Algorithms and Data Structures

Sorting:
Merge Sort and Quick Sort

Ulf Leser
Content of this Lecture

- Merge Sort
- Quick Sort
Central Idea for Improvement

- Methods we analyzed so-far did not optimally exploit transitivity of the „greater-or-equal“ relationship
- If \(x \leq y \) and \(y \leq z \), then \(x \leq z \)
- If we compared \(x \) and \(y \) and \(y \) and \(z \), there is no need any more to compare \(x \) and \(z \)
- The clue to lower complexities in sorting is finding ways to exploit such information
Merge Sort

• Given the lower bound, we hope that we can do better
 - Not necessarily: The lower bound does not imply per-se that there is (and that we know) an algorithm which runs in this complexity

• Good news: There are various sort algorithms with \(O(n \log(n)) \) comparisons

• (Probably) Simplest one: Merge Sort
 - Divide-and-conquer algorithm
 - Break array in two partitions of equal size
 - Sort each partition recursively, if it has more than 1 elements
 - Merge sorted partitions

• Merge Sort is not in-place: Requires \(O(n) \) additional space
Illustration

Source: WikiPedia
Illustration

- **Divide - Partition**
- **Conquer - Merge**
 - Here we exploit transitivity
 - We save comparisons during merge because both sub-lists are sorted

Source: WikiPedia
Algorithm

function void mergesort(S array; l,r integer) {
 if (l<r) then
 m := (r-l) div 2;
 mergesort(S, l, m);
 mergesort(S, l+m+1, r);
 #merges two sorted lists:
 merge(S, l, l+m ,r);
 else
 # Nothing to do, 1-element list
 end if;
}

Source: WikiPedia
Merging Two Sorted Lists

• We briefly looked at this problem before: Intersection of two sorted doc-lists in Information Retrieval

• Idea
 - Move one pointer through each list
 - Whatever element is smaller, copy to a new list and increment this pointer
 • “New list” requires additional space
 - Repeat until one list is exhausted
 - Copy rest of other list to new list

```
| 1  | 2  | 1 |
| 4  | 3  | 2 |
| 7  | 8  | 3 |
| 8  | 9  | 4 |
| 12 | 11 | 7 |
| ...| ...| ...
```
Example

```
→
| 1 |
| 4 |
| 7 |
| 8 |
| 12 |
| ... |
| 2 |
| 3 |
| 8 |
| 9 |
| 11 |
| ... |
```

```
→
| 1 |
| 4 |
| 7 |
| 8 |
| 12 |
| ... |
| 2 |
| 3 |
| 8 |
| 9 |
| 11 |
| ... |
```

```
→
| 1 |
| 4 |
| 7 |
| 8 |
| 12 |
| ... |
| 2 |
| 3 |
| 8 |
| 9 |
| 11 |
| ... |
```

```
→
| 1 |
| 4 |
| 7 |
| 8 |
| 12 |
| ... |
| 2 |
| 3 |
| 8 |
| 9 |
| 11 |
| ... |
```

...
function void merge(S array; l,m,r integer) {

 B: array;
 i := l; # Start 1st list
 j := m+1; # Start 2nd list
 k := l; # Target list

 while (i<=m) and (j<=r) do
 if S[i]<=S[j] then
 B[k] := S[i]; # From 1st list
 i := i+1;
 else
 B[k] := S[j]; # From 2nd list
 j := j+1;
 end if;
 k := k+1; # Next target
 end while;

 if i>m then # What remained?
 copy S[j..r] to B[k..k+r-j+1];
 else
 copy S[i..m] to B[k..k+m-i+1];
 end if;

 # Back to place
 copy B[1..k] to S[l..r]
}
Complexity Analysis

- **Theorem**

 Merge Sort requires $\Omega(n \times \log(n))$ and $O(n \times \log(n))$ comparisons

- **Proof**
 - Merging two sorted lists of size n requires $O(n)$ comparisons
 - After every comp, 1 element is moved; there are only $2n$ elements
 - Merge Sort calls Merge Sort twice with half of the array
 - Let $T(n)$ be the number of comparisons
 - Thus: $T(n) = T(n/2) + T(n/2) + O(n) \sim 2T(n/2) + n$
 - This is $O(n \times \log(n))$
 - See recursive solution of max subarray
Remarks

• Merge Sort is worst-case optimal: Even in the worst of all cases, it does not need more than (in the order of) the minimal number of comparisons
 - Given our lower bound for sorting
• But there are also disadvantages
 - $O(n)$ additional space
 - Requires $\Omega(n \log(n))$ moves
 • Sorted sub-arrays get copied to new array in any case
 • See Ottmann/Widmayer for proof
• Note: Basis for sort algorithms on external memory
Summary

<table>
<thead>
<tr>
<th></th>
<th>Comparisons worst case</th>
<th>Comparisons best case</th>
<th>Additional space</th>
<th>Moves worst/best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2)/O(n)$</td>
</tr>
<tr>
<td>Bubble Sort</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2)/O(1)$</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \times \log(n))$</td>
<td>$O(n \times \log(n))$</td>
<td>$O(n)$</td>
<td>$O(n \times \log(n))$</td>
</tr>
</tbody>
</table>
Content of this Lecture

• Merge Sort
• Quick Sort
 – Algorithm
 – Average Case Analysis
 – Improving Space Complexity
Comparison Merge Sort and Quick Sort

• What can we do better than Merge Sort?
 - The $O(n)$ additional space is a problem
 - We need this space because the growing sorted runs have fixed sizes of up to 50% of $|S|$ (2, 4, 8, ..., ceil(n/2))
 - We cannot easily merge two sorted lists in-place, because we have no clue how the numbers are distributed in the two lists

• Quick-sort uses a similar yet different way
 - We also recursively generate sort-of sorted runs
 - Whenever we create two such runs, we make sure that one contains only small and one contains only large values
 • Relative to a value that needs to be determined
 - This allows us to do a kind-of “merge” in-place
Main Idea

- Let k be an arbitrary index of S, $1 \leq k \leq |S|$
- Look at element $S[k]$ (call it the **pivot element**)
- Modify S such that $\exists i: \forall j \leq i: S[j] \leq S[k]$ and $\forall l > i: S[k] \leq S[l]$
 - How? Wait a minute
 - S is **broken in two subarrays** S' and S''
 - S' with values smaller-or-equal than $S[k]$
 - S'' with values larger-or-equal than $S[k]$
 - Note that afterwards $S[k]$ is at its final position in the array
 - S' and S'' are smaller than S
 - But we don’t know how much smaller – depends on choice of k
- **Treat S' and S'' using the same method recursively**
 - How often? Not clear – depends on choice of k (again)
Illustration
Quick Sort Framework

• Start with `qsort(S, 1, |S|)`
• 6: “Sort” S around the pivot element (`divide`)
 - Problem 1: Choose k
 - Problem 2: Do this in-place
• 7: Sort all values smaller-or-equal than pivot element
• 8: Sort all values larger-or-equal than pivot element
• Problem 3: How often do we need to do this?

```c
1. func void qsort(S array;  
2.                 l,r integer) {
3.   if r≤l then
4.     return;
5.   end if;
6.   pos := divide( S, l, r);
7.   qsort( S, l, pos-1);
8.   qsort( S, pos+1, r);
9. }
```
Addressing P1 – approaching P3

- P1: We need to choose k (S[k])
- S[k] determines the sizes of S’ and S”

- S[k] in the **middle of the values of S**
 - S’ and S” are of equal size (~|S|/2)
 - Creates a “nice” search tree

- S[k] at the **border of the values of S**
 - |S’|~0 and |S”|~|S|-1 or vice versa
 - Creates a “bad” search tree

- **Hint to P3**: Somewhere in [log(n), n] times
 - Depending on choice of S[k]
Intermezzo: Mean and Median

• In statistics, one often tries to capture the essence of a (potentially large) set of values

• One essence: Mean
 - Average temperature per month, average income per year, average height of males at age of 18, average duration of study, …

• Less sensible to outliers: Median
 - The middle value
 - Assume temps in June 25 24 24 23 25 25 24 4 -1 9 18 24
 - Which temperature do you expect for an average day in June?
 • Mean: 18.6
 • Median: 24 – more realistic
 - How long will you need for your Bachelor? 6.35 semesters?
P1: Choosing k

- In the best case, $S[k]$ is the median of S

- Approximations
 - If S is an array of people’s income in Germany, we call the “Statistische Bundesamt” to ask for the mean of all incomes in Germany, and could scan the array until we find a value that is 10\% or less different, and use this value as pivot
 - If S is large and randomly drawn from a set of incomes, this scan will be very short
 - If S is an array of family names in Berlin, we take the Berlin telephone book, open it roughly in the middle, and could scan the array until we find a value that is 10\% or less different

- There is no exact and simple way to find the median of a large list of values (without sorting them)
P1: Choosing k - Again

- **Option 1:** Scan S to find min/max; search \(S[k] \approx \frac{(\text{max-min})}{2} \)
 - Why should the values in S be **equally distributed in this range**?
 - For instance: Incomes are not equally distributed in their range

- **Option 2:** Choose a set of values \(X \) from S at random and determine \(S[k] \approx \text{median}(X) \)
 - \(X \) follows the same distribution (same median) as S, but \(|X| \ll |S| \)
 - Since this procedure would have to be performed for each qSort, only (too) small \(X \) do not influence runtime a lot

- **More popular option 3:** Choose \(k \) **at random**
 - For instance, simply use the last value in the array
 - Also relieves from searching an appropriate \(S[k] \)
 - We’ll see that this already produces **quite good result on average**
Quick Sort Framework

- Start with qsort(S, 1, |S|)
- 6: “Sort” S around the pivot element (divide)
 - Problem 1: Choose k
 - Problem 2: Do this in-place
- 7: Sort all values smaller-or-equal than pivot element
- 8: Sort all values larger-or-equal than pivot element
- Problem 3: How often do we need to do this?

```c
1. func void qsort(S array;
2.                 l,r integer) {
3.   if r≤l then
4.     return;
5.   end if;
6.   pos := divide( S, l, r);
7.   qsort( S, l, pos-1);
8.   qsort( S, pos+1, r);
9. }
```
P2: Do this in-place

- We use \(k=r \)
- Simple idea
 - Search from \(l \) towards \(r \) until a value greater-or-equal \(S[r] \)
 - Start from \(r \) towards \(l \) until a values smaller-or-equal \(S[r] \)
 - Swap values
 - Start again, if \(i \) has not yet reached \(j \)
 - When we have stopped, all values left from \(i \) are smaller than \(S[r] \), and all values right from \(j \) are larger than \(S[r] \) – move \(S[r] \) right in the middle

```plaintext
1. func integer divide(S array;  
2.                                      l,r integer) {  
3.   val := S[r];  
4.   i := l-1;  
5.   j := r;  
6.   while true  
7.     repeat  
8.       i := i+1;  
9.     until S[i]>=val;  
10.    repeat  
11.      j := j-1;  
12.    until S[j]<=val or j<i;  
13.    if i>j then  
14.      break while;  
15.    end if;  
16.    swap( S[i], S[j] );  
17.  end while;  
18.  swap( S[i], S[r] );  
19.  return i;  
20. }
```
Example
P2: Complexity

- **# of comparisons: O(r-l)**
 - Whenever we perform a comparison, either i or j are incremented / decremented
 - i starts from l, j starts from r, and the algorithm stops once they meet
 - This is worst, average and best case

- **# of swaps: O(r-l) in worst case**
 - Example: 8,7,8,6,1,3,2,3,5
 - Gives ~\((r-l)/2\) swaps

1. `func integer divide(S array; l,r integer) {`
2. `val := S[r];`
3. `i := l-1;`
4. `j := r;`
5. `while true`
6. `repeat`
7. `i := i+1;`
8. `until S[i]>=val;`
9. `repeat`
10. `j := j-1;`
11. `until S[j]<=val or j<i;`
12. `if i>j then`
13. `break while;`
14. `end if;`
15. `swap(S[i], S[j]);`
16. `end while;`
17. `swap(S[i], S[r]);`
18. `return i;`
19. }`
Worst-Case Complexity of Quick Sort

- Worst case for number of comparisons: A reverse-sorted list
 - $S[r]$ always is the smallest element
 - Requires $r-1$ comparisons in every call of divide()
 - Every pair of qSort’s has $|S'|=0$ and $|S''|=n-1$
 - This gives $(n-1)+((n-1)-1)+...+1 = O(n^2)$
Content of this Lecture

- Merge Sort
- Quick Sort
 - Algorithm
 - *Average Case Analysis*
 - Improving Space Complexity
Intermediate Summary

- Great disappointment
- We are in $O(1)$ additional space, but as slow as our basic sorting algorithms
- But – only in worst case
- Let’s look at the average case
Average Case

- Without loss of generality, we assume that S contains all values 1…|S| in arbitrary order
 - If S had duplicates, we would at best save swaps (see code)
 - Sorting n different values is the same problem as sorting the values 1…n – replace each value by its rank
- For k, we choose any value in S with equal probability 1/n
- This choice divides S such that |S’| = k-1 and |S’’| = n-k
- Let T(n) be the average # of comparisons. Then:

\[
T(n) = \frac{1}{n} \sum_{k=1}^{n} (T(k-1) + T(n-k)) + bn = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + bn
\]

- Where bn is the time to divide the array and T(0) = 0
Induction

• We need to show that, for some c independent of n:

$$T(n) \leq c \cdot n \cdot \log(n)$$

• We proof by induction (for $n \geq 2$)
 - Clearly, $T(1) = 0 \leq 1 \cdot \log(1)$
 - We assume that the assumption holds for all $i < n$
 - Then

$$T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + bn$$

$$\leq \frac{2c}{n} \sum_{k=1}^{n-1} k \cdot \log(k) + bn$$

$$= \frac{2c}{n} \left[\sum_{k=1}^{n/2} k \cdot \log(k) + \sum_{k=1}^{n/2-1} \left(\frac{n}{2} + k \right) \cdot \log \left(\frac{n}{2} + k \right) \right] + bn$$
Continued

\[
T(n) \leq \frac{2c}{n} \left[\sum_{k=1}^{n/2} k \cdot \log(k) + \sum_{k=1}^{n/2-1} \left(\frac{n}{2} + k \right) \cdot \log\left(\frac{n}{2} + k \right) \right] + bn
\]

\[
\leq \frac{2c}{n} \left[\sum_{k=1}^{n/2} k \cdot \log(n) + \sum_{k=1}^{n/2-1} \left(\frac{n}{2} + k \right) \cdot \log(n) \right] + bn
\]

\[
= \frac{2c}{n} \left[\left(\frac{n^2}{2} - \frac{n}{2} \right) \cdot \log(n) - \frac{n^2}{8} - \frac{n}{4} \right] + bn
\]

\[
= c \cdot n \cdot \log(n) - c \cdot \log(n) - \frac{cn}{4} - \frac{c}{2} + bn
\]

\[
\leq c \cdot n \cdot \log(n) - \frac{cn}{4} - \frac{c}{2} + bn
\]

\[
\leq c \cdot n \cdot \log(n)
\]

Set \(c \geq 4b \)
Conclusion

- Although there are cases where we need $O(n^2)$ comparisons, these are so rare in the set of all possible permutations that we do not need more than $O(n \log(n))$ comparisons on average.
- In other words: If we sum the runtimes of Quick Sort over many (all) different orders of n values (for different n), then this sum will grow with $n \log(n)$, not with n^2.
- One can show the same for the # of swaps.
- Quick Sort is a fast general-purpose sorting algorithm.
Content of this Lecture

- Merge Sort
- Quick Sort
 - Algorithm
 - Average Case Analysis
 - Improving Space Complexity
Looking at Space Again

- We were quite sloppy
- Quick Sort does need extra space – every recursive call puts some data on the stack
 - Array can be passed by reference or declared as a global variable
 - But we need to pass \(l \) and \(r \)
- Our current version has worst-case space complexity \(O(n) \)
 - Consider the worst-case of the time complexity
 - Reverse-sorted array
 - Creates \(2n \) recursive calls
 - This requires \(n \) times 2 integers on the stack
Improving Space Complexity

- In the recursive decent, always **treat the smaller** of the two sub-arrays first (S’ or S’’), whatever is smaller.
- This branch of the search tree can generate at most $O(\log(n))$ calls, as the smaller array always is smaller than $|S|/2$ (or it would not be the smaller one).
- Use iteration (no stack) to sort the bigger array afterwards.
- **Space complexity: $O(\log(n))$**
Implementation

1. func integer qSort(S array; l,r int) {
2. if r≤l then
3. return;
4. end if;
5. val := S[r];
6. i := l-1;
7. j := r;
8. while true
9. repeat
10. i := i+1;
11. until S[i]>val;
12. repeat
13. j := j-1;
14. until S[j]<val or j<i;
15. if i>j then
16. break while;
17. end if;
18. swap(S[i], S[j]);
19. end while;
20. swap(S[i], S[r]);
21. qsort(S, l, i-1);
22. qSort(S, i+1, r);
23. }

1. func integer qSort++(S array; l,r int) {
2. if r≤l then
3. return;
4. end if;
5. while r > l do
6. val := S[r];
7. i := l-1;
8. j := r;
9. while true
10. repeat
11. i := i+1;
12. until S[i]>val;
13. repeat
14. j := j-1;
15. until S[j]<val or j<i;
16. if i>j then
17. break while;
18. end if;
19. swap(S[i], S[j]);
20. end while;
21. swap(S[i], S[r]);
22. if (i-1-l) < (r-i-1) then
23. qsort(S, l, i-1);
24. l := i+1;
25. else
26. qSort(S, i+1, r);
27. r := i-1;
28. end if;
29. end while;
Implementation

- 14-20: Choose the smaller and sort it recursively
 - Note: Only one call is made for each division
- We adjust l/r and continue to sort the larger sub-array
 - New loop (6-21) applies the same procedure performing the next sort
- We turned a linear tail recursion into an iteration without stack

```
1. func integer qSort++(S array; l,r int) {
2.   if r<=l then
3.     return;
4.   end if;
5.   while r > l do
6.     val := S[r];
7.     i := l-1;
8.     j := r;
9.   while true
10.     # as before
11.   end while;
12.   swap( S[i], S[r]);
13.   if (i-1-1) < (r-i-1) then
14.     qsort(S, l, i-1);
15.     l := i+1;
16.   else
17.     qSort(S, i+1, r);
18.     r := i-1;
19.   end if;
20. end while;
21. end while;
22.}
```
Illustration
Improving Space Complexity Further

- Even $O(1)$ space is possible
 - Do not store l/r, but search them at runtime within the array
 - Requires extra work in terms of runtime, but within the same complexity
 - See Ottmann/Widmayer for details
 - Is it worth it in practice?
 - Log(n) usually is not a lot of space
Summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Comps worst case</th>
<th>Comps avg. case</th>
<th>Comps best case</th>
<th>Additional space</th>
<th>Moves (wc / ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>O(n²)</td>
<td></td>
<td>O(n²)</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>O(n²)</td>
<td></td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(n²)</td>
</tr>
<tr>
<td>Bubble Sort</td>
<td>O(n²)</td>
<td></td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(n²)</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>O(n*log(n))</td>
<td>O(n*log(n))</td>
<td>O(n)</td>
<td>O(n*log(n))</td>
<td>O(n*log(n))</td>
</tr>
<tr>
<td>QuickSort</td>
<td>O(n²)</td>
<td>O(n*log(n))</td>
<td>O(n*log(n))</td>
<td>O(log(n))</td>
<td>O(n²) / O(n*log(n))</td>
</tr>
</tbody>
</table>