Proteins:
Structure & Function

Ulf Leser
This Lecture

• Proteins
 - Structure
 - Function
 - Databases

• Predicting Protein Secondary Structure

• Examples often from O. Kohlbacher, Vorlesung Strukturvorhersage, WS 2004/2005, Universität Tübingen
Central Dogma of Molecular Biology

![Diagram of the Central Dogma]

Table of Codons and Amino Acids

<table>
<thead>
<tr>
<th>U</th>
<th>C</th>
<th>A</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>UUU, UUC, UUA, UUG</td>
<td>Phenylalanine, Leucine</td>
<td>UAU, UAC, UAA, UAG</td>
</tr>
<tr>
<td></td>
<td>UCU, UCC, UCA, UCG</td>
<td>Serine</td>
<td>UGU, UGC</td>
</tr>
<tr>
<td>C</td>
<td>CUU, CUC, CUA, CUG</td>
<td>Leucine</td>
<td>CAU, CAC</td>
</tr>
<tr>
<td></td>
<td>CUC, CCA, CGU</td>
<td>Proline</td>
<td>CAA, CAG</td>
</tr>
<tr>
<td>A</td>
<td>AUU, AUC, AUA, AUG</td>
<td>Isoleucine</td>
<td>AAU, AAC</td>
</tr>
<tr>
<td></td>
<td>GUU, GUC, GUA, GUG</td>
<td>Methionine</td>
<td>AAA, AAG</td>
</tr>
<tr>
<td>G</td>
<td>GUU, GUC, GUA, GUG</td>
<td>Valine</td>
<td>GAU, GAC</td>
</tr>
<tr>
<td></td>
<td>GCU, GCC, GCA, GCG</td>
<td>Alanine</td>
<td>GAA, GAG</td>
</tr>
<tr>
<td></td>
<td>GCG, GGC, GGA, GGG</td>
<td>Glycine</td>
<td>GGU, GGC</td>
</tr>
</tbody>
</table>

Expression: horizontal information flow
Replication: vertical information flow
Details

- **Alternative Splicing**
 - “One gene – one protein” is wrong
 - Exons may be spliced out from the mRNA
 - Human: \(~6\) times more different proteins than genes

- **Post-translational modifications**
 - (De-)Phosporylation, glycolysation, cleavage of signals, …
 - Rough estimates: \(100\)K proteins, \(500\)K protein forms

- **Complexes**: Proteins **physically group together** to perform specific function
Example: Proteasome

- **Very large complexes** present in all eukaryotes (and more species)
 - >2000 kDa, made of **dozens of single protein** chains
 - Formation of the complex is a complex process only partly understood yet
- **Breaks** (mis-folded, broken, superfluous, ...) proteins into small peptides for reuse
Protein Structure

- **Primary**
 - 1D-Seq. of AA

- **Secondary**
 - 1D-Seq. of "subfolds"

- **Tertiary**
 - 3D-Structure

- **Quaternary**
 - Assembled complexes
Protein Function

- Proteins perform essentially everything that makes an organism alive
 - Metabolism
 - Signal processing
 - Gene regulation
 - Cell cycle
 - ...
- For ~1/3 of all human gene, no function is known yet
- Describing function
 - **Gene Ontology**: 3 branches, >30,000 concepts
 - Used world-wide to describe gene/protein function
Function and Motifs

- Protein often have multiple functions
 - Avg. n# of GO terms assigned to a human protein: ~6
- Functions are associated to *motifs or domains*
- There probably exist only 4000-5000 motifs
 - Proteins as assemblies of functional motifs
- Performing a function often requires *binding to another protein* or molecule
 - The binding requires a certain constellation of the protein structure
 - Major target of pharmacological research
UniProt

• “Standard” database for protein sequences and annotation
 - Original name: SwissProt
 - Started at the Swiss Institute of Bioinformatics, now mostly EBI
 - Other: PIR, HPRD

• Continuous growth and curation
 - >30 „Scientific Database Curators“
 - Quarterly releases
 - Very rich set of annotations

• Actually two databases
 - SwissProt: Curated, high quality, versioned
 - TrEMBL: Automatic generation from (putative) coding genomic sequences, low quality, redundant, much larger

- 20258 Homo sapiens (Human)
- 16327 Mus musculus (Mouse)
- 9842 Arabidopsis thaliana (Mouse-ear cress)
- 7560 Rattus norvegicus (Rat)
- 6582 Saccharomyces cerevisiae (Baker's yeast)
- 5803 Bos taurus (Bovine)

...
PDB – Protein Structure Database

- Oldest protein database, evolved from a book
- Contains experimentally obtained protein 3D-structures
 - Plus some DNA, protein-ligand, complexes, …
 - X-Ray (~75%), NMR (nuclear magnetic resonance, ~23%)
- Costly and rather slow techniques
 - Growth much smaller than that of sequence-related DBs
- Many problems with legacy data and data formats
This Lecture

- Introduction
- **Predicting Protein Secondary Structure**
 - Secondary structure elements
 - Chou-Fasman
 - GOR IV
 - Other methods
Amino Acids

- AA consist of a common core and a specific residue
 - Amino group – NH$_2$
 - Central C$_\alpha$ - Carbon – CH
 - Carboxyl group – COOH

- Residues (side chains) vary greatly between AA
- Residues determine the specific properties of a AA
Side Chains

BASIC SIDE CHAINS
- Lysine (Lys, or K)
- Arginine (Arg, or R)
- Histidine (His, or H)

ACIDIC SIDE CHAINS
- Aspartic acid (Asp, or D)
- Glutamic acid (Glu, or E)

UNCHARGED POLAR SIDE CHAINS
- Asparagine (Asn, or N)
- Glutamine (Gln, or Q)
- Serine (Ser, or S)
- Threonine (Thr, or T)
- Tyrosine (Tyr, or Y)

NONPOLAR SIDE CHAINS
- Alanine (Ala, or A)
- Valine (Val, or V)
- Leucine (Leu, or L)
- Isoleucine (Ile, or I)
- Proline (Pro, or P)
- Phenylalanine (Phe, or F)
- Methionine (Met, or M)
- Tryptophan (Trp, or W)
- Glycine (Gly, or G)
- Cysteine (Cys, or C)
Structure of a Protein

- Concatenation of cores: Backbone of AA chain (a protein)
- Covalent peptide bonds between carboxyl and amino group (with loss of H₂O)
Flexibility

- In principle, every chemical bond can **rotate freely**
- Would allow arbitrary backbone structures
- In proteins things are more restricted
 - Peptide bound is “flat” – almost no torsion possible
 - Flexibility only in the C_α-flanking bonds ϕ and ψ
Ramachandran Plots

- Combinations of ϕ and ψ are highly constrained
 - Due to chemical properties of the backbone / side chains
- Two combinations are favored: α-helixes and β-sheets
 - More detailed classifications exist
 - Angels lead to specific structures
 - Secondary structure
\(\alpha\)-Helix

- Sequence of angles forming a regularly structured helix
- Additional bonds between amino and carboxyl groups
 - Very stable structure
- May have two orientations
 - Most are right-handed
- 3.4 AA per twist
- Often short, sometimes very long
β-Sheet

- Two linear and **parallel stretches** (β-strands)
- Strands are bound together by hydrogen bounds
- Can be parallel or anti-parallel (wrt. N/C terminus)

Other Substructures

- α-helixes and β-sheets form around 50-80% of a protein
- Other parts are called **loops or coils**
 - Usually not very important for the structure of the protein
 - But very important for its function
 - Often exposed on the surface; important for binding to other molecules
Importance

• Secondary structure elements (SSE) are vital for the overall structure of a protein
• Often evolutionary well conserved
• SSE can be used to classify proteins
 – Such classes are highly associated to function
• Knowing the SSE gives important clues to protein function
• Secondary structure prediction (SSP) is much simpler than 3D structure prediction
 – And 3D structure prediction can benefit a lot from a good SSP
Predicting Secondary Structure

- SSP: Given a protein sequence, **assign each AA** in the sequence to one of the **three classes** Helix (H), Strand (E), or Coil (-)

```
KVYGRCELAAAMKRLGLDNYRGYSLGNWVCAAKFESNFNTATNRTND
GSTDYGILQINSRWWCNDDGRTPGSKNLCNIPCSALLSSDITASVNCAK
KIASGGNGMNAWVAWRNRCKGTDVHAWIRGCRL
```

```
-------HHHHHHHHHH-----AAAAAA-------------------
GSTDYGILQINSRWWCNDDGRTPGSKNLCNIPCSALLSSDITASVNCAK
-------EEEEEEE-----------HHHHHHH
KIASGGNGMNAWVAWRNRCKGTDVHAWIRGCRL
HHH--------EEE-----------
```
Classification

- **Classification**: Classify each AA into one of three classes
- **Classification is a fundamental problem**
 - Classify the readout of a microarray as diseased / healthy
 - Classify a subsequence of a genome as coding / non-coding
 - Classify an email as spam / no spam
- **Many different techniques**: Naïve Bayes, Regression, Decision Trees, SVMs, Neural Networks, …
 - Based on same principles can be exchanged easily
 - **Classification function** learned from properties of known objects
- **The following is a rather unsystematic approach**
 - But simple to explain and classical for this application
This Lecture

• Introduction
• Predicting Protein Secondary Structure
 - Secondary structure elements
 - Chou-Fasman
 - Other methods
Chou-Fasmann Algorithm

- Observation: **Different AA favor different folds**
 - Different AA are more or less often in H, E, C
 - Different AA are more or less often within, starting, or ending a stretch of H, E, C

- **Chou-Fasman algorithm** (rough idea)
 - Classifies each AA into E or H; unclassified AA are assigned C
 - Compute a score for the probability of any AA to be E (H)
 - Basis: Relative frequencies in a set of sequences with known SSE
 - In principle, assigns each AA its most frequent class
 - Add constraints about minimal length of E (H) stretches
 - Several further heuristics
Some Details [sketch, some heuristics omitted]

- Let $f_{j,k}$ be the relative frequency of observing AA j in class k
- Let f_k be the average over all 20 $f_{j,k}$ values
- Compute the propensity of AA j to be part of class k as $P_{j,k} = \frac{f_{j,k}}{f_k}$

- Using $P_{j,k}$, classify each AA j for every class k into
 - Strong, normal, weak builder (H_α, h_α, I_α)
 - Strong, weak breaker (B_α, b_α)
 - Indifferent (i_α)
Concrete Values

- Originally computed on only 15 proteins (1974)

<table>
<thead>
<tr>
<th>AS</th>
<th>P_α</th>
<th>Klasse</th>
<th>AS</th>
<th>P_β</th>
<th>Klasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu</td>
<td>0.53</td>
<td>H_α</td>
<td>Met</td>
<td>0.67</td>
<td>H_β</td>
</tr>
<tr>
<td>Ala</td>
<td>1.45</td>
<td></td>
<td>Val</td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>1.34</td>
<td></td>
<td>Ile</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>1.24</td>
<td></td>
<td>Cys</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>0.20</td>
<td>h_α</td>
<td>Tyr</td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>1.17</td>
<td></td>
<td>Phe</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>1.14</td>
<td></td>
<td>Gln</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>1.14</td>
<td></td>
<td>Leu</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>1.12</td>
<td></td>
<td>Thr</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>1.07</td>
<td>l_α</td>
<td>Trp</td>
<td>1.19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AS</th>
<th>P_α</th>
<th>Klasse</th>
<th>AS</th>
<th>P_β</th>
<th>Klasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile</td>
<td>1.00</td>
<td>l_α</td>
<td>Ala</td>
<td>0.93</td>
<td>l_β</td>
</tr>
<tr>
<td>Asp</td>
<td>0.98</td>
<td></td>
<td>Arg</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>0.82</td>
<td></td>
<td>Gly</td>
<td>0.81</td>
<td>i_β</td>
</tr>
<tr>
<td>Ser</td>
<td>0.79</td>
<td>i_α</td>
<td>Asp</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>0.79</td>
<td></td>
<td>Lys</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>0.77</td>
<td></td>
<td>Ser</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>0.73</td>
<td>b_α</td>
<td>His</td>
<td>0.71</td>
<td>b_β</td>
</tr>
<tr>
<td>Tyr</td>
<td>0.61</td>
<td></td>
<td>Asn</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>0.59</td>
<td>B_α</td>
<td>Pro</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>0.53</td>
<td></td>
<td>Glu</td>
<td>0.26</td>
<td>B_β</td>
</tr>
</tbody>
</table>
Algorithm for Helices

- Go through the protein sequence
- **Score each AA with** 1 (H_{α}, h_{α}), 0.5 (I_{α}, i_{α}), or -1 (B_{α}, b_{α})
- Find **helix cores**: subsequences of length 6 with an aggregated AA score ≥ 4
- Starting from the middle of each core, shift a window of length 4 to the left (then to the right)
 - Compute aggregated score A using values $P_{j,k}$ inside the window
 - If $A \geq 4$, continue; otherwise stop
- Similar method for strands
- **Conflicts** (regions assigned both H and E) are resolved based on aggregated scores
Example [Source: O. Kohlbacher, “Strukturvorhersage”]

\[\sum = 5 \]

Helixstart
Performance

• Accuracy app. 50-60%
 - Measured on per-AA correctness

• Prediction is more accurate in helices than in strands
 - Because helices build local bridges (hydrogen bounds between the turns; each AA binds to the +4 AA)

• General problem
 - Secondary structure is not only a local problem
 - Looking only at single AAs is not enough
 • Note: Scores are based on individual AA; aggregation by summation assumes statistical independence of pairs, triples ... in a class

• One needs to include the context of an AA
This Lecture

- Introduction
- Predicting Protein Secondary Structure
 - Secondary structure elements
 - Chou-Fasman
 - Other methods
Classes of Methods

• First generation: Properties of single AA only
 - Accuracy: 50-60%
 - E.g. Chou-Fasman (1974)

• Second generation: Include info. about neighborhood
 - Accuracy: ~65%
 - E.g. GOR (1974 – 1987)

• Third generation: Include info. from homologous seq’s
 - Accuracy: ~70-75%
 - E.g. PHD (1994)

• Forth generation: Build ensembles of good methods
 • Accuracy: ~80%
 • E.g. J pred (1998)
Further Reading