Algorithms and Data Structures

Priority Queues
Special Scenarios for Searching

- Up to now, we assumed that all elements of a list are equally important and that any of them could be searched next (with varying probability).

- What if some elements are more important than others?
 - There is a (maybe partial) order on list elements.
 - The most important elements are always retrieved next.
 - Priority Queues.

- Difference to Self-Organizing Lists
 - Most important element is always retrieved next - should be O(1).
 - List most be kept ordered by importance.
 - We look at a scenario where new elements are inserted all the time and the most important element is removed regularly.
Shortest Paths in a Graph

- Task: Find the distance between X and all other nodes
 - Classical problem: Single-Sink-Shortest-Paths
 - Famous solution: Dijkstra’s algorithm
Assumptions

• We assume that there is at least one path between X and any other node (every node is reachable from X)
• We assume strictly positive edge weights
• Distance is the length (=sum of weights) of the shortest path
• There might be many shortest paths, but distance is unique
• We only want the distance and need no “witness path”
Exhaustive Solution

• First approach: Enumerate all paths
 - Need to break cycles (e.g. X – K3 – K4 – X – K3 - …)
Redundant work

- First approach: Enumerate all paths
 - Need to break cycles (e.g. X – K3 – K4 – X – K3 - …)
Dijkstra’s Idea

- Enumerate **paths by their length** (neither DFS nor BFS)
- Assume we reach a node Y by a path p of length l and we have already explored all paths with length $l' \leq l$ and that Y was not reached yet
 - We always mean “all paths starting from X”
- Then p must be the **shortest path** between X and Y
 - Because any p' between X and Y would have a **prefix of length at least** l and (a) a continuation with length > 0 or (b) would not need a continuation (then p is as short as p')
Example for Idea

• 1: X – K3
• 2: X – K3 – K2
• 2: X – K1
• 4: X – K3 – K2 – K6
• 4: X – K3 – K4
• 4: X – K3 – K7
• 5: X – K3 – K4 – K5
• 7: X – K3 – K7 – K8
• Stop (all nodes found)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K3</td>
<td>1</td>
</tr>
<tr>
<td>K2</td>
<td>2</td>
</tr>
<tr>
<td>K1</td>
<td>2</td>
</tr>
<tr>
<td>K6</td>
<td>4</td>
</tr>
<tr>
<td>K4</td>
<td>4</td>
</tr>
<tr>
<td>K7</td>
<td>4</td>
</tr>
<tr>
<td>K5</td>
<td>5</td>
</tr>
<tr>
<td>K8</td>
<td>7</td>
</tr>
</tbody>
</table>
A Further Trick

• We enumerate paths by length by iteratively extending short paths by all possible next edges
 - I.e., by looking at all edges outgoing from the end node of a short path

• These extensions
 - … either lead to a node which we didn’t reach yet – then we found a path, but cannot yet be sure it is the shortest
 - … or lead to a node which we already reached but we are not yet sure of we found the shortest path to it – update current best distance
 - … or lead to a node which we already reached and for which we also surely found the a shortest path already – these can be ignored

• Eventually, we can enumerate nodes by their distance
Algorithm

• Assumptions
 - Nodes have IDs between 1 ... |V|
 - Edges are (from, to, weight)

• We enumerate nodes by length of their shortest paths
 - In the first loop, we pick x and update distances (A) to all adjacent nodes
 - When we pick a node k, we already have computed its distance to x in A
 - We adapt the current best distances to all neighbors of k we haven’t picked yet

• Once we picked all nodes, we are done
Example for Algorithm

- Pick x
Example for Algorithm

- Pick x
- Adapt distances to all neighbors
Example for Algorithm

- Pick K3 (closest to x)
Example for Algorithm

- Pick K3
- Adapt distances (from x) to all neighbors (of K3)
Example for Algorithm

- Pick K1 (or K2)
Example for Algorithm

- Pick K1
- Adapt distances to all neighbors
 - There are none
Example for Algorithm

- Pick K2
Example for Algorithm

- Pick K2
- Adapt distances to all neighbors
 - K1 was picked already - ignore
 - We found a shorter path to K6
Example for Algorithm

- Pick K6 (or K4 or K7)
Example for Algorithm

- Pick K6
- Adapt distances to all neighbors
 - There are none
Example for Algorithm

- Pick K7
Example for Algorithm

- Pick K7
- Adapt distances to all neighbors
 - K6 was visited already
Example for Algorithm

- Pick K4
Example for Algorithm

- Pick K4
- Adapt distances to all neighbors
 - X was visited already
Example for Algorithm

- Pick K5 … Pick K8
A Closer Look

- Algorithm seems to work
 - Proof and analysis will follow later
 - Hint: 8 is passed-by $|V|$ times and 12 at most $|E|$ times
- Central: `get_closest_node()`
 - Needs to find the node k in L for which $A[k]$ is the smallest
 - $A[k]$ is changed a lot during a run
- Searching A? Resorting A?

Better: Priority queue
 - List of tuples (o, v) (object,value)
 - Central operation: Return tuple where v is smallest
Content of this Lecture

- Priority Queues
- Using Heaps
- Using Fibonacci Heaps
Priority Queues

- A priority queue (PQ) is an ADT with 3 essential operations
 - \texttt{add(o,v)}: Add element o with value (priority) v
 - May be also bulk insert – convert a list in a priority queue
 - \texttt{getMin()}: Retrieve element with highest priority
 - \texttt{removeMin()}: Remove element with smallest value
- Typical additional operations
 - \texttt{merge(p1, p2)}: Merge two PQs into one (properly sorted)
 - \texttt{delete(o)}: Delete o from PQ
 - \texttt{changeValue(o,v)}: Change value of o to v
Applications

- **Games (e.g. chess)**
 - The machine explores next movements but cannot look at all of them; give each move an assumed benefit and explore **moves with highest benefit first** (also called *A** algorithm)

- **Event simulators**
 - While events are handled, new events are generated for the future; manage all events in a PQ sorted by event time and **always pull the next event**

- **Quality of Service in a network**
 - When bandwidth is limited, sort all transmission requests in a PQ and **transmit by highest priority**

- ...
Naive Implementations (with $|Q|=n$)

- Using a linked list
 - `add` requires $O(1)$
 - `getMin` requires $O(n)$ [bad]
 - `deleteMin` requires $O(1)$ (if we keep the pointer after a `getMin`)
 - `merge` requires $O(1)$

- Using a linked list sorted by priority
 - `add` requires $O(n)$ [bad]
 - `getMin` requires $O(1)$
 - `deleteMin` requires $O(1)$
 - `merge` requires $O(n+m)$
Maybe Arrays?

• Using a sorted array
 – add requires $O(n)$ [We find the position in $\log(n)$, but then have to free a cell by moving all elements after this cell]
 – getMin requires $O(1)$
 – deleteMin requires $O(n)$

• PQs are typically used in applications where elements are inserted and removed all the time

• We need a DS that can change its size dynamically at very low cost

• We want constant or at most log-time for all operations
Content of this Lecture

- Priority Queues
- **Using Heaps**
 - Heaps
 - Operations on Heaps
 - Heap Sort
- **Using Fibonacci Heaps**
Heap-based PQ

• Unsorted lists require O(n) for `getMin()`
 - We don’t know where the smallest element is
• Sorted lists require O(n) for `add()`
 - We don’t know where to put the new element
• Can we find a way to keep the list “a little sorted”?
 - Actually, we only want the smallest element at a fixed position
 - All other elements can be at arbitrary places
 - `add() / deleteMin()` should be faster than O(n), because they don’t need to keep the entire list sorted
• One such structure is called a heap
Heaps

- Definition
 A **heap** is a labeled binary tree for which the following holds
 - **Form-constraint (FC)**: The tree is complete except the last level
 - i.e.: Every node has exactly two children
 - **Heap-constraint (HC)**: The value of any node is smaller than that of its children
Properties

• Order
 - A heap is “a little” sorted: We know the smallest element (root)
 - We know the order for some pairs of elements (parent-successors), but for many pairs we don’t know which is bigger (e.g. nodes in the same level)

• Size
 - A complete binary tree with m levels has 2^{m-1} nodes
 - A heap with m levels thus has between $2^{m-1}+1$ and 2^{m-1} nodes
 - A heap with n nodes has $\lceil \log(n+1) \rceil$ levels
Operations

- Assume we store our PQ as a heap
- Clearly, `getMin()` is possible in $O(1)$
 - Keep a pointer to the root
- But ...
 - How can we perform `deleteMin()` – such that the new structure again is a heap?
 - How can we add an element to a heap – such that the new structure again is a heap?
 - How can we turn a list into a heap?
DeleteMin()

- We first remove the root
 - Creates **two heaps**
 - We must connect them again
- We take the „last“ node, place it in root, and **sift it down the tree**
 - Last node: right-most in the last level (actually, we can take any from the last level)
 - **Sifting down**: Exchange with smaller of both children as long as at least one child is smaller than the node itself
Analysis - Correctness

• We need to show that **FC and HC still hold**

• **HC:** Look at the tree after we moved a node k. k may
 - … be smaller than its children. Then HC holds and we are done
 - … be larger than at least one child k_2. Assume that k_2 is the smaller of the two children (k_1, k_2) of k. We next swap k and k_2. The **new parent (k_2) now is smaller** than its children (k_1, k), so the HC holds
 - After the last swap, k has no children – HC holds

• **FC:** We remove one node, then we sift down
 - Removing last node doesn’t affect FC as we remove in the last level
 - Sifting does not change the **topology of the tree** (we only swap)
Analysis - Complexity

- Recall that a heap with n nodes has $\lceil \log(n+1) \rceil$ levels
- During sifting, we perform at most one comparison and one swap in every level
- Thus: $O(\lceil \log(n+1) \rceil) = O(\log(n))$
Add() on a Heap

• Cannot simply add on top
• Idea: We add new element somewhere in last level and **sift up**
 - We might need a new level
 - Sifting up: Compare to parent and swap if parent is larger
Analysis

- **Correctness**
 - **HC**
 - If parent has *only one child*, HC holds after each swap
 - Assume a parent k has children k1 and k2, k2 was swapped there in the last move, and k2<k. Since HC held before, k<k1, *thus k2<k<k1*. We swap k2 and k, and thus the **new parent is smaller** than its children. On the other hand, if k2≥k, HC holds immediately (and we don’t swap).
 - **FC**: See `deleteMin()`

- **Complexity**: O(log(n))
 - See `deleteMin()`
How to Find the Next Free / Last Occupied Node

• What do we need to find?
 - For deleteMin, we use the right-most leaf on the last level
 - For add, we add after the leaf right from the last leaf

• We actually need the parent k
 - From n, we can compute in O(1) the position p of the last leaf in the last level: \(p = n - 2^{\lfloor \log(n) \rfloor} \)
 • Or \(\log(n+1) \) for add
 - The parent k of the node at p has index floor(p/2)'th in level d-1
 - The parent k' of k has index floor(p/4)'th in level d-2
 - …
 - Now, in each node, we can decide whether to go left or right
 - Fast trick: Use the binary representation of p
Illustration

- For `deleteMin`, we need `x` (or `x'`); for `add`, we need `y` (or `y'`)
 - \(p(x) = 0, \ p(y) = 1, \ p(x') = 4, \ p(y') = 5 \)
 - Binary: 000, 001, 100, 101
- Go through bitstring from left-to-right
- Next bit=0: Go left
- Next bit=1: Go right

- Allows finding \(k \) in \(O(\log(n)) \)
Summary

<table>
<thead>
<tr>
<th></th>
<th>Linked list</th>
<th>Sorted linked list</th>
<th>Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>getMin()</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>deleteMin()</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(log(n))</td>
</tr>
<tr>
<td>add()</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(log(n))</td>
</tr>
<tr>
<td>merge()</td>
<td>O(1)</td>
<td>O(n1+n2)</td>
<td>O(log(n1)*log(n2))</td>
</tr>
<tr>
<td>Space</td>
<td>n add. pointer</td>
<td>n add. pointer</td>
<td>n add. pointer</td>
</tr>
</tbody>
</table>

Heaps can also be kept efficiently in an array – no extra space, but limit to heap size.

But merge() requires O(n1+n2) or O(n1*log(n2+n1)) when using an array.
Creating a Heap

- We start with an unsorted list with n elements
- Naïve algorithm: Start with empty heap and perform n additions
 - Obviously requires $O(n \times \log(n))$
- Better: **Bottom-Up-Sift-Down**
 - Build a tree from the n elements fulfilling the FC (but not HC)
 - Simple fill a tree level-by-level – this is in $O(n)$
 - Sift-down all nodes on the second-last level
 - Sift-down all nodes on the third-last level
 - ...
 - Sift down root
Analysis

- **Correctness**
 - After finishing one level, all **subtrees starting in this level** are heaps because sifting-down ensures FC and HC (see `deleteMin()`)
 - Thus, when we are done with the first level (root), we have a heap

- **Analysis**
 - We look at the cost per level h ($1 \ldots \log(n)=d$)
 - For every node at level h, we need at most $d-h$ operations
 - At level $h \neq d$, there are 2^{h-1} nodes
 - For nodes at level d, we don’t do anything
 - Over all levels, this yields

 $T(n) = \sum_{h=1}^{d-1} 2^{h-1} \ast (d - h) = \sum_{h=1}^{d-1} h \ast 2^{d-h-1} = 2^{d-1} \sum_{h=1}^{d-1} \frac{h}{2^h} \leq n \ast \sum_{h=1}^{\infty} \frac{h}{2^h} = n \ast 2 = O(n)$
Heap Sort

- Heaps also are a suitable data structure for sorting
- **Heap-Sort** (a classical one)
 - Given an unsorted list, first create a heap in $O(n)$
 - Repeat
 - Take the smallest element and store in array in $O(1)$
 - Re-build heap in $O(\log(n))$
 - Call $\text{deleteMin}(\text{root})$
 - Until heap is empty - after n iterations
- Thus: $O(n \cdot \log(n))$
 - Average-case only slightly better
- Can be implemented in-place when heap is stored in array
 - See [OW93] for details
Content of this Lecture

• Priority Queues
• Using Heaps
• Using Fibonacci Heaps
Fibonacci-Heaps (very rough sketch)

- A **Fibonacci Heap (FH)** is a forest of (non-binary) heaps with disjoint values
 - All roots are maintained in a double-linked list
 - Special pointer (\texttt{min}) to the smallest root
 - Accessing this value (\texttt{getMin()}) obviously is \texttt{O(1)}

Source: S. Albers, Alg&DS, SoSe 2010
Maintainance of a FH

• FHs are maintained in a lazy fashion
 - add(v): We create a new heap with a single element node with value v. Add this heap to the list of heaps; adapt min-pointer, if v is smaller than previous min
 • Clearly O(1)
 - merge(): Simple link the two root-lists and determine new min (as min of two mins)
 • Clearly O(1)
• Deleting an element (deleteMin()) needs more work
 - Until now, we just added single-element heaps
 - Thus, our structure after n add() is an unsorted list of n elements
 - Finding the next min element after deleteMin() in a naïve manner would require O(n)
deleteMin() on FH

• Method is not complicated
 - We first remove the min element
 - We then go through the root-list and **merge heaps with the same rank** (=# of children) until all heaps in the list have different ranks
 - Merging two heaps in $O(1)$: (1) Find the heap with the smaller root value; (2) Add it as child to the root of the other heap

• But analysis is fairly complicated
 - The above method is $O(n)$ in worst case
 • But after every clean-up, the root-list is much smaller than before
 • Subsequent clean-ups need much less time
 - Amortized analysis shows: Average-case complexity is $O(\log(n))$
 - Analysis depends on the growth of the trees during merge - these grow as the **Fibonacci numbers**
Disadvantage

- Though faster on average, Fibonacci Heaps have unpredictable delays
- No \(\log(n) \) upper bound for every operation
- Not suitable for real-time applications etc.
Summary

<table>
<thead>
<tr>
<th></th>
<th>Linked list</th>
<th>Sorted linked list</th>
<th>Heap</th>
<th>Fibonacci Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>getMin()</code></td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td><code>deleteMin()</code></td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(log(n))</td>
<td>O(log(n))*</td>
</tr>
<tr>
<td><code>add()</code></td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(log(n))</td>
<td>O(1)</td>
</tr>
<tr>
<td><code>merge()</code></td>
<td>O(1)</td>
<td>O(n1+n2)</td>
<td>O(log(n))</td>
<td>O(1)</td>
</tr>
</tbody>
</table>