This Lecture

- Proteomics
- Separation
- Identification: Mass Spectrometry
Proteomics

- **Genomics** = Determining the genome of a species
- **Transcriptomics** = Determining the mRNA of a cell / tissue / state
- **Proteomics** = Determining the proteins in cell / tissue / state
- Proteomics and transcriptomics have mostly identical goals
 - **Understanding** the processes happening in a cell
 - Differentiate between species, tissues, developmental state, ...
 - **Biomarker**: Finding protein/mRNA/… (forms, concentrations) that are characteristic for a certain disease (state)
- Metabolomics, interactomics, bibliomics, cellomics, …
Proteomics versus Transcriptomics

• Advantages
 - Proteins make you live, not mRNA
 - mRNA is only *indirect evidence* with little correlation with proteome
 • Regulation by miRNA, post-translation modifications, decay, …
 - Protein survive (some time), mRNA is transient
 - Proteins are favorite *drug targets*
Proteomics versus Transcriptomics

- **Disadvantages**
 - **Scale**: ~20K genes, ~100K proteins, ~500K protein forms
 - **Handling**: No PCR, no hybridization, no sequencing, no long-term „storage“ as clones, high reactivity, ...
 - **Reactivity**: highly **context-dependent**: temperature, solution, pH, …
Typical Proteomics Workflow

1. **Extraction**
 - From a cell mixture

2. **Separation**
 - 2D gel electrophoresis / LC/GC
 - From the gel / from the flow

3. **Isolation**
 - Mass spectrometry

4. **Identification**

5. **Analysis**
 - Quantification, clustering, …
This Lecture

- Proteomics
- Separation
- Identification: Mass Spectrometry
2D Gel Elektrophoresis

- Separation of proteins in **two dimensions**
 - Mass
 - Charge
- Every spot one protein (hopefully)
Method

1. Separation in **pH-gradient**: Proteins move to their isoelectric points

2. Charging of proteins with SDS (Sodiumdodecylsulphate)

4. Place on slide of polyacrylamide gel (PAGE)

4. Proteins move in an **electric field**: speed depends on mass

5. Staining; photo; image analysis; excision
Analysis

- 2D-Page may separate up to 10,000 proteins
- Under identical conditions, the position of a particular protein is fairly stable
- Software for identification of proteins by position
 - After photo and image analysis
 - Align image to reference
- Various databases of 2D-Gels
Pro / Contra

- Comparably simple and cheap, well established
- Disadvantages
 - No high-throughput – much manual work
 - No robust quantification (spot intensity, depends on staining)
 - Similar proteins (e.g. protein forms) build overlapping spots
 - Many restrictions
 - No proteins with <20KD or >200KD
 - No highly charged proteins
 - No detection of low concentrations
 - No membrane proteins (depending on method)
 - …
 - No de-novo protein identification
 - Limited accuracy in comparative identification
Liquide / Gas Chromatography

• Other option: GC/LC
 - Chamber contains two phases (liquid / liquid, liquid/gas)
 - Proteins travel with different speed depending on mass/charge ratio
This Lecture

- Proteomics
- Separation
- Identification: Mass Spectrometry
 - Method
 - Algorithms: Naïve, heuristic, probabilistic
Mass Spectrometry

- **Accelerate particles** (must be charged) in an electric field
- Detector measures **ion hits** at back wall
- Time of flight (ToF) proportional to mass
 - Other techniques exist (magnetic drift, …)
- **Spectrum of mass peaks** is used to identify particle
MS for Protein Identification

- Problem: Proteins are fragile and break during acceleration
- Solution
 - Break proteins at defined points before acceleration (digestion)
 - Measure peptides (each peptide one signal)
 - Identify protein based on spectrum of peptide hits
- In theory, every protein has an almost unique spectrum
 - Using modern MS/MS, even different forms of the same protein are separable
Digestion

Trypsin:
Cleaves after Arginine und Lysine if next AA is not Proline

Chymotrypsin:
After Tyr, Trp, Phe, Met
Ionization

- Problem: Peptides often are uncharged – no acceleration
- Solution
 - MALDI – Matrix Assisted Laser Desorption / Ionization
 - Peptide are embedded in a „matrix“
 - Crystallization with charged, light-sensitive molecules
 - Fire on crystal with laser
 - Light-sensitive molecules vaporize and carry peptides with them
 - Accelerate
- Other techniques known
 - E.g. ESI: electrospray ionization
From Spectra to Peaks

- **Detecting peaks** and assigning them to peptides is difficult
 - Systematic bias in runs / machines
 - Inaccuracies of measurement
 - Inhomogeneous sample preparation
 - Matrix etc.
 - Different quantities of peptides
 - ...

- **Signal processing** (not covered here)
This Lecture

- Proteomics
- Separation
- Identification: Mass Spectrometry
 - Method
 - Algorithms: Naïve, heuristic, probabilistic
Algorithms for Protein Identification from Spectra

- We focus on **database-based** identification

- Idea
 - We have a database \(D \) of protein sequences \(d_1, d_2, \ldots \)
 - Each is subjected to electronic digestion – set of peptides per protein
 - For each peptide, we know its theoretic ToF
 - One theoretical spectrum \(s_i \) per protein \(d_i \) in the database
 - Measure spectrum \(s \) of unknown protein \(k \)
 - Compare **empirical spectrum** \(s \) of \(k \) with theoretical spectra \(s_i \)

- Again, we can only **discover what we already know**
Illustration

Real experiment

Theoretical experiment

Comparison
Naive Algorithm: Hitcount

- Compare measured \(s \) with all \(s_i \) in DB
- Sequence which has the **most peptides in common** wins
 - Input: \(s=\{p_1,\ldots,p_m\} \), \(s_i=\{q_1,\ldots,q_j\} \)
 - Compute for each \(s_i \): Compute |\(s \cap s_i \)|
 - Sequence \(s_i \) with **maximal overlap** wins

- Complexity?
 - Keep all peak lists sorted
 - We need to compare |\(s \)| hits with |\(D \)| proteins in DB
 - Let \(q \) be the average number of peaks in a database spectrum
 - Together: \(\sim(|s|+q) \times |D| \) comparisons
 - Can be sped-up further (indexing)
Why “Naïve”?

- Peptide masses are not really equal
 - Always small deviation – nearest peak; match might not be unique
- Some (short) peptides are more frequent than others
 - Some peptides appear in almost all proteins
 - Should have a lower impact
- Proteins have different lengths
 - Longer proteins have higher chance for high scores

X: Peptide mass (1000-5000 Dalton)
Y: Peptide count (log)
Example

- Which one would you prefer?
More Problems

- Enzymes don’t work 100% correct
- Protein **sequences in DB contain errors**
 - Especially when directly translated from genome
 - Lead to wrong peptide sets
- Ignores posttranslational modifications
- Peptide mass not constant – **isotopes**
- MS is not perfect – spurious, shifted, missing peaks
- Some protein always has the highest count – what if real sequence is not in the database?
 - No confidence scores
Practically Relevant Algorithms

• **Heuristic: MOWSE**
 – Considers total protein mass and peptide frequencies
 – Generates a score

• **Probabilistic algorithm: Profound**
 – Copes with measurement errors, deviation in protein mass, and different peptide frequencies
 – Generates a probability of match for each protein

• Many more (and newer) algorithms
 – MASCOT, PeptIdent, ProteinProspector, SEQAN, ...
ProFound \[ZC00\]

- **Probabilistic method**
- Computes, for a given spectrum \(D (s) \) and each protein \(k (s_i) \), the probability that \(D \) was produced by \(k \)
- The formula is complex; its derivation is even more complex and skipped here
- Assumption: Measured peptide masses are normally distributed around the “canonical” value
 - Most probable isotopes
- First step: Assign peaks from \(k \) to peaks from \(D \)
ProFound Formula

\[P(k|DI) \propto P(k|I) \frac{(N - r)!}{N!} \prod_{j=1}^{r} \left\{ \sqrt{\frac{2}{\pi}} \frac{m_{\text{max}} - m_{\text{min}}}{\sigma_j} \times \sum_{j=1}^{g_i} \exp \left[-\frac{(m_i - m_{ij0})^2}{2\sigma_i^2} \right] \right\} F_{\text{pattern}} \]
• \(p(k|D,I) = \text{prob. that protein } k \text{ was observed by spectrum } D \text{ and background information } I \)
• \(N \): Number of peptides of protein \(k \)
• \(r \): Number of hits between \(D \) and \(k \) (with a certain fuzzy’ness)
• \(m_{\text{max}}, m_{\text{min}} \): range of observed masses for current peak (background)
• \(\sigma_i \): standard deviation of current peak (background)
• \(m_i \): Mean mass of the DB peak (background)
• \(g_i \): How often is the peptide contained in \(k \)?
• \(m_{ij0} \): Empirical mass of \(j \)'th occurrence of this peptide in \(k \)
• \(p(k|I) \): A-priori probability of \(k \) in the given species / cell / tissue
• \(F_{\text{pattern}} \): Heuristic factor dealing with “overlapping peaks”
ProFound Explanation

- How many of the expected peptides for k did we observe?
- Multiply probabilities of all hits
- "Freedom" of measurements of hits for this peptide
- Many observed peak may stem from the same predicted peak
- Probability of the deviation of the canonical mass to the measured mass (assuming normal distribution)
ProFound Intuition

- Many hits \((r \sim N)\) – score goes down (outweighs influence of more factors in the red product)
- Hits with a small stddev (narrow range) – score goes up
- Many observed peaks match the expected peak – score goes up
- Observed peak close to canonical peak – score goes up
- Theoretical peak as high stddev – scores go down (also green)
Critique

• Score assumes that protein is in the database
 – Better: formulate "null" hypothesis, compute prob. of the spectrum given the null hypothesis, and report the log-odds ratio as score
 – But this is not as simple done as said

• Assumes that every peak comes from "the" protein
 – But measurements might be contaminated with peptides from other proteins

• Assumes that observed peaks can be assigned clearly to predicted peaks
 – This problem is tried to be covered by F_{pattern}
Further Reading

- Basics on proteomics: Every Bioinformatics book