Protein-Protein-Interaction Networks

Ulf Leser, Samira Jaeger
This Lecture

- **Protein-protein interactions**
 - Characteristics
 - Experimental detection methods
 - Databases
- **Protein-protein interaction networks**
Motivation

• Virtually all cellular mechanisms rely on the physical binding of two or more proteins
 - E.g. signal transduction, gene regulation, metabolism, ...
 - May be transient or permanent
 - May be directed (regulates) or undirected (bind)

• Changes in protein structure / concentration may hinder binding and thus perturb natural cellular processes
 - Influence on all “downstream” proteins, i.e., proteins reachable through a path of interactions

• Interactome – set of all PPIs in a cell (type, species, …)
• Global characterization of cellular processes
PPI: Context-dependent

- Protein-protein interaction: *Physical contact* with molecular docking
- Many proteins can interact – but under which conditions?
 - Cell type, cell cycle phase and state
 - Environmental conditions
 - Developmental stage
 - Protein modification
 - Presence of cofactors and other binding partners
 - …
Experimental detection methods

- PPIs have been studied extensively by different experimental methods
- Many are small-scale: Two given proteins in a given condition
- **High-throughput methods**
 - Yeast two-hybrid assays (Y2H)
 - Tandem affinity purification and mass spectrometry (TAP-MS)
Yeast two-hybrid screens

- Indirect methods: \textit{gene is expressed} iff two proteins bind
- Transcription often requires two domains: DNA binding domain (BD) and an activation domain (AD)

- Method
 - Protein 1 (bait) is \textit{fused to DNA binding domain}
 - Protein 2 (prey) is \textit{fused to activating domain}
 - Both are expressed in genetically engineered yeast cells
 - If they bind, reporter gene will be expressed and can be detected
Properties

• Advantages
 - Many preys can be tested with same bait in “one” experiment
 - Can be automized – high coverage of interactome
 - Very sensitive

• Problems
 - High rate of false positives (up to 50%)
 • Artificial environment: Yeast cells
 • No port-translational modifications
 • No protein transport
 • Unclear if proteins in vivo are ever expressed at the same time
 • ...
 - Not all proteins survive fusion with domains – false negatives
Tandem affinity purification and mass spectrometry

Bait → Tag → Purification by affinity chromatography

Identification of associated proteins by mass spectrometry

Purified protein complexes
Properties

• Advantages
 - Can capture PPI in natural conditions
 - Single bait can detect many interactions in one experiment
 - Few false positives

• Disadvantages
 - Tag may hinder PPI – false negatives
 - Purification and MS are delicate processes (see next lecture)
 - Internal structure of complex is not resolved
Matrix / Spokes Model

- Direct interactions can not be distinguished from interactions mediated by other proteins in a complex
- **Matrix model**: infers interactions between all proteins of a purified complex $\rightarrow (N\times N - 1)/2$
- **Spokes model**: infers only interactions between the bait and the co-purified proteins $\rightarrow N - 1$

<table>
<thead>
<tr>
<th># Proteins</th>
<th>Matrix</th>
<th>Spokes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>45</td>
<td>9</td>
</tr>
<tr>
<td>80</td>
<td>3540</td>
<td>79</td>
</tr>
</tbody>
</table>
PPI Databases [KP10]

- There are >300 BDBs related to PPI and pathways
 - See http://www.pathguide.org

- Manually curated “source” DBs
PPI Databases

- There are >300 BDBs related to PPI and pathways
 - See http://www.pathguide.org

- Manually curated “source” DBs
- DBs integrating other and HT data sets
PPI Databases

• There are >300 BDBs related to PPI and pathways
 - See http://www.pathguide.org

• Manually curated “source” DBs
• DBs integrating others and HT data sets
• Predicted interactions
PPI Databases

- There are >300 BDBs related to PPI and pathways
 - See http://www.pathguide.org

- Manually curated “source” DBs
- DBs integrating other and HT data sets
- Predicted interaction
- Pathway DBs (consisting of PPI)
A Mess [KP10]

• **Different definitions** of a PPI
 - Binary, physical interaction
 - Complexes
 - Transient, functional association

• Some integrated DBs have imported more data than there is in the sources

• Source databases **overlap to varying degrees**

• Largely **different reliability** of content

• **Literature-curated DBs** do not exhibit higher quality than HT [CYS08]
 - Re-annotation reveals inconsistencies, subjective judgments, errors in gene name assignment, …
Concrete Examples

<table>
<thead>
<tr>
<th>Database</th>
<th>Species</th>
<th>Proteins</th>
<th>Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IntAct</td>
<td>No restriction</td>
<td>53.276</td>
<td>271.764</td>
</tr>
<tr>
<td>BioGrid</td>
<td>No restriction</td>
<td>30.712</td>
<td>131.638</td>
</tr>
<tr>
<td>DIP</td>
<td>No restriction</td>
<td>23.201</td>
<td>71.276</td>
</tr>
<tr>
<td></td>
<td>(372)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MINT</td>
<td>No restriction</td>
<td>31.797</td>
<td>90.505</td>
</tr>
<tr>
<td>HPRD</td>
<td>Human only</td>
<td>30.047</td>
<td>39.194</td>
</tr>
<tr>
<td>MMPPI</td>
<td>Mammals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRING</td>
<td>No restriction</td>
<td>2.590.259</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(630)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UniHI</td>
<td>Human only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPID</td>
<td>Human only</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Experimentally verified
- Experimentally verified and / or predicted
This Lecture

- Protein-protein interactions
- **Protein-protein interaction networks**
 - Scale-free graphs
 - Cliques and dense subgraphs
 - Centrality and diseases
Some Fundamental Observations

- Proteins that are close in the network have higher chance to share function
- Central proteins are vital
- Complexes form dense subgraphs
- Functional modules are close subgraphs
- Certain subgraphs can be found significantly more often than expected by chance
Protein-protein interaction networks

- Networks are represented as graphs
- Definition of a graph: \(G = (V, E) \)
 - \(V \) is the set of nodes (proteins)
 - \(E \) is the set of edges (interactions)
- Computational representation

Adjacency lists

\{ (A,C), (A,D), (B,D), (C,A), (C,D), (D,B), (D,C), (D,A) \}

Adjacency matrix

\[
\begin{array}{cccc}
A & B & C & D \\
A & 0 & 0 & 1 & 1 \\
B & 0 & 0 & 0 & 1 \\
C & 1 & 0 & 0 & 1 \\
D & 1 & 1 & 1 & 1 \\
\end{array}
\]
Degree distribution

- **Degree distribution** $P(k)$: relative frequency of nodes with exactly k links
- Used to define different classes of networks
- Common distributions
 - **Poisson**
 - Random networks

 $P(k) = \frac{e^{-d} d^k}{k!}$
 - **Power-law:**
 - Scale-free networks

 $P(k) \sim k^{-\gamma}$

Barabasi et al., 2004
Scale-free Networks

- Biological networks are (presumably) scale-free
 - Few nodes are highly connected (hubs)
 - Most nodes have very few connections
- Also true for many other graphs: electricity networks, public transport, social networks, ...
- Evolutionary explanation
 - Growth: Networks grow by addition of new nodes
 - Preferential attachment: new nodes prefer linking to more connec. Nodes
 - Explanation: Gene duplication
 - Older nodes have more changes to connect to nodes
 - Hub-structure emerges naturally
Modular network organization

• Cellular function is carried out in a modular manner
• Function is reflected in a modular network structure

Don’t be fooled by layout

Modules must be dense, not close

Costanzo et al., Nature, 2010
Clustering Coefficient

- Modules (cluster) are densely connected groups of nodes
- **Cluster coefficient** C reflects network modularity by measuring tendency of nodes to cluster (‘triangle density’)

\[
C_v = \frac{2E_v}{d_v(d_v - 1)} \quad \text{and} \quad C = \frac{1}{|V|} \sum_{v \in V} C_v
\]

- E_v = number of edges between neighbors of v
- d_v = number of neighbors of v

\[
\frac{d_v(d_v - 1)}{2} = \text{maximum number of edges between neighbors } d_v
\]
Example

- Cluster coefficient is a measure for the entire graph.
- We also want to find modules, i.e., regions in the graph with very high cluster coefficient.
- A clique is a maximal complete subgraph, i.e., a set of nodes where every pair is connected by an edge.

\[C_v = \frac{10}{10} = 1 \quad C_v = \frac{3}{10} = 0.3 \quad C_v = \frac{0}{10} = 0 \]
Functional Modules

Ribosome subunits – Translation

Pathways in cancer

MAPK/VEGF/Erb B signaling pathway

Proteasome subunits – Protein degradation

Protein transport

GORASP2, GORASP1
RAR1A, RAR1B
USP1

SSRP1
TOP2A, TOP2B
CSNK2B
PGK1
GAPDH
RBM19
RPS3A
RRB4, RRB7

HSPA1, HSPA5
HSPA12A1, HSPA12A2

PSM1
PSM8
PSM7
PSM2
PSM1
PSM4
PSM11
PSM12
PSM5
PSM6
PSM13
PSM14
PSM15
PSM10
PSM1
PSM2
PSM3
PSM4
PSM5
PSM6
PSM7
PSM11
PSM12
PSM13
PSM14
PSM15
PSM10

ABCE1
RPL4
RPL6
RPS15A
RPS11
RPL5
RPL31
PSM2, PKER

DDX3, DDX3X
DDX4
LFIA1ELF4A2
ELL1, ELL1B

Ulf Leser: Bioinformatics, Summer Semester 2012
Finding Modules / Cliques

- Finding all **maximal cliques** in a graph is a highly complex problem
 - NP-complete
- Finding **“quasi-cliques”** is equally complex
 - Cliques with some missing edges
 - Same as subgraphs with high cluster coefficient
- Various heuristics
 - E.g. a good quasi-clique probably contains a (smaller) clique

```plaintext
build set S_2 of all cliques of size 2
i:= 3;
repeat
  S_i := \emptyset;
  for j := 1 to |S_{i-1}|
    for k := i+1 to |S_{i-1}|
      T := S_{i-1}[j] \cap S_{i-1}[k];
      if |T|=i-1 then
        N := S_{i-1}[j] \cup S_{i-1}[k];
        if N is a clique then
          S_i := S_i \cup N;
        end if;
      end if;
    end for;
  end for;
until |S_1| = 0:
```
Example

- 4-cliques: (1,3,4,5) – (1,3,4,6) – (1,3,4,7) - ...
- Merge-Phase

\[
\begin{align*}
|(1,3,4,6) \cap (1,3,4,7)| &= 3 \\
(1,3,4,6) \cup (1,3,4,7) &= (1,3,4,6,7)
\end{align*}
\]

Edge (6,7) exists

\[
\begin{align*}
|(1,3,4,5) \cap (1,3,4,6)| &= 3 \\
(1,3,4,5) \cup (1,3,4,6) &= (1,3,4,5,6)
\end{align*}
\]

Edge (5,6) does not exist

5-clique

No clique
This Lecture

- Protein-protein interactions
- Protein-protein interaction networks
 - Scale-free graphs
 - Cliques and dense subgraphs
 - Centrality and diseases
Network centrality

- **Central proteins** exhibit interesting properties
 - Essentiality – knock-out is lethal
 - Much higher **evolutionary conservation**
 - Often associated to (certain types of) human diseases

- **Various measures exist**
 - Degree centrality: Rank nodes by degree
 - Betweenness-centrality: Rank nodes by number of shortest path between any pair of nodes on which it lies
 - Closeness-centrality: Rank nodes by their average distance to all other nodes
 - PageRank
 - …
Network-based Disease Gene Ranking

Known Disease Genes (Seeds)
- HRAS
- RB1
- KRAS2
- FGFR3

Human Protein Interactions

Indirect Interactions

Functional Associations

Predicted Function

Network Centrality Analysis

Ranking

Disease candidates
Centrality of Seeds in (OMIM) Disease Networks

Fraction of seeds among top $k\%$ ranked proteins; ~ 600 diseases from OMIM

$d_1 =$ direct interactions
$d_2 =$ direct and indirect interactions
Cross-Validation

• If a disease gene is **not yet known** – can we find it?
Further Reading