This Lecture

• Proteins
 - Structure
 - Function
 - Databases

• Predicting Protein Secondary Structure

• Examples often from O. Kohlbacher, Vorlesung Strukturvorhersage, WS 2004/2005, Universität Tübingen
Central Dogma of Molecular Biology

DNA \rightarrow RNA \rightarrow \text{protein}

- Replication: vertical information flow
- Expression: horizontal information flow

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>C</th>
<th>A</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>UUU</td>
<td>UUC</td>
<td>UAU</td>
<td>UGA</td>
</tr>
<tr>
<td></td>
<td>UUA</td>
<td>UUG</td>
<td>UAG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phenylalanine</td>
<td>Leucine</td>
<td>Serine</td>
<td>Tyrosine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>CUU</td>
<td>CUC</td>
<td>CAU</td>
<td>CUG</td>
</tr>
<tr>
<td></td>
<td>CUA</td>
<td>CUG</td>
<td>CAG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leucine</td>
<td>Leucine</td>
<td>Proline</td>
<td>Histidine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>AUU</td>
<td>AUC</td>
<td>AAA</td>
<td>AUG</td>
</tr>
<tr>
<td></td>
<td>AUG</td>
<td></td>
<td>AAG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isoleucine</td>
<td>Methionine; initiation codon</td>
<td>Threonine</td>
<td>Asparagine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>GUU</td>
<td>GUC</td>
<td>GAU</td>
<td>GUG</td>
</tr>
<tr>
<td></td>
<td>GUA</td>
<td>GUG</td>
<td>GAG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valine</td>
<td>Alanine</td>
<td>Aspartic acid</td>
<td>Glycine</td>
</tr>
</tbody>
</table>

Ulf Leser: Bioinformatics, Summer Semester 2012
Details

- **Alternative Splicing**
 - “One gene – one protein” is wrong
 - Exons may be spliced from the protein sequence
 - Human: \(~6\) times more proteins than genes

- **Post-translational modifications**
 - (De-)Phosporylation, glycolysation, cleavage of signals, …
 - Rough estimates: 100K proteins, 500K protein forms

- **Complexes**: Proteins *physically group together* to perform specific function
Example: Proteasome

- **Very large complexes** present in all eukaryotes (and more species)
 - >2000 kDa, made of **dozens of single protein chains**
 - Formation of the complex is a complex process only partly understood yet

- **Breaks** (mis-folded, broken, superfluous, ...) proteins into small peptides for reuse
 - Tagging with ubiquitin which binds to the proteasome
Protein Structure

- **Primary**
 - 1D-Seq. of AA

- **Secondary**
 - 1D-Seq. of “subfolds”

- **Tertiary**
 - 3D-Structure

- **Quaternary**
 - Assembled complexes
Protein Function

- Proteins perform essentially everything that makes an organism alive
 - Metabolism
 - Signal processing
 - Gene regulation
 - Cell cycle
 - ...
- For ~1/3 of all human gene, no function is known
- Describing function
 - **Gene Ontology**: 3 branches, >30,000 concepts
 - Used world-wide to describe gene/protein function
Protein Interactions and Networks

- Function usually is carried out by a complex interplay between different proteins and other molecules
- **Pathways**: (artificial) fragments of the cellular network associated to a certain function
 - See lectures later
Function and Motifs

• Protein often have multiple functions
 – Avg. number of GO terms assigned to a human protein: ~6
• Functions are associated to motifs or domains
• There probably exist only 4000-5000 motifs
 – Proteins as assemblies of functional motifs
• Performing a function often requires binding to another protein or molecule
 – The binding requires a certain constellation of the protein structure
 – Major target of pharmacological research
Protein Families and Classification

- Several DBs classify proteins according to their **overall structure** (CATH, SCOP, FSSP)
- Highly related to **evolutionary relationships** (and function)
- Example: CATH
 - Class (all α, all β, α-β, other)
 - Architecture
 - Topology (similar folds)
 - Homologous superfamily (sets of concrete proteins)
- Helpful to characterize novel proteins
Functional Classification

- Folds correlate with function, but many exceptions
- **Enzyme classification** (EC-numbers)
 - 4-level hierarchy
 - Based on chemical reactions that are catalyzed
 - Closer related to function than classes of folds
 - Relation protein:EC-number is mostly 1:1
- EC-number and GO-annotation are highly correlated
 - But >30,000 concepts versus <4000 EC-numbers
Proteomics – Large Scale Protein Identification

• Measuring gene expression: RNA-Seq, microarrays, PCR, ...
• Measuring proteins is much harder
 – Isolating proteins is very complex
 – Sequencing a protein is very slow
• Options (next lecture)
 – Isolation: 2D-Page, chromatography, ...
 – Identification: Mass spectrometry
 – De-dovo sequencing with MS/MS
 – Quantification is very difficult
• Some classes of proteins are particularly hard to handle
 – Membrane proteins, non-soluble proteins
UniProt

• “Standard” database for protein sequences and annotation
 - Original name: SwissProt
 - Started at the Swiss Institute of Bioinformatics, now mostly EBI
 - Other: PIR, HPRD

• Continuous growth and curation
 - >30 “Scientific Database Curators”
 - Quarterly releases
 - Very rich annotation set

• Actually two databases
 - SwissProt: Curated, high quality, versioned
 - TrEMBL: Automatic generation from (putative) coding genomic sequences, low quality, redundant, much larger

- 20258 Homo sapiens (Human)
- 16327 Mus musculus (Mouse)
- 9842 Arabidopsis thaliana (Mouse-ear cress)
- 7560 Rattus norvegicus (Rat)
- 6582 Saccharomyces cerevisiae (Baker's yeast)
- 5803 Bos taurus (Bovine)

...
PDB – Protein Structure Database

- Oldest protein database, evolved from a book
- Contains experimentally obtained protein 3D-structures
 - Plus some DNA, protein-ligand, complexes, …
 - X-Ray (~75%), NMR (nuclear magnetic resonance, ~23%)
- Costly and rather slow techniques
 - Growth much smaller than that of sequence-related DBs
- Many problems with legacy data and data formats
InterPro

• **Integrated database** of protein signatures, classifications, and motifs
 - Currently ~21,000 signatures
• Associates signatures with function (GO term)
• **InterProScan** – quick identification of signatures in a protein sequence
 - For a fast, first functional annotation
This Lecture

• Introduction

• Predicting Protein Secondary Structure
 - Secondary structure elements
 - Chou-Fasman
 - GOR IV
 - Other methods
Amino Acids

• An AA consists of a common core and a specific residue
 - Amino group – NH₂
 - Central C\textsubscript{α} - Carbon – CH
 - Carboxyl group – COOH
• Residues (side chains) vary greatly between AA
• Residues determine the specific properties of a AA
Structure of a Protein

- The core forms the backbone of a protein (AA chain)
- Covalent **peptide bonds** between carboxyl and amino group (with loss of H₂O)
Flexibility

- In principle, every chemical bond can rotate freely,
- Would allow arbitrary backbone structures
- In proteins things are much more restricted
 - Peptide bound is “flat” – almost no torsion possible
 - Flexibility only in the C_α-flanking bonds ϕ and ψ
Ramachandran Plots

• Combinations of ϕ and ψ are **highly constrained**
 • Due to chemical properties of the backbone / side chains
• Two combinations are favored: α-helixes and β-sheets
 – More detailed classifications exist
 – Angels lead to specific structures
 – Secondary structure
α-Helixes

- Sequence of angles forming a regularly structured *helix*
- Additional bonds between amino and carboxyl groups
 - Very *stable structure*
- May have two orientations
 - Most are right-handed
- 3.4 AA per twist
- Often short, sometimes very long
β-Sheets

- Two linear and parallel stretches (β-strands)
- Strands are bound together by hydrogen bonds
- Can be parallel or anti-parallel (wrt. N/C terminus)
Other Substructures

• α-helixes and β-sheets form around 50-80% of a protein
• Other parts are called loops or coils
 – Usually not very important for the structure of the protein
 – But very important for its function
 – Often exposed on the surface; important for binding to other molecules
Importance

• Secondary structure elements (SSE) are vital for the overall structure of a protein
• Often evolutionary well conserved
• SSE can be used to classify proteins
 – Such classes are highly associated to function
• Knowing the SSE gives important clues to protein function
• Secondary structure prediction (SSP) is much simpler than 3D structure prediction
 – And 3D structure prediction can benefit a lot from a good SSP
Predicting Secondary Structure

- SSP: Given a protein sequence, **assign each AA** in the sequence to one of the **three classes** Helix (H), Strand (E), or Coil (_)

\[
\text{KVYGRCELAAMKRLGLDNYRGYS} \text{LGNWVCAAKFESNFNTATNRNTD}
\]

\[
\text{GSTDYGILQINSRWCC} \text{NDGRTPGSKNCINPC} \text{SA} \text{LLSSDI} \text{TASVNCAK}
\]

\[
\text{KIAGGNGMN} \text{AWA} \text{RNRC} \text{KGTDVHAWIRGCR} \text{L}
\]
Classification

• **Classification**: Classify each AA into one of three classes
• Classification is a **fundamental problem**
 - Classify the readout of a microarray as diseased / healthy
 - Classify a subsequence of a genome as coding / non-coding
 - Classify an email as spam / no spam
• Many **different techniques**: Naïve Bayes, Regression, Decision Trees, SVMs, Neural Networks, ...
 - Based on same principles can be exchanged easily
 - Classification function learned from properties of known objects
• The following is a rather unsystematic approach
 - But simple to explain and classical for this application
This Lecture

- Introduction
- Predicting Protein Secondary Structure
 - Secondary structure elements
 - Chou-Fasman
 - Other methods
Chou-Fasmann Algorithm

• Observation: Different AA favor different folds
 - Different AA are more or less often in H, E, C
 - Different AA are more or less often within, starting, or ending a stretch of H, E, C

• Chou-Fasman algorithm (rough idea)
 - Classifies each AA into E or H; unclassified AA are assigned C
 - Compute a score for the probability of any AA to be E (H)
 - Basis: Relative frequencies in a set of sequences with known SSE
 - In principle, assigns each AA its most frequent class
 - Add constraints about minimal length of E (H) stretches
 - Several further heuristics
Some Details [sketch, some heuristics omitted]

- Let \(f_{j,k} \) be the relative frequency of observing \(AA_j \) in class \(k \).
- Let \(f_k \) be the average over all 20 \(f_{j,k} \) values.
- Compute the propensity of \(AA_j \) to be part of class \(k \) as
 \[
P_{j,k} = \frac{f_{j,k}}{f_k}
 \]
- Using \(P_{j,k} \), classify each \(AA_j \) for every class \(k \) into
 - Strong, normal, weak builder (\(H_\alpha, h_\alpha, I_\alpha \))
 - Strong, weak breaker (\(B_\alpha, b_\alpha \))
 - Indifferent (\(i_\alpha \))
- For now, context (neighboring AAs) is ignored completely.
Concrete Values

- Originally computed on only 15 proteins (1974)

<table>
<thead>
<tr>
<th>AS</th>
<th>P_α</th>
<th>Klasse</th>
<th>AS</th>
<th>P_β</th>
<th>Klasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu</td>
<td>0.53</td>
<td>H_α</td>
<td>Met</td>
<td>0.67</td>
<td>H_β</td>
</tr>
<tr>
<td>Ala</td>
<td>1.45</td>
<td>H_α</td>
<td>Val</td>
<td>1.65</td>
<td>H_β</td>
</tr>
<tr>
<td>Leu</td>
<td>1.34</td>
<td>H_α</td>
<td>Ile</td>
<td>1.60</td>
<td>H_β</td>
</tr>
<tr>
<td>His</td>
<td>1.24</td>
<td>h_α</td>
<td>Cys</td>
<td>1.30</td>
<td>i_α</td>
</tr>
<tr>
<td>Met</td>
<td>0.20</td>
<td>h_α</td>
<td>Tyr</td>
<td>1.29</td>
<td>i_β</td>
</tr>
<tr>
<td>Gln</td>
<td>1.17</td>
<td>h_α</td>
<td>Phe</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>1.14</td>
<td>H_α</td>
<td>Gln</td>
<td>1.23</td>
<td>h_β</td>
</tr>
<tr>
<td>Val</td>
<td>1.14</td>
<td>H_α</td>
<td>Leu</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>1.12</td>
<td>H_α</td>
<td>Thr</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>1.07</td>
<td>I_α</td>
<td>Trp</td>
<td>1.19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AS</th>
<th>P_α</th>
<th>Klasse</th>
<th>AS</th>
<th>P_β</th>
<th>Klasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ile</td>
<td>1.00</td>
<td>I_α</td>
<td>Ala</td>
<td>0.93</td>
<td>I_β</td>
</tr>
<tr>
<td>Asp</td>
<td>0.98</td>
<td>I_α</td>
<td>Arg</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>0.82</td>
<td>I_α</td>
<td>Gly</td>
<td>0.81</td>
<td>i_β</td>
</tr>
<tr>
<td>Ser</td>
<td>0.79</td>
<td>i_α</td>
<td>Asp</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>0.79</td>
<td>i_α</td>
<td>Lys</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>0.77</td>
<td>i_α</td>
<td>Ser</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>0.73</td>
<td>b_α</td>
<td>His</td>
<td>0.71</td>
<td>b_β</td>
</tr>
<tr>
<td>Tyr</td>
<td>0.61</td>
<td>b_α</td>
<td>Asn</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>0.59</td>
<td>B_α</td>
<td>Pro</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>0.53</td>
<td>B_α</td>
<td>Glu</td>
<td>0.26</td>
<td>B_β</td>
</tr>
</tbody>
</table>
Algorithm for Helices

- Go through the protein sequence
- **Score each AA** with 1 (H_α, h_α), 0.5 (l_α, i_α), or -1 (B_α, b_α)
- Find **helix cores**: subsequences of length 6 with an aggregated AA score ≥ 4
- Starting from the middle of each core, shift a **window of length 4** to the left (then to the right)
 - Compute aggregated score A using values $P_{j,k}$ inside the window
 - If $A \geq 4$, continue; otherwise stop
- **Similar method** for strands
- **Conflicts** (regions assigned both H and E) are resolved based on aggregated scores
Example [Source: O. Kohlbacher, “Strukturvorhersage”]

\[\Sigma = 5 \]

Helixstart
Performance

- **Accuracy app. 50-60%**
 - Measured on per-AA correctness

- **Prediction is more accurate in helices than in strands**
 - Because helices build local bridges (hydrogen bounds between the turns; each AA binds to the +4 AA)

- **General problem**
 - Secondary structure is not only a local problem
 - Looking only at single AAs is not enough
 - Note: Scores are based on individual AA; aggregation by summation assumes statistical independence of pairs, triples ... in a class
 - One needs to include the context of an AA
This Lecture

• Introduction

• Predicting Protein Secondary Structure
 - Secondary structure elements
 - Chou-Fasman
 - Other methods
Classes of Methods

• First generation: Only look at properties of single AA
 - Accuracy: 50-60%
 - E.g. Chou-Fasman (1974)

• Second generation: Include info. about neighborhood
 - Accuracy: ~65%
 - E.g. GOR (1974 – 1987)

• Third generation: Include info. from homologous seq’s
 - Accuracy: ~70-75%
 - E.g. PHD (1994)

• Forth generation: Build ensembles of good methods
 • Accuracy: ~80%
 • E.g. Jpred (1998)
GOR Algorithm

• In principle, GOR uses P_k values for **16-grams of AAs**
 - Recall: Helices have a “reach” of ~4 AA
 - But neighbors in a strand can be arbitrarily far away from each other (but they are not in practice)

• These cannot be learned from counting
 - There are $16^{20} \sim 1.2E24$ different 16-grams

• Different versions of GOR use different methods to estimate these values

• Other difference
 - Use of negative information (chances of AA j not being in class k)
 - No cores+extension: Each AA is classified based on its 16-context
PHD [Rost et al.: PHD-an automatic mail server for protein SSP, Bioinformatics 10(1), 1994]

- **Uses two neural networks**
- Input is not only the AA and its context, but its *profile*
 - Given the input sequence X, PHD first search *homologous sequences* (using PSI-BLAST)
 - All these are subjected to a multiple sequence alignment
 - The “column” of an AA in X is its profile
- **Rationale**
 - On average, one can exchange ~65% of a protein without changing its secondary structure notably
 - Thus, the concrete AA is not as important as one might think
 - Homologous sequences are believed to have the same function and the same secondary structure
 - We do not classify the AA, but the list of all its replacements
Further Reading