Proteomics:
Large-Scale Identification of Proteins

Ulf Leser
This Lecture

• Proteomics
• Separation: 2D Gels
• Identification: Mass Spectrometry
Proteomics

- **Genomics** =
 Determining the genome of a species

- **Transcriptomics** =
 Determining the mRNA of a cell / a tissue / a status

- **Proteomics** =
 Determining the proteins in a cell / a tissue / a status

- Proteomics and transcriptomics have mostly identical goals
 - **Understanding** the processes happening in a cell
 - Differentiate between species, tissues, developmental state, …
 - **Biomarker**: Finding protein (forms, concentrations) that are characteristic for a certain diseases (state)

- Metabolomics, interactomics, bibliomics, cellomics, …
Proteomics (versus Transcriptomics)

- **Advantages**
 - Proteins make you live, not mRNA
 - mRNA is only a *indirect evidence* with non-linear relationship
 - Regulation by miRNA, alternative splicing, …
 - Protein survive (some time), mRNA is transient
 - Proteins may be *drug targets*
Proteomics versus Transcriptomics

- **Disadvantages**
 - **Scale:** 25K genes, 100K proteins, 500K protein forms
 - **Handling:** No PCR, no hybridization, no sequencing, no long-term „storage“ as clones, high reactivity with everything in contact, ...
 - **Reactivity** much more context-dependent: temperature, solution, pH, ...

Typical Proteomics Workflow

1. **Extraction**
 - From a cell mixture

2. **Separation**
 - 2D gel electrophoresis / LC/GC

3. **Isolation**
 - From the gel / from the flow

4. **Identification**
 - Mass spectrometry

5. **Analysis**
 - Quantification, clustering, …
This Lecture

- Proteomics
- **Separation: 2D Gels**
- Identification: Mass Spectrometry
2D Gel Elektrophoresis

- Separation of proteins in **two dimensions**
 - Mass
 - Charge
- Every spot one protein (hopefully)
Method

1. Separation in pH-gradient:
 Proteins move to their isoelectric points

2. Charging of proteins with SDS
 (Sodiumdodecylsulphate)

4. Place on slide of polyacrylamide gel (PAGE)

4. Proteins move in an electric field;
 speed depends on mass

5-. Staining; photo; image analysis; excision
Analysis

• 2D-Page may separate up to 10,000 proteins

• Under identical conditions, the position of a particular protein is fairly stable

• Software for identification of proteins by position
 - After photo and image analysis
 - Compared to a reference - how?

• Various databases of 2D-Gels
 - E.g. Swiss 2D-Page: Federation of 11 databases
Pro / Contra

• Comparably simple and cheap method, well established
• Disadvantages
 - No high-throughput – much manual work
 - No robust quantification (spot intensity, depends on staining)
 - Similar proteins (e.g. protein forms) build highly overlapping spots
 - Many restrictions
 • No proteins with <20KD or >200KD
 • No highly charged proteins
 • No detection of low concentrations
 • No membrane proteins
 - No de-novo protein identification
 - Limited accuracy in comparative identification
Liquide / Gas Chromatography

- 2D-Page once often used as first step before MS-based identification
- Today: Mostly GC/LC
This Lecture

- Proteomics
- 2D Gels
- **Mass Spectrometry**
 - Method
 - Algorithms: Naïve, heuristic, probabilistic
 - De-Novo sequencing and quantification
Mass Spectrometry

- **Accelerate particles** (must be charged) in an electric field
- Detector measures ion hits at back wall
- Flight time proportional to mass
 - ToF – other techniques exist (magnetic drift, …)
- **Spectrum of mass peaks** is used to identify particle
Using Proteins

• Problem: **Proteins are too fragile** – they break
• Solution
 - Break proteins into peptides before acceleration
 • Enzymatic digestion
 - Measure peptides (each peptide one hit)
 - Identify protein based on spectrum of peptide hits

• In theory, every protein has an almost **unique** spectrum
 - Using modern MS/MS, even different protein forms are separable
Digestion

Trypsin:
Cleaves after Arginine und Lysine if next AA is not Proline

```
N-Asp-Ala-Gly-Arg-His-Cys-Lys-Pro-Lys-Ser-Glu-Asn-Leu-Ile-Arg-Thr-Tyr-C
```

Chymotrypsin:
After Tyr, Trp, Phe, Met
Ionization

• Problem: Peptides often are uncharged – no acceleration

• Solution
 - MALDI - Matrix Assisted Laser Desorption / Ionization
 - Peptide are embedded in a „matrix“
 • Crystallization with charged, light-sensitive molecules
 - Fire on crystal with laser
 - Light-sensitive molecules vaporize and carry peptides with them
 - Accelerate

• Other techniques known (ESI: electrospray ionization)
From Measurement to Peaks

- **Detecting peaks** and assigning them to peptides is difficult
 - Systematic bias in runs / machines
 - Noise
 - Inaccuracies of measures
 - Inhomogeneous sample preparation
 - Different quantities of peptides
 - ...
- **Signal processing** – not covered here
This Lecture

- Proteomics
- Separation: 2D Gels
- Identification: Mass Spectrometry
 - Method
 - Algorithms: Naïve, heuristic, probabilistic
 - De-Novo sequencing
Algorithms for Protein Identification from Spectra

- We focus on **database-based** identification
- Idea
 - We have a database of protein sequences
 - Each is subjected to electronic digestion – set of peptides per protein
 - For each peptide, we know its theoretic flight time
 - One theoretic spectrum per protein in the database
 - Measure spectrum of unknown protein
 - Compare spectra
- Again, we can only **discover what we already know**
 - No novel proteins
Illustration

Real experiment

Theoretical experiment

Comparison
Naive Algorithm: Hitcount

- Compare peptides of measurement P with all S_i in DB
- Sequence which has the most peptides in common wins
- Algorithm
 - Input: $P = \{p_1, \ldots, p_m\}$, $S_i = \{p_{i1}, \ldots, p_{im(i)}\}$, $i < n$
 - Compute an array A storing for each peptide k all sequences containing it: $A[k] = \{S_i \mid k \in S_i\}$
 - Initialize a counter for sequence $M[i] = 0$, $i < n$
 - For all $k \in P$, for all i: If $S_i \in A[k]$: $M[i] = M[i] + 1$
 - Sequence S_i with $M[i] = \text{MAX}$ wins
- Complexity?
 - Theoretical worst-case $O(|P|*n)$
 - Average-case is $O(|P|)$
Example

• Input
 - $S_1 = [5, 8, 9, 14, 18]$
 - $S_2 = [3, 5, 9, 12]$
 - $S_3 = [4, 8, 16, 17, 20]$
 - $S_4 = [1, 7, 9, 17]$
 - $P = [7, 8, 14, 16, 17]$

• A

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1,2</td>
<td>4</td>
<td>1,3</td>
<td>1,2,4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3,4</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

• Score
 - $\text{sim}(S_1, P) = 1 (8) + 1 (14)$
 - $\text{sim}(S_2, P) = 0$
 - $\text{sim}(S_3, P) = 1 (8) + 1 (16) + 1 (17)$
 - $\text{sim}(S_4, P) = 1 (7) + 1 (17)$
Why “Naïve”?

- Peptide masses are not really equal
 - Always small deviation – nearest hit – need not be unique
- Some (short) peptides are more frequent than others
 - Some peptides appear in almost all proteins
 - Should have a lower impact
- Proteins have different lengths
 - Longer proteins have an a-priori higher chance for high scores

X: Peptide mass (1000-5000 Dalton)
Y: Peptide count (log)
Example

• Which one would you prefer?
More Problems

• Enzymes don’t work 100% correct
 – Some peptides that should be there are missing, others that should not be there are present

• Protein sequences in DB contain errors
 – Especially when directly translated from genome
 – Especially bad when frameshifts occur

• Ignores posttranslational modifications

• Peptide mass not constant – isotopes

• MS is not perfect – spurious hits, shifted hits, missing hits

• Some protein always has the highest count – what if real sequence is not in the database?
 – No confidence scores
Practically Relevant Algorithms

• **Heuristic:** MOWSE
 – Considers total protein mass and peptide frequencies
 – Generates a score (but not a confidence)

• **Probabilistic algorithm:** Profound
 – Bayes’ statistics
 – Can cope with measurement errors, protein mass and peptide frequencies
 – Generates a probability of match for each protein

• Many more (and newer) algorithms have been published
 – MASCOT, PeptIdent, ProteinProspector, SEQAN, ...
ProFound

- **Probabilistic method**
- Computes, for a given spectrum D (P) and each protein k (S_i), the probability that D was produced by k
- The formula is complex; its derivation is even more complex and skipped here
- Assumption: Measured peptide masses are *normally distributed* around the “canonical” value
 - Most probable isotopes
ProFound Formula

\[
P(k|\text{DI}) \propto P(k|I) \frac{(N - r)!}{N!} \prod_{i=1}^{r} \left\{ \sqrt{\frac{2}{\pi}} \frac{m_{\text{max}} - m_{\text{min}}}{\sigma_i} \right\} \times \sum_{j=1}^{g_i} \exp \left[- \frac{(m_i - m_{ij0})^2}{2\sigma_i^2} \right] \right\} F_{\text{pattern}}
\]
Legend

\[
P(k|D,I) \propto P(k|I) \frac{(N-r)!}{N!} \prod_{i=1}^{r} \left\{ \sqrt{\frac{2}{\pi}} \frac{m_{\text{max}} - m_{\text{min}}}{\sigma_i} \times \sum_{j=1}^{g_i} \exp\left[-\frac{(m_i - m_{ij})^2}{2\sigma_i^2} \right] \right\} F_{\text{pattern}}
\]

- \(p(k|D,I) \) = prob. that protein k was measured given the spectrum D and background information I
- \(N \): Number of peptides of protein k
- \(r \): Number of hits (with a certain fuzzy’ness)
- \(m_{\text{max}}, m_{\text{min}} \) – range of observed masses for current hit
- \(\sigma_i \) – standard deviation of i’th hit
- \(m_i \): mass of the hit (must be between \(m_{\text{max}} \) and \(m_{\text{min}} \))
- \(g_i \): How often is the peptide contained in k?
- \(m_{ij} \): Theoretical mass of j’th occurrence of this peptide in k
- \(p(k|I) \): A-priori probability of k in the given species / cell / tissue
- \(F_{\text{pattern}} \): Heuristic factor dealing with “overlapping peaks”
ProFound Explanation

- How many of the expected peptides for k did we observe?
- Multiply probabilities of all hits
- “Freedom” of measurements of hits for this peptide
- One observed peak may stem from various predicted peaks, each with slightly different mean m_{ij0}
- Probability of the deviation of the canonical mass to the measured mass
ProFound Intuition

\[P(k|DI) \propto P(k|I) \frac{(N - r)!}{N!} \prod_{i=1}^{r} \left(1 - \frac{2}{\pi} \frac{m_{\text{max}} - m_{\text{min}}}{\sigma_i} \right) \times \sum_{j=1}^{g_i} \exp \left[-\frac{(m_i - m_{ij0})^2}{2\sigma_i^2} \right] \]

- Many hits \((r \sim N) \) – score goes up (outweighs influence of more small factors in the red part)
- Hits have in narrow range – score goes up
- Observed peak matches many theoretical peaks – score goes up
- Observed peak close to canonical peak – score goes up
- Theoretical peak as high stddev – scores go down (also green)
Critique

• Score assumes that protein is in the database
 – Better: formulate „null“ hypothesis, compute prob. of the spectrum given the null hypothesis, and report the log-odds ratio as score
 – But this is not as simple done as spoken out

• Assumes that every peak comes from “the” protein
 – But measurements might be contaminated with peptides from other proteins

• Assumes that observed peaks can be assigned clearly to theoretical peaks
 – This problem is tried to be covered by F_pattern

• Many more suggestions since 2000
Further Reading

- Basics on proteomics: Every Bioinformatics book
- Spectrum-analysis algorithms: Original papers