]$
 - How? Wait a minute
 - S is broken in two subarrays S' and S''
 - S' with values smaller-or-equal than pivot element
 - S'' with values larger-or-equal than pivot element
 - Note that afterwards $S[k]$ is at its final position in the array
 - S' and S'' are smaller than S
 - But we don’t know how much smaller – depends on choice of k
- Treat S' and S'' using the same method recursively
 - How often? Not clear – depends on choice of k (again)
Illustration
A Bad Case

\[S[k] \rightarrow k \rightarrow S[k'] \]

\[S[k'] \rightarrow S[k] \rightarrow S[k'] \]
Quick Sort Framework

• Start with qsort(S, 1, |S|)
• “Sort” S around the pivot element (divide)
 – Problem 1: Choose k
 – Problem 2: Do this in-place
• Recursively sort values smaller-or equal than pivot element
• Recursively sort values larger-or-equal than pivot element
• Problem 3: How often do we need to do this?

1. func void qsort(S array;
2. l,r integer) {
3. if r≤l then
4. return;
5. end if;
6. pos := divide(S, l, r);
7. qsort(S, l, pos-1);
8. qsort(S, pos+1, r);
9. }
Addressing Problem P1 – approaching P3

- P1: We need to choose k (S[k])
- S[k] determines the sizes of S’ and S”

- Best: S[k] in the middle of the values of S
 - S’ and S” are of equal size (~|S|/2)
 - Creates a low search tree

- Worst: S[k] at the border of the values of
 - |S’| ~0 and |S”| ~|S| - 1 or vice versa
 - Creates a deep search tree

- Hint to P3: Somewhere in [log(n), n] times
 - Depending on choice of S[k]
Intermezzo: Mean and Median

• In statistics, one often tries to capture the essence of a (potentially large) set of values

• One essence: **Mean**
 - Average temperature per month, average income per year, average height of males at age of 18, average duration of study, …

• Less **sensitive to outliers: Median**
 - The middle value
 - Assume temps in June 25 24 24 23 25 25 24 4 -1 9 18 24
 - Which temperature do you expect for an average day in June?
 • Mean: 18.6
 • Median: 24 – more realistic
 - How long will you need for your Bachelor? 6.35 semesters?
P1: Choosing k

- In the best case, $S[k]$ is the median of S
- Approximations
 - If S is an array of people’s income in Germany, we call the “Statistische Bundesamt” to ask for the mean of all incomes in Germany, and scan the array until we find a value that is 10% or less different, and use this value as pivot
 - If S is large and randomly drawn from a set of incomes, this scan will be very short
 - If S is an array of family names in Berlin, we take the Berlin telephone book, and open it roughly in the middle
- There is no exact and simple way to find the median of a large list of values (without sorting them)
P1: Choosing k - Again

- **Option 1:** Find min/max in S; search $S[k] \approx (\text{max-min})/2$
 - Why should the values in S be equally distributed in this range?
 - For instance: Incomes are not equally distributed at all
- **Option 2:** Choose a (small) set of values X from S at random and determine $S[k] \approx \text{median}(X)$
 - X follows the same distribution (same median) as S, but $|X| \ll |S|$
 - Since this procedure would have to be performed for each qSort, only small X do not influence runtime a lot
 - But: Small X will lead to bad median estimations
- **Option 3:** Choose k at random
 - For instance, simply use the last value in the array
 - We’ll see that this already produces good result on average
Quick Sort Framework

1. func void qsort(S array; l,r integer) {
2. if r≤l then
3. return;
4. end if;
5. pos := divide(S, l, r);
6. qsort(S, l, pos-1);
7. qsort(S, pos+1, r);
8. }

- Start with qsort(S, 1, |S|)
- “Sort” S around the pivot element (divide)
 - Problem 1: Choose k
 - Problem 2: Do this in-place
- Recursively sort values smaller-or equal than pivot element
- Recursively sort values larger-or-equal than pivot element
- Problem 3: How often do we need to do this?
Problem P2: Do this in-place

- We use k=r
- Simple idea
 - Search from l towards r until first value greater-or-equal S[r]
 - Search from r towards l until first value smaller-or-equal S[r]
 - Swap these two values
 - Repeat if i has not reached j yet
 - Result: Values left from i are smaller than S[r] and values right from j are larger than S[r]
 - Move S[r] into the middle

```c
1. func int divide(S array;
2.                 l,r integer) {
3.   val := S[r];
4.   i := l;
5.   j := r-1;
6.   repeat
7.     while (S[i]<=val and i<r)
8.       i := i+1;
9.     end while;
10.    while (S[j]>=val and j>l)
11.      j := j-1;
12.    end while;
13.    if i<j then
14.      swap( S[i], S[j]);
15.    end if;
16.    until i>=j;
17.    swap( S[i], S[r]);
18.    return i;
19.}
```
Example
P2: Complexity

- # of comparisons: $O(r-l)$
 - Whenever we perform a comparison, either i or j are incremented / decremented
 - i starts from l, j starts from r, and the algorithm stops once they meet
 - This is worst, average and best case

- # of swaps: $O(r-l)$ in worst case
 - Example: 8,7,8,6,1,3,2,3,5
 - Requires $\sim(r-l)/2$ swaps

```
1. func int divide(S array;
2.                 l,r integer) {
3.   val := S[r];
4.   i := l;
5.   j := r-1;
6.   repeat
7.     while (S[i] <= val and i<r)  // Here is the mistake
8.       i := i+1;
9.     end while;
10.    while (S[j] >= val and j>l)  // Here is the mistake
11.      j := j-1;
12.    end while;
13.    if i<j then
14.      swap( S[i], S[j]);
15.    end if;
16.    until i>=j;
17.    swap( S[i], S[r]);
18.    return i;
19.}
```
Worst-Case Complexity of Quick Sort

- Worst case: A reverse-sorted list
 - $S[r]$ in first iteration is the smallest element, later always the smallest or the largest
 - Requires $r-l$ comparisons in every call of divide()
 - Every pair of qSort's has $|S'|=0$ and $|S''|=n-1$
 - This gives $(n-1)+((n-1)-1)+\ldots+1 = O(n^2)$
Intermediate Summary

- Great disappointment
- We are in $O(1)$ additional space, but as slow as our basic sorting algorithms in worst case
- Let’s look at the average case
Content of this Lecture

- Merge Sort
- Quick Sort
 - Algorithm
 - Average Case Analysis
 - Improving Space Complexity
Average Case

- Without loss of generality, we assume that S contains all values $1 \ldots |S|$ in arbitrary order
 - If S had duplicates, we would at best save swaps
 - Sorting n different values is the same problem as sorting the values $1 \ldots n$ – replace each value by its rank
- For k, we choose any value in S with equal probability $1/n$
- This choice divides S such that $|S'| = k-1$ and $|S''| = n-k$
- Let $T(n)$ be the average # of comparisons. Then:
 \[
 T(n) = \frac{1}{n} \sum_{k=1}^{n} (T(k-1) + T(n-k)) + bn = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + bn
 \]
 - Where $b*n$ is the time to divide the array and $T(0) = 0$
Induction

- We need to show that, for some c independent of n:
 \[T(n) \leq c \cdot n \cdot \log(n) \]

- **Proof by induction** (for $n \geq 2$)
 - Clearly, $T(1) = b$, $T(2) = 3b \leq c \cdot 2 \cdot \log(2)$ if $c \geq 3b/2$
 - We assume the above assumption holds for all $2 \leq k < n$
 - We start with (for simplicity, assume $n = 2^x$ for some x):

 \[
 T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + bn
 \]
Induction

\[T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + bn \]

\[= \frac{2}{n} \sum_{k=2}^{n-1} T(k) + bn + \frac{2}{n} T(1) \]

\[= \frac{2}{n} \sum_{k=2}^{n-1} T(k) + bn + \frac{2}{n} b \]

\[\leq \frac{2}{n} \sum_{k=2}^{n-1} T(k) + bn + b \]

\[\leq \frac{2c}{n} \sum_{k=1}^{n-1} k \cdot \log(k) + bn + b \]

\[= \frac{2c}{n} \left[\sum_{k=1}^{n/2} k \cdot \log(k) + \sum_{k=n/2+1}^{n-1} k \cdot \log(k) \right] + bn + b \]
Continued

\[T(n) \leq \frac{2c}{n} \left[\sum_{k=1}^{n/2} k \cdot \log(k) + \sum_{k=n/2+1}^{n-1} k \cdot \log(k) \right] + bn + b \]

\[\leq \frac{2c}{n} \left[\sum_{k=1}^{n/2} k \cdot \log(n/2) + \sum_{k=n/2+1}^{n-1} k \cdot \log(n) \right] + bn + b \]

\[= \frac{2c}{n} \left[\sum_{k=1}^{n/2} k \cdot \log(n) - \frac{n^2}{8} - \frac{n}{4} + \sum_{k=n/2+1}^{n-1} k \cdot \log(n) \right] + bn + b \]

\[= \frac{2c}{n} \left[\left(\frac{n^2}{2} - \frac{n}{2} \right) \cdot \log(n) - \frac{n^2}{8} - \frac{n}{4} \right] + bn + b \]

\[= c \cdot n \cdot \log(n) - c \cdot \log(n) - \frac{cn}{4} - \frac{c}{2} + bn + b \]

\[\leq c \cdot n \cdot \log(n) - cn/4 - c/2 + bn + b \]

\[\leq c \cdot n \cdot \log(n) \]

Set \(c \geq 4b \)
Conclusion

• Although there are cases where we need $O(n^2)$ comparisons, these are so rare in the set of all possible permutations that we do not need more than $O(n \cdot \log(n))$ comparisons on average.

• In other words: If we average over the runtimes of Quick Sort over many (all) different orders of n values (for different n), then this average will grow with $n \cdot \log(n)$, not with n^2.

• One can show the same for the # of swaps.

• Quick Sort is a fast general-purpose sorting algorithm.
Content of this Lecture

- Merge Sort
- Quick Sort
 - Algorithm
 - Average Case Analysis
 - Improving Space Complexity
Looking at Space Again

• We were quite sloppy
• Quick Sort does need extra space – every recursive call puts some data on the stack
 - Array can be passed-by-reference or declared as a global variable
 - But we need to pass l and r
• Our current version has worst-case space complexity $O(n)$
 - Consider the worst-case of the time complexity
 • Reverse-sorted array
 - Creates $2*n$ recursive calls
 - This requires n times 2 integers on the stack
Improving Space Complexity

• In the recursive decent, always treat the smaller of the two sub-arrays first (S’ or S’”, whatever is smaller)
• This branch of the search tree can generate at most $O(\log(n))$ calls, as the smaller array always is smaller than $|S|/2$ (or it would not be the smaller one)
• Use iteration (no stack) to sort the bigger array afterwards
• Space complexity: $O(\log(n))$
Implementation

```plaintext
1. func integer qSort(S array; l,r int) {
2.   if r≤l then
3.       return;
4.   end if;
5.   val := S[r];
6.   i := l-1;
7.   j := r;
8.   repeat
9.     while (S[i]<=val and i<r) 
10.        i := i+1;
11.   end while;
12.   while (S[j]>=val and j>l) 
13.        j := j-1;
14.   end while;
15.   if i<j then
16.      swap( S[i], S[j]);
17.   end if;
18.   until i>=j;
19.   swap( S[i], S[r]);
20.   qsort(S, l, i-1);
21.   qSort(S, i+1, r);
22. }
```

```plaintext
1. func integer qSort++(S array; l,r int) {
2.   if r≤l then
3.       return;
4.   end if;
5.   while r > l do
6.     val := S[r];
7.     i := l-1;
8.     j := r;
9.     repeat
10.        … # as before
11.     until i>=j;
12.     swap( S[i], S[r]);
13.     if (i-1-l) < (r-i-1) then
14.        qsort(S, l, i-1);
15.        l := i+1;
16.     else
17.        qSort(S, i+1, r);
18.        r := i-1;
19.     end if;
20.   end while;
21. }
```
Implementation

- **14-20: Choose the smaller and sort it recursively**
 - Note: *Only one call* is made for each division

- **We adjust l/r and sort the larger sub-array directly**
 - New loop (6-21) applies the same procedure performing the next sort

- **We turned a linear tail recursion into an iteration (without stack)**

```plaintext
1. func integer qSort++(S array; l,r int) {
2.   if r≤l then
3.     return;
4.   end if;
5.   while r > l do
6.     val := S[r];
7.     i := l-1;
8.     j := r;
9.     repeat
10.    ... # as before
11.    until i>=j;
12.    swap( S[i], S[r]);
13.    if (i-1-l) < (r-i-1) then
14.      qsort(S, l, i-1);
15.      l := i+1;
16.    else
17.      qSort(S, i+1, r);
18.      r := i-1;
19.    end if;
20.  end while;
21.}
```
Illustration

In the diagram, we have three indices: k, k', and k''. The notation $S[k]$ represents some set or data structure indexed by k. Similarly, $S[k']$ and $S[k'']$ are indexed by k' and k'', respectively. Arrows indicate the relationships between these indices and the data structures they are associated with.
Improving Space Complexity Further

- Even $O(1)$ space is possible
 - Do not store l/r, but search them at runtime within the array
 - Requires extra work in terms of runtime, but within the same complexity
 - See Ottmann/Widmayer for details
 - Is it worth it in practice?
 - Log(n) usually is not a lot of space
Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Comps worst case</th>
<th>avg. case</th>
<th>best case</th>
<th>Additional space</th>
<th>Moves (wc / ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td></td>
<td>$O(n^2)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$</td>
<td></td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Bubble Sort</td>
<td>$O(n^2)$</td>
<td></td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n\times\log(n))$</td>
<td>$O(n\times\log(n))$</td>
<td>$O(n)$</td>
<td>$O(n\times\log(n))$</td>
<td>$O(n\times\log(n))$</td>
</tr>
<tr>
<td>QuickSort</td>
<td>$O(n^2)$</td>
<td>$O(n\times\log(n))$</td>
<td>$O(n\times\log(n))$</td>
<td>$O(\log(n))$</td>
<td>$O(n^2) / O(n\times\log(n))$</td>
</tr>
</tbody>
</table>
Exemplary Questions

- Proof that any sort algorithm using only value comparisons needs $\Omega(n \cdot \log(n))$ comparisons in worst case.
- Proof or refute: For every n, there exists a list with n elements which is a best case for quick sort (choosing first element as pivot) and for bubble sort.
- Give pseudo code for QuickSort with $O(\log(n))$ addition space.
- Imagine your main memory can use only $n/16$ values. Recall that access disk is much more expensive than accessing memory. Which of the sorting algorithms can be used to keep disk I/O low? Describe the algorithm in pseudo code and argue about the number of blocks read.